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Preface

This third edition marks some 18 years since the second edition of this book appeared
and what seems like half a lifetime ago—some 31 years—since the first edition was
written. It has been extremely gratifying that the book has lasted this long, that it
continues to be used by many and that a new edition was welcomed by Wiley.

Since the second edition the subject has consolidated and largely turned to more and
more areas of application, including a renewed interest from the geotechnical engi-
neering research community. But also in practice structural reliability increasingly is
being applied, particularly for situations where quantitative, data-based risk assessment
of non-elementary structural or other systems is required. Overviews of the papers con-
tributed to conferences such as ICASP, ICOSSAR, IFIP, IALCCE and CSM shows much
attention paid to applications and relatively little to sorting out some of the remaining
really challenging theoretical problems such as how to deal with complex systems with a
multitude of random variables or processes, and for which many potential failure modes
and combination of such modes may exist. Fortunately, the availability of ever greater
computational power has meant that enumeration methods, once thought to be the way
forward for dealing with really complex problems, can be cast aside in favour of sheer
brute force number crunching. In this sense Chapter 3 and the parts of Chapter 5 deal-
ing with Monte Carlo methods are now more important, for practical problems, than
the elegant but simpler FOSM/FOR/SOR methods that allow easier insight into ‘what
was driving what’.

The present edition follows much of the second edition but updates areas such as
Monte Carlo methods, systems reliability, some aspects of load and resistance mod-
elling, code calibration, analysis of existing structures and adds, for the first time, a
chapter on optimization in the context of structural reliability. The co-author for this
edition, André T. Beck, has contributed much to these changes, as well as to the worked
examples provided where relevant for each chapter and collected together in Appendix
F. We have had the good fortune to have at hand the many comments and corrections,
principally supplied by Dr. Bill Gray during his post-doctoral days at The University of
Newcastle. As before, we have had to be selective in our coverage and have had to make
difficult decisions about what to include and what leave out.

Now, as 18 years ago, a surf or a beach run at Newcastle’s wonderful Pacific Ocean
beaches, a surf or a bike ride along the south-eastern Brazilian coast, seem better ways
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xvi Preface

to spend one’s time than revising a book. Our spouses tell us so, our colleagues tell us
so, our minds tell us so, but what do we do?

10 February 2017 Robert E. Melchers
Bar Beach, Newcastle

André T. Beck
Florianópolis, SC
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Preface to the Second Edition

It is over ten years since the first edition of this book appeared and more than 12 years
since the text was written. At the time structural reliability as a discipline was evolving
rapidly but was also approaching a degree of maturity. Perhaps it is not surprising, then,
that rather little of the first edition now seems out-dated.

This edition differs from the first mainly in matters of detail. The overall layout has
been retained but all of the original text has been reviewed. Many sections have been
partly rewritten to make them clearer and more complete and many, often small but
annoying, errors and mistakes have been corrected. Hopefully not too many new ones
have crept in. Many new references have been added and older, now less relevant, ones
deleted. This is particularly the case in referring to applications, in which area there has
been much progress.

The most significant changes in this edition include the up-dating of the sections deal-
ing with Monte Carlo simulation, the addition of the Nataf transformation in the discus-
sion of FOSM/FORM methods, some comments about asymptotic methods, additional
discussion of structural systems subject to multiple loads and a new chapter devoted to
the safety checking of existing structures, an area of increasing importance.

Other areas in which there have been rapid developments, such as simulation of
random processes and random fields, applications in structural dynamics and fatigue
and specialist refinements of theory are all of interest but beyond the scope of an
introductory book. Readers might care to refer to the specialist literature, proceedings
of conferences such as the ICASP, ICOSSAR and IFIP series and to journals such as
Structural Safety, Probabilistic Engineering Mechanics and the Journals of Engineering
Mechanics and Structural Engineering of ASCE. Overviews of various aspects of
applications of structural reliability are given also in Progress in Structural Engineering
and Mechanics. There are, of course, other places to look, but these should form a good
starting point for keeping in touch with theoretical developments and applications.

In preparing this edition I had the good furtune to have at hand a range of comments,
notes and advice. I am particularly indebted to my immediate colleagues Mark Stew-
art and Dimitry Val for their critical comments and their assistance with some of the
new sections. Former research students have also contributed and I mention in this
regard particularly H.Y. Chan, M. Moarefzadeh and X.L. Guan. Naturally, I owe a very
significant debt to the international structural reliability community in general and to
some key people in particular, including Ove Ditlevsen, Rudiger Rackwitz, Armen Der
Kiureghian and Bruce Ellingwood—they, and many others, will know that I appreciate
their forebearance and friendship.
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The encouragement and generous comments from many sources is deeply appreci-
ated. It has contributed to making the hard slog of revision a little less painful. Some-
times a beach run or a surf seemed a better alternative to spending an hour or so making
more corrections to the text… As before, the forebearance of my family is deeply appre-
ciated. Like many academic households they have learnt that academics are their own
worst enemies and need occasionally to be dragged away from their Macintoshes to
more socially acceptable activities.

August, 1998 Robert E. Melchers
Bar Beach, Newcastle

Preface to the First Edition

The aim of this book is to present a unified view of the techniques and theory for the
analysis and prediction of the reliability of structures using probability theory. By relia-
bility, in this context, will be understood not just reliability against extreme events such
as structural collapse or facture, but against the violation of any structural engineering
requirements which the structure is expected to satisfy.

In practice, two classes of problems may arise. In the first, the reliability of an exist-
ing structure at the ‘present time’ is required to be assessed. In the second, and much
more difficult class, the likely reliability of some future, or as yet uncompleted, structure
must be predicted. One common example of such a requirement is in structural design
codes, which are essentially instruments for the prediction of structural safety and ser-
viceability supported by previous experience and expert opinion. Another example is the
reliability assessment of major structures such as large towers, offshore platforms and
industrial or nuclear plants for which structural design codes are either not available or
not wholly acceptable. In this situation, the prediction of safety both in absolute terms
and in terms of its interrelation to project economics is becoming increasingly impor-
tant. This class of assessment relies on the (usually reasonable but potentially dangerous)
assumption that past experience can be extrapolated into the future.

It might be evident from these remarks that the analysis (and prediction) of structural
reliability is rather different from the types of analysis normally performed in structural
engineering. Concern is less with details of stress calculations, or member behaviour, but
rather with the uncertainties in such behaviour and how this interacts with uncertain-
ties in loading and in material strength. Because such uncertainties cannot be directly
observed for any one particular structure, there is a much greater level of abstraction
and conceptualization in reliability analysis than is conventionally the case for structural
analysis or design. Modelling is not only concerned with the proper and appropriate
representation of the physics of any structural engineering problem, but also with the
need to obtain realistic, sufficiently simple and workable models or representations of
both the loads and the material strengths, and also their respective uncertainties. How
such modelling might be done and how such models can be used to analyse or predict
structural reliability is the central theme of this book.

In one important sense, however, the subject matter has a distinct parallel with
conventional structural engineering analysis and its continual refinement; that is,
that ultimately concern is with costs. Such costs include not only those of design,
construction, supervision and maintenance but also the possible cost of failure (or loss
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of serviceability). This theme, although not explicitly pursued throughout the book,
is nevertheless a central one, as will become clear in Chapter 2. The assessment or
predictions obtained using the methods outlined in this book have direct application
in decision-making techniques such as cost-benefit analysis or, more precisely when
probability is included, risk-benefit analysis. As will be seen in Chapter 9, one important
area of application for the methods presented here is in structural design codes, which,
it will be recognized, are essentially particular (if perhaps rather crude and intuitive)
forms of risk-benefit methodology.

A number of other recent books have been devoted to the structural reliability theme.
This book is distinct from the others in that it has evolved from a short course of lectures
for undergraduate students as well as a 30-h graduate course of lectures which the author
has given periodically to (mainly) practising structural engineers during the last 8 years.
It is also different in that it does not attempt to deal with related topics such as spectral
analysis for which excellent introductory texts are already available.

Other features of the present book are its treatment of structural system reliability
(Chapter 5) and the discussion of both simulation methods (Chapter 3) and modern
second-moment and transformation methods (Chapter 4). Also considered is the
important topic of human error and human intervention in the relationship between
calculated (or ‘nominal’) failure probabilities and those observed in populations of real
structures (Chapter 2).

The book commences (Chapter 1) by reviewing traditional methods of defining struc-
tural safety such as the ‘factor of safety’, the ‘load factor’, ‘partial factor’ formats (i.e.
‘limit state design’ formats) and the ‘return period’. Some consistency aspects of these
methods are then presented and their limited use of available data noted, before a sim-
ple probabilistic safety measure, the ‘safety margin’ and the associated failure probability
are introduced. This simple one-load one-resistance model is sufficient to introduce the
fundamental ideas of structural reliability assessment. Apart from Chapter 2, the rest
of the book is concerned with elaborating and illustrating the reliability analysis and
prediction theme.

While Chapters 3, 4 and 5 deal with particular calculation techniques for
time-independent situations, Chapter 6 is concerned with extending the ‘return period’
concept introduced in Chapter 1 to more general formulations for time-dependent
problems. The three principal methods for introducing time, the time-integrated
approach, the discrete time approach and the fully time-dependent approach, are each
outlined and examples given. The last approach is considerably more demanding than
the other two (classical) methods since it is necessary to introduce elements of stochas-
tic process theory. First-time readers may well decide to skip rather quickly through
much of this chapter. Applications to fatigue problems and structural vibrations are
briefly discussed from the point of view of probability theory, but again the physics of
these problems is outside the scope of the present book.

Modelling of wind and floor loadings is described in Chapter 7 whilst Chapter 8
reviews probability models generally accepted for steel properties. Both load and
strength models are then used in Chapter 9. This deals with the theory of structural
design codes and code calibration, an important area of application for probabilistic
reliability prediction methodology.

It will be assumed throughout that the reader is familiar with modern methods
of structural analysis and that he (or she) has a basic background in statistics and
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probability. Statistical data analysis is well described in existing texts; a summary of
probability theory used is given in Appendix A for convenience.

Further, reasonable competence in applied mathematics is assumed since no mean-
ingful discussion of structural reliability theory can be had without it. The level of pre-
sentation, however, should not be beyond the grasp of final-year undergraduate students
in engineering. Nevertheless, particularly difficult theoretical sections which might be
skipped on a first reading are marked with an asterisk (*).

For teaching purposes, Chapters 1 and 2 could form the basis for a short undergrad-
uate course in structural safety. A graduate course could take up the topics covered in
all chapters, with instructors having a bias for second-moment methods skipping over
some of the sections in Chapter 3 while those who might wish to concentrate on simu-
lation could spend less time on Chapter 4. For an emphasis on code writing, Chapters 3
and 5 could be deleted and Chapters 4 and 6 cut short.

In all cases it is essential, in the author’s view, that the theoretical material be supple-
mented by examples from experience. One way of achieving this is to discuss particular
cases of structural failure in quite some detail, so that students realize that the theory
is only one (and perhaps the least important) aspect of structural reliability. Structural
reliability assessment is not a substitute for other methods of thinking about safety, nor
is it necessarily any better; properly used, however, it has the potential to clarify and
expose the issues of importance.

Acknowledgements

This book has been a long time in the making. Throughout I have had the support and
encouragement of Noel Murray, who first started me thinking seriously about structural
safety, and also of Paul Grundy and Alan Holgate. In more recent times, research stu-
dents Michael Harrington, Tang Liing Kiong, Mark Stewart and Chan Hon Ying have
played an important part.

The first (and now unrecognizable) draft of part of the present book was commenced
shortly after I visited the Technical University, Munich, during 1980 as a von Humboldt
Fellow. I am deeply indebted to Gerhart Schueller, now of Universität Innsbruck, for
arranging this visit, for his kind hospitality and his encouragement. During this time,
and later, I was also able to have fruitful discussions with Rudiger Rackwitz.

Part of the last major revision of the book was written in the period November
1984-May 1985, when I visited the Imperial College of Science and Technology,
London, with the support of the Science and Engineering Research Council. Work-
ing with Michael Baker was a most stimulating experience. His own book (with
Thoft-Christensen) has been a valuable source of reference.

Throughout I have been extremely fortunate in having Mrs. Joy Helm and more
recently Mrs. Anna Teneketzis turn my difficult manuscript into legible typescript.
Their cheerful co-operation is very much appreciated, as is the efficient manner with
which Rob Alexander produced the line drawings.

Finally the forbearance of my family was important, many a writing session being
abruptly concluded with a cheerful ‘How’s Chapter 6 going, Dad?’

December 1985 Robert E. Melchers
Monash University

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

457

References

Abdo, R. and Rackwitz, R. (1990) A new beta-point algorithm for large variable problems in
time-invariant and time-variant reliability problems, Proc. 3rd IFIP WG7.5 Working
Conf. on Reliability and Optimization of Structural Systems, Der Kiureghian, A. and
Thoft-Christensen, P. (Eds) Springer, 112.

Abramowitz, M. and Stegun, I.A. (Eds) (1966) Handbook of Mathematical Functions,
Applied Mathematics Series No. 55, National Bureau of Standards, Washington, DC.

Agarwal, H., Mozumder, C.K., Renaud, J.E. and Watson, L.T. (2007) An
inverse-measure-based unilevel architecture for reliability-based design. Structural and
Multidisciplinary Optimization, 33: 217–227.

Agarwal, H., Renaud, J., Lee, J. and Watson, L. (2004) A unilevel method for reliability
based design optimization, 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference, Palm Springs, CA, Apr. 19–22.

Ahammed, M. and Melchers, R.E. (1997) Probabilistic Analysis of Underground Pipelines
Subject to Combined Stresses and Corrosion, Engineering Structures, 19 (12): 988–994.

Ahammed, M. and Melchers, R.E. (2006) Gradient and parameter sensitivity estimation for
systems evaluated using Monte Carlo analysis, Reliability Engineering and System Safety
91 (5): 594–601.

Akgul, F. and Frangopol, D.M. (2005) Lifetime performance analysis of existing reinforced
concrete bridges, II: Application, J. Infrastructure Systems, 11 (2): 129–141.

Albrecht, P. and Naeemi, A. (1984) Performance of Weathering Steel in Bridges, NCHRP
Report 272, Washington, DC.

Allen, D.E. (1968), Discussion of Turkstra, C.J., Choice of failure probabilities, J. Structural
Div., ASCE, 94: 2169–2173.

Allen, D.E. (1970) Probabilistic study of reinforced concrete in bending, J. Amer. Concrete
Inst., 67 (12) 989–993.

Allen, D.E. (1975) Limit states design—a probabilistic study, Can. J. Civil Eng., 2 (1): 36–49.
Allen, D.E. (1981a) Criteria for design safety factors and quality assurance expenditure,

Structural Safety and Reliability, Moan, T., and Shinozuka, M., (Eds), Elsevier,
Amsterdam, 667–678.

Allen, D.E. (1981b) Limit states design: what do we really want?, Can. J. Civil Eng., 8: 40–50.
Allen, D.E. (1991) Limit states criteria for structural evaluation of existing buildings, Can. J.

Civil Eng., 18: 995–1004.
Alpsten, G.A. (1972) Variations in mechanical and cross-sectional properties of steel, Proc.

Int. Conf. on Planning and Design of Tall Buildings, Vol. Ib, Lehigh University,
Bethlehem, 775–805.

Structural Reliability Analysis and Prediction, Third Edition. Robert E. Melchers and André T. Beck.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

458 References

Andrieu, C., Lemaire, M. and Sudret, B., (2002) The PHI2 Method: a way to Assess
Time-variant Reliability Using Time-invariant Reliability Tools, Proc. European Safety
and Reliability Conference ESREL’02, ISdF, Lyon, 472–479.

Ang, A.H-S. and De Leon, D. (1997) Determination of optimal target reliabilities for design
and upgrading of structures, Structural Safety, 19 (1): 91–103.

Ang A.H.-S. and Lee J.-C. (2001) Cost optimal design of R/C buildings, Reliability
Engineering and System Safety, 73, 233–238.

Ang, A.H.-S. and Tang, W.H. (1975) Probability Concepts in Engineering Planning and
Design, Vol. I, Basic Principles, John Wiley, New York.

Ang, G.L., Ang, A.H.-S. and Tang, W.S. (1989) Kernel method in importance sampling
density estimation, Proc. 5th International Conference on Structural Safety and
Reliability, A.H.-S. Ang, M. Shinozuka and G.I. Schuëller (Eds), ASCE, New York,
1193–1200.

Ang, G.L., Ang, A.H.-S. and Tang, W.S. (1991) Multi-dimensional kernel method in
importance sampling, Proc. 6th International Conference on Applications of Statistics
and Probability in Civil Engineering, L. Esteva and S.E. Ruiz (Eds), CERRA, 289–295.

Angst, U., Elsener, B., Jamali, A. and Adey, B. (2012) Concrete cover cracking owing to
reinforcement corrosion—theoretical considerations and practical experience, Materials
and Corrosion, 63 (12): 1069–1077.

Angst, U., Elsener, B., Larsen, C. and Vennesland, O. (2009) Critical chloride content in
reinforced concrete—A review, Cement and Concrete Research, 39: 1122–1138.

Aoues, Y. and Chateauneuf, A. (2008) Reliability-based optimization of structural systems
by adaptive target safety—Application to RC frames, Structural Safety, 30: 144–161.

Aoues, Y. and Chateauneuf, A. (2010) Benchmark study of numerical methods for
reliability-based design optimization. Structural and Multidisciplinary Optimization, 41:
277–294.

Arnold, R.J. (1981) The Geometry of Random Fields, John Wiley & Sons, New York.
Arora, J.S. (2012) Introduction to Optimum Design, 3rd Edition, Elsevier, London.
Arora, J.S. (Ed.) (2007) Optimization of Structural and Mechanical Systems, World

Scientific Publishing.
ASCE (1982) Fatigue reliability (a series of papers), (Committee on Fatigue and Fracture

Reliability), J. Structural Div., ASCE, 108 (ST1): 3–88.
ASCE (2013) Report Card for America’s Infrastructure, American Society of Civil

Engineers, Washington, DC.
Au, S.K. (2005) Reliability-based design sensitivity by efficient simulation, Computers &

Structures, 83: 1048–1061.
Au, S.K. and Beck, J.L. (2001) Estimation of small failure probabilities in high dimensions

by subset simulation, Prob. Eng. Mech. 16 (4): 263–277.
Au, S.K. and Beck, J.L. (2003) Subset simulation and its application to seismic risk based on

dynamic analysis, J. Eng. Mech. ASCE 129 (8): 1–17.
Au, S.K., Ching, J. and Beck, J.L. (2007) Application of subset simulation methods to

reliability benchmark problems. Structural Safety, 29: 183–193.
Augusti, G. (1980) Probabilistic methods in plastic structural analysis, Nuclear Engineering

and Design, 57: 403–415.
Augusti, G. and Baratta, A. (1972) Limit analysis of structures with stochastic strength

variations, J. Structural Mechanics, 1 (1): 43–62.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 459

Augusti, G. and Baratta, A. (1973) Theory of probability and limit analysis of structures
under multiparameter loading, Foundations of Plasticity, Sawczuk, A. (Ed), Noordhoff,
Leyden, 347–364.

Augusti, G., Baratta, A. and Casciati, F. (1984) Probabilistic Methods in Structural
Engineering, Chapman and Hall, London.

Augusti, G. and Ciampoli, M. (2008) Performance-based design in risk assessment and
reduction, Probabilistic Engineering Mechanics, 23 (4): 496–508.

Aven, T. and Vinnem, J.E. (2005) On the use of risk acceptance criteria in the offshore oil
and gas industry, Reliability Engineering & System Safety, 90 (1): 15–24.

Ayyub, B.M. and Chia, C.-Y. (1991) Generalized conditional expectation for structural
reliability assessment, Structural Safety, 11 (2): 131–146.

Ayyab, B.M. and Haldar, A. (1984) Practical structural reliability techniques, J. Structural
Engineering, ASCE, 110 (8): 1707–1724.

Ayyub, B.M. and Lai, K.-L. (1990) Structural reliability assessment using Latin hypercube
sampling, Proc. Intl. Conf. Structural Safety and Reliability, Ang, A. H.-S., Shinozuka, M.
and Schuëller, G.I. (Eds), ASCE, New York, 1177–1184.

Ba-abbad, M., Nikolaidis, E. and Kapania, R. (2006) A new approach for system
reliability–based design optimization, AIAA J., 44 (5): 1087–1096.

Baboian, R. (1995) Environmental conditions affecting transport infrastructure, Materials
Performance, 34 (9): 48–52.

Baker, M.J. (1969) Variations in the mechanical properties of structural steels, Final Report,
Symposium on Concepts of Safety of Structures and Methods of Design, IABSE, London,
165–174.

Baker, M.J. (1976) Evaluation of partial safety factors for Level I codes—example of
application of methods to reinforced concrete beams, Bulletin d’Information No. 112,
Comité Européen due Béton, Paris, 190–211.

Baker, M.J. (1985) The reliability concept as an aid to decision making in offshore
engineering, Behaviour of Offshore Structures, Elsevier, Amsterdam, 75–94.

Baker, M.J. and Wyatt, T. (1979) Methods of reliability analysis for jacket platforms, Proc.
Second Intl. Conf. on Behaviour of Offshore Structures, British Hydromechanics Research
Association, Cranfield, 499–520.

Baratta, A. (1995) Discussion on Wang, et al. (1994), Structural Safety, 17 (2): 111–115.
Barbato, M., Petrini, F., Unnikrishnan, V.U. and Ciampoli, M. (2013) Performance-Based

Hurricane Engineering (PBHE) framework, Structural Safety, 45: 24–35.
Bartlett, F.M. (1997) Precision of in-place concrete strengths predicted using core strength

correction factors obtained by weighted regression analysis, Structural Safety, 19 (4):
397–410.

Bartlett, F.M. and McGregor, J.G. (1996) Statistical analysis of the compressive strength of
concrete in structures, ACI Materials Journal, 93 (2): 158–168.

Basler, B. (1961) Untersuchungen über den Sicherheitsbegriff von Bauwerken, Schweiz.
Arch., 27 (4): 133–160.

Batts, M.B., Russell, L.R. and Simiu, B. (1980) Hurricane wind speed in the United States,
J. Structural Div., ASCE, 106 (ST10): 2001–2016.

Beck, A.T. (2003) Reliability Analysis of Degrading Uncertain Structures—with Applications
to Fatigue and Fracture Under Random Loading, Ph.D. Thesis, Dept. of Civil &
Environmental Engineering, University of Newcastle, Australia.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

460 References

Beck, A.T. (2008) The random barrier-crossing problem, Probabilistic Engineering
Mechanics, 23: 134–145.

Beck, A.T. (2013) Structural Optimization under Uncertainties: Understanding the Role of
Expected Consequences of Failure, (In) Civil and Structural Engineering Computational
Methods, Tsompanakis, Y., Iványi, P. and Topping, B.H.V. (Eds.), Saxe-Coburg
Publications, Stirlingshire, Scotland.

Beck, A.T. and Gomes, W.J.S. (2012) A comparison of deterministic, reliability-based and
risk-based structural optimization under uncertainty, Probabilistic Engineering
Mechanics, 28: 18–29.

Beck, A.T., Gomes, W.J.S., Lopez, R.H. and Miguel, L.F.F. (2015) A comparison between
robust and risk-based optimization under uncertainty, Struct. Multidisc. Optim. 52:
479–492.

Beck, A.T. and Melchers, R.E. (2004a) On the Ensemble Crossing Rate Approach to Time
Variant Reliability Analysis of Uncertain Structures, Probabilistic Engineering Mechanics,
19: 9–19.

Beck, A.T. and Melchers, R.E. (2004b) Overload failure of structural components under
random crack propagation and loading – a random process approach, Structural Safety,
26: 471–488.

Beck, A.T. and Melchers, R.E. (2005) Barrier failure dominance in time variant reliability
analysis, Probabilistic Engineering Mechanics, 20: 79–85.

Beck, A.T. and Silva Jr., C.R.A. (2016) Strategies for finding the design point under bounded
random variables, Structural Safety, 58: 79–93.

Beet, J., Ginsbourger, D., Li, L., Picheny, V. and Vazquez, E. (2012) Sequential design of
computer experiments for the estimation of a probability of failure, Stats. and Comp.,
22 (3): 773–193.

Belyaev, Y.K. (1968) On the number of exists across the boundary of a region by a vector
stochastic process, Theory Prob. Appl., 13 (2): 320–324.

Belyaev, Y.K. and Nosko, V.P. (1969) Characteristics of excursions above a high level for a
Gaussian process and its envelope, Theory Prob. Appl., 14: 296–309.

Benjamin, J.R. (1968) Probabilistic structural analysis and design, Journal of the Structural
Division, ASCE, 94: 1665–1679.

Benjamin, J. R. (1970) Reliability studies in reinforced concrete design, Structural
Reliability and Codified Design, Lind, N. C. (Ed), SM Study No. 3, University of Waterloo,
Waterloo, Ontario.

Benjamin, J. R. and Cornell, C. A. (1970) Probability, Statistics and Decisions for Civil
Engineers, McGraw-Hill, New York.

Bennett, R.M. and Ang. A. H.-S. (1983) Investigation of Methods for Structural Systems
Reliability, Structural Research Series No. 510, University of Illinois, Urbana, IL.

Beveridge, G.S.G. and Schechter, R.S. (1970) Optimization: Theory and Practice,
McGraw-Hill, New York.

Beyer, H.G. and Sendhoff, B. (2007) Robust optimization—A comprehensive survey,
Computer Methods in Applied Mechanics and Engineering, 196: 3190–3218.

Bichon, B.J., Eldred, M.S., Swiler, L.P., Mahadevan, S. and McFarland, J.M. (2008) Efficient
global reliability analysis for nonlinear implicit performance functions, AIAA Journal,
46 (10): 2459–2468.

Birge, J.R. and Louveaux, F. (1997) Introduction to Stochastic Programming, New York,
Springer.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 461

Birnbaum, Z.W. (1950) Effect of linear truncation on a multinormal population, Annals of
Mathematical Statistics, 21: 272–279.

Bitner-Gregersen, E.M. and Toffoli, A. (2011) On the probability of occurrence of rogue
waves, Nat. Hazards Earth Syst. Sci., 12: 751–762.

Bjerager, P. (1988) Probability integration by directional simulation, J. Engineering
Mechanics, ASCE, 114 (8): 1285–1302.

Bjerager, P. (1990) On computational methods for structural reliability analysis, Structural
Safety, 9 (2): 79–96.

Bjerager, P. and Krenk, S. (1989) Parametric sensitivity in first order reliability theory,
J. Engineering Mechanics, ASCE, 115 (7): 1577–1582.

Bjorhovde, R., Galambos, T.V. and Ravindra, M.K. (1978) LRFD criteria for steel
beam-columns, J. Structural Div., ASCE, 104 (ST9): 1371–1387.

Blockley, D.I. (1980) The Nature of Structural Design and Safety, Ellis Horwood, Chichester.
Blockley, D.I. (1992) (Ed) Engineering Safety, McGraw-Hill, London.
Bolotin, V.V., Babkin, A.A. and Belousov, I.L. (1998) Probabilistic model of early fatigue

crack growth, Prob. Engineering Mechanics, 13 (3): 227–232.
Bonferroni, C.E. (1936) Teoria statistica classi e calcolo della proababilità, Pubbl. R. Ist.

Super Sci. Econ. Comm., Florence, 8: 1–63.
Borgman, L.E. (1963) Risk criteria, J. Waterways Harbours Div., ASCE, 89 (WW3) 1–35.
Borgman, L.E. (1967) Spectral analysis of ocean wave forces on piling, J. Waterways

Harbors Div., ASCE, 93 (WW2): 129–156.
Bosshard, W. (1975) On Stochastic Load Combinations, Technical Report No. 20,

Department of Civil Engineering, Stanford University, CA.
Bosshard, W. (1979) Structural safety—A matter of decision and control, IABSE Surveys,

No. S-9/1979, 1–27.
Bourinet, J.-M., Deheeger, F. and Lemaire, M. (2011) Assessing small failure probabilities by

combined sub-set simulation and support vector machines, Structural Safety, 33 (6)
343–353.

Bournonville, M., Dahuke, J. and Darwin, D. (2004) Statistical analysis of the mechanical
properties and weight of reinforcing bars, Structural Engineering and Materials
Laboratory Report 04-1, The University of Kansas.

Box, G.E.P. and Muller, M.E. (1958) A note on the generation of normal deviates, Ann.
Math. Stat., 29, 610–611.

Box, G.E.P. and Tiao, G.C. (1973) Bayesian Inference in Statistical Analysis,
Addison-Wesley Publishing Co., Reading, MA.

Breitung, K. (1984) Asymptotic approximations for multinormal integrals, J. Engineering
Mechanics, ASCE, 110 (3) 357–366.

Breitung, K. (1988) Asymptotic approximations for the outcrossing rates of stationary
Gaussian vector processes, Stochastic Processes and their Applications, 29, 195–207.

Breitung, K. (1989) Asymptotic approximations for probability integrals, Prob. Engineering
Mechanics, 4 (4) 187–190.

Breitung, K. (1991) Probability approximations by log likelihood maximization,
J. Engineering Mechanics, ASCE, 117 (3) 457–477.

Breitung, K. (1994) Asymptotic Approximations for Probability Integrals, Springer-Verlag,
Berlin.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

462 References

Breitung, K. and Hohenbichler, M. (1989) Asymptotic approximations for multivariate
integrals with application to multinormal probabilities, J. Multivariate Analysis, 30,
80–97.

Breitung, K. and Rackwitz, R. (1982) Non-linear combination load processes, J. Structural
Mechanics, 10 (2) 145–166.

Broding, W.C., Diederich, F.W. and Parker, P.S. (1964) Structural optimization and design
based on a reliability design criterion, J. Spacecraft, 1 (1) 56–61.

Brown, C.B., Elms, D.G. and Melchers, R.E. (2008) Assessing and achieving structural
safety, Proc. Institution of Civil Engineers, Structures & Buildings, 161 (SB1) 219–230.

Bucher, C. (2009) Asymptotic sampling for high-dimensional reliability analysis, Prob. Eng.
Mech., 24: 504–510.

Bucher, C.G. (1988) Adaptive sampling – an iterative fast Monte Carlo procedure,
Structural Safety, 5 (2) 119–126.

Bucher, C.G. and Bourgund, U. (1990) A fast and efficient response surface approach for
structural reliability problems, Structural Safety, 7, 57–66.

Bucher, C.G., Chen, Y.M. and Schuëller, G.I. (1988) Time variant reliability analysis
utilizing response surface approach, Proc. 2nd IFIP Conference on Reliability and
Optimization of Structural Systems, Thoft-Christensen, P. (Ed), Springer, 1–14.

Bucher, C.G. and Most, T. (2008) A comparison of approximate response functions in
structural reliability analysis, Prob. Eng. Mech., 23 (2–3) 154–163.

Byers, W.G., Marley, M.J., Mohammadi, J. Nielsen, R.J. and Sarkani, S. (1997) Fatigue
reliability reassessment procedures: state-of-the-art paper, J . Structural Engineering,
ASCE, 123 (3) 271–276.

Byfield M.P. and Nethercot D.A. (1998) An analysis of the true bending strength of steel
beams, Proc. Inst. Civil Engrs., Structures and Building, 128 (2) 188–197.

Casciati, F. and Faravelli, L. (1991) Fragility Analysis of Complex Structural Systems,
Research Studies Press, Taunton, England.

Castillo, E. (2012) Extreme Value Theory in Engineering, Elsevier, London.
Castillo, E. and Sarabia, J.M. (1992) Engineering analysis of extreme value data: selection of

models, Journal of Waterway, Port, Coastal, and Ocean Engineering, 118 (2) 129–146.
CEB (1976) Common Unified Rules for Different Types of Construction and Material (3rd

draft), Bulletin d’Information No. 116-E, Comité Européen du Béton, Paris.
Chalk, P.L. and Corotis, R.B. (1980) Probability model for design live loads, J. Structural

Div., ASCE, 106 (ST10) 2107–2033.
Chaves I.A. and Melchers R.E. (2014) External corrosion of carbon steel pipeline weld

zones, Int. J. Offshore and Polar Engrg. 24 (1) 68–74.
Chen, X. and Lind, N.C. (1983) Fast probability integration by three-parameter normal tail

approximation, Structural Safety, 1 (4) 269–276.
Chen, Y.M. (1989) Reliability of structural systems subjected to time variant loads, Z.

angew. Math. Mech., 69, T64–T66
Chen, Y.M., Schuëller, G.I. and Bourgund, U. (1988) Reliability of large structural systems

under time varying loads, Proc. 5th ASCE Speciality Conference on Probabilistic Methods
in Civil Engineering, Spanos, P.D. (Ed), ASCE, 420–423.

Cheng, G., Xu L, Jiang, L. (2006) A sequential approximate programming strategy for
reliability-based structural optimization, Computers and Structures, 84, 1353–1367.

Choi, E.C.C. (1991) Extraordinary live load in office buildings, J. Structural Engineering,
ASCE, 117 (11) 3216–3227.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 463

Choi, E.C.C. (1992) Live load in office buildings: lifetime maximum load and the influence
of room use, Proc. Institution of Civil Engineers, Structures and Buildings, 94 (3)
307–314.

Chou, K.C. and Corotis, R.B. (1984) Conditioned Gaussian probability density,
J. Engineering Mechanics, ASCE, 110 (1) 115–119.

Ciampoli, M. and Petrini, F. (2011) Performance-based design of structures under Aeolian
hazard, Proceedings of the 11th International Conference on Applications of Statistics and
Probability in Civil Engineering, pp. 899–906.

Ciampoli, M., Petrini, F. and Augusti, G. (2011) Performance-based wind engineering:
Towards a general procedure, Structural Safety, 33 (6) 367–378.

Cibula, B. (1971) The Structure of Building Control – An International Comparison, Current
Paper No. CP28/71, Building Research Station, Garston, UK.

CIRIA (1977) Rationalization of Safety and Serviceability Factors in Structural Codes,
Report No. 63, Construction Industry Research and Information Association, London.

CIRIA (2014) Engaging with risk, Report C747, Construction Industry Research and
information Association, London.

Clough, R.W. and Penzien, J. (1975) Dynamics of Structures, McGraw-Hill, New York.
Coles, S. (2001) An Introduction to the Modelling of Extreme Values, Springer, New York.
Comanescu, I., Melchers, R.E. and Taxén, C. (2016) Corrosion and durability of offshore

steel water injection pipelines, Ships and Offshore Structures, 11 (4) 424–437.
Comerford, J.B. and Blockley, D.I. (1993) Managing safety and hazard through

dependability, Structural Safety, 12 (1) 21–33.
Cook, N.J. (1983) Note on directional and seasonal assessment of extreme winds for design,

J. Wind Engg. Indust. Aerodyn., 12, 365–372.
Cooper, P.B., Galambos, T.V. and Ravindra, M.K. (1978) LRFD criteria for plate girders,

J. Structural Div., ASCE, 104 (ST9) 1389–1407.
Cornell, C.A. (1967) Bounds on the reliability of structural systems, J. Structural Div.,

ASCE, 93 (ST1) 171–200.
Cornell, C.A. (1969a) A probability based structural code, J. Amer. Concrete Inst., 66 (12)

974–985.
Cornell, C.A. (1969b) Bayesian Statistical Decision Theory and Reliability-Based Design,

Proceedings of the Int. Conference on Structural Safety and Reliability, Washington DC,
47–66.

Corotis, R.B. and Doshi, V.A. (1977) Probability models for live load survey results,
J. Structural Div., ASCE, 103 (ST6) 1257–1274.

Corotis R.B. and Nafday, A.M. (1989) Structural system reliability using linear
programming and simulation, J. Structural Engineering, ASCE, 115 (10) 2435–2447.

Cramer, H. and Leadbetter, M.R. (1967) Stationary and Related Stochastic Processes, John
Wiley & Sons, New York.

Crandall, S.H. and Mark, W.D. (1963) Random Vibration in Mechanical Systems, Academic
Press, New York.

Crespo-Minguillon, C. and Casas, J.R. (1997) A comprehensive traffic load model for bridge
safety checking, Structural Safety, 19 (4) 339–359.

Cressie, N. (1993) Statistics for spatial data, Wiley, New York.
CSA (1974) Steel Structures for Buildings—Limit States Design, CSA Standard No.

S16.1-1974, Canadian Standards Association.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

464 References

Culver, C.G. (1976) Survey Results for Fire Loads and Live Loads in Office Buildings, NBS
Building Science Series Report No. 85, Center for Building Technology, National Bureau
of Standards, Washington, DC.

Curnow, R.N. and Dunnett, C.W. (1962) The numerical evaluation of certain multivariate
normal integrals, Ann. Math. Stat., 33 (2) 571–579.

Dahlquist, G. and Björck, A. (1974), Numerical Methods, Prentice-Hall, Englewood Cliffs,
NJ.

Daley, D.J. (1974) Computation of bi- and tri-variate normal integrals, Appl. Stat., 23 (3)
435–438.

Dandola, J.C. and Basar, N.S. (1980) Probabilistic structural analysis of ship hull
longitudinal strength, Ship Structure Committee, Report SSC-301, U.S. Coast Guard,
Washington D.C.

Daniels, H.E. (1945) The statistical theory of the strength of bundles of threads, Proc. Royal
Soc., Ser. A, 183, 405–435.

Davenport, A.G. (1961) The application of statistical concepts to the wind loading of
structures, Proc. Inst. Civil Engrs., 19, 449–472.

Davenport, A.G. (1967) Gust loading factors, J. Structural Div., ASCE, 93 (ST3) 11–34.
Davenport, A.G. (1983) The reliability and synthesis of aerodynamic and meteorological

data for wind loading, Reliability Theory and Its Application in Structural and Soil
Mechanics, Thoft-Christensen, P. (Ed), NATO Advanced Study Institute Series E, No. 70,
Martinus Nijhoff, The Hague, 314–335.

Davenport, A.G. (1987) Proposed new international (ISO) wind load standard. High winds
and building codes, Proc. WERC/NSF Wind Engineering Symposium, Kansas City, MI.,
373–388.

Davis, P.J. and Rabinowitz, P. (1975), Methods of Numerical Integration, Academic Press,
New York.

Dawson, D.A. and Sankoff, D. (1967) An inequality for probabilities, Proc. Amer. Math. Soc.,
18, 504–507.

de Finetti, B. (1974) Theory of Probability, John Wiley & Sons, New York.
de Neufville, R. and Stafford, J.H. (1971) Systems Analysis for Engineers and Managers,

McGraw-Hill, New York.
Deák, I. (1980) Fast procedures for generating stationary normal vectors, J. Stat. Comput.

Simul., 10, 225–242.
Deák, I. (1980) Three digit accurate multiple normal probabilities, Numerische

Mathematik, 35, 369–380.
Der Kiureghian, A. (1990) Bayesian analysis of model uncertainty in structural reliability,

Proc. 3rd IFIP WG7.5 Conf. Reliability and Optimization of Structural Systems,
Der Kiureghian, A. and Thoft-Christensen, P. (Eds), Springer, Berlin, 211–221.

Der Kiureghian, A. and Dakessian, T. (1998) Multiple design points in first and
second-order reliability, Structural Safety, 20 (1) 37–50.

Der Kiureghian, A. and De Stafeno, M. (1991) Efficient algorithm for second-order
reliability analysis, J. Engineering Mechanics, ASCE, 117 (12) 2904–2923.

Der Kiureghian, A. and Ditlevsen, O.(2009) Aleatory or epistemic? Does it matter?
Structural Safety, 31: 105–112.

Der Kiureghian, A., Lin, H.-Z. and Hwang, S.-J. (1987) Second order reliability
approximations, J. Engineering Mechanics, ASCE, 113 (8) 1208–1225.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 465

Der Kiureghian, A. and Liu, P.-L. (1986) Structural reliability under incomplete probability
information, J. Engineering Mechanics, ASCE, 112 (1) 85–104.

Der Kiureghian, A. and Taylor, R.L. (1983) Numerical Methods in Structural Reliability,
Proc. 4th Int. Conf. on Applications of Statistics and Probability in Soil and Structural
Engineering, Augusti, G., Borri, A. and Vannuchi, G. (Eds), Pitagora Editrice, Bologna,
769–775.

Der Kiureghian, A., Zhang, Y. and Li, C.-C. (1994) Inverse reliability problem, J. Engineering
Mechanics, ASCE, 120 (5) 1154–1159.

Dewdney, A.K. (1997) Yes, We Have No Neutrons: An Eye-Opening Tour through the Twists
and Turns of Bad Science, Wiley, New York.

Diamantidis, D. (Ed.) (2001) Probabilistic Assessment of Existing Structures, Report 32,
Joint Committee on Structural Safety, RILEM Publications, Cachan, France.

Diamantidis, D. and P. Bazzurro (2007) Safety acceptance criteria for existing structures,
Workshop on Risk Acceptance and Risk Communication, March 26–27, Stanford
University CA, USA.

Didonato, A.R., Jarnagin, M.P. and Hageman, R.K. (1980) Computation of the integral of
the bivariate normal distribution over convex polygons, SIAM J. Sci. Stat. Comput., 1 (2)
179–186.

Ditlevsen, O. (1973) Structural Reliability and the Invariance Problem, Solid Mechanics
Report No. 22, University of Waterloo, Ontario.

Ditlevsen, O. (1979a) Generalized second moment reliability index, J. Structural Mechanics,
7 (4) 435–451.

Ditlevsen, O. (1979b) Narrow reliability bounds for structural systems, J. Structural
Mechanics, 7 (4) 453–472.

Ditlevsen, O. (1981a) Principle of normal tail approximation, J Engineering Mechanics Div.,
ASCE, 107 (EM6) 1191–1208.

Ditlevsen, O. (1981b) Uncertainty Modeling, McGraw-Hill, New York.
Ditlevsen, O. (1982a) The fate of reliability measures as absolutes, Nucl. Eng. Des., 71,

439–440.
Ditlevsen, O. (1982b) Systems reliability bounding by conditioning, J. Engineering

Mechanics Div., ASCE, 108 (EM5) 708–718.
Ditlevsen, O. (1983a) Fundamental postulate in structural safety, J. Engineering Mechanics

Div., ASCE, 109 (4) 1096–1102.
Ditlevsen, O. (1983b) Gaussian outcrossings from safe convex polyhedrons, J. Engineering

Mechanics Div., ASCE, 109 (1) 127–148.
Ditlevsen, O. (1988) Probabilistic statics of discretized ideal plastic frames, J. Engineering

Mechanics, ASCE, 144 (12) 2093–2114.
Ditlevsen, O. (1997) Structural reliability codes for probabilistic design – a debate paper

based on elementary reliability and decision analysis concepts, Structural Safety, 19 (3)
253–270.

Ditlevsen, O. and Arnbjerg-Nielsen, T. (1989) Decision rules in re-evaluation of existing
structures, Proceedings of DABI Symposium on Re-evaluation of Concrete Structures,
Rostram, S. and Braestrup, M.W. (Eds), Danish Concrete Institute, Copenhagen,
239–248.

Ditlevsen, O. and Arnbjerg-Nielsen, T. (1992) Effectivity factor method in structural
reliability, Reliability and Optimization of Structural Systems, Rackwitz, R. and
Thoft-Christensen, P. (Eds), Springer, Berlin, 171–179.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

466 References

Ditlevsen, O. and Bjerager, P. (1984) Reliability of highly redundant plastic structures,
J. Engineering Mechanics, ASCE, 110 (5) 671–693.

Ditlevsen, O. and Bjerager, P. (1986) Methods of structural systems reliability, Structural
Safety, 3 (3 & 4) 195–229.

Ditlevsen, O. and Bjerager, P. (1989) Plastic reliability analysis by directional simulation,
J. Engineering Mechanics, ASCE, 115 (6) 1347–1362.

Ditlevsen, O. and Friis-Hansen, P. (2005) Life quality time allocation index – an equilibrium
economy consistent version of the current Life Quality Index, Structural Safety, 27 (3)
262–275.

Ditlevsen, O., Hasofer, A.M., Bjerager, P. and Olesen, R. (1988) Directional simulation in
Gaussian processes, Prob. Engineering Mechanics, 3 (4) 207–217.

Ditlevsen, O. and Madsen, H.O. (1980) Discussion of ’Optimal Reliability Analysis by Fast
Convolution’, J. Engineering Mechanics Div., ASCE, 106 (EM3) 579–583.

Ditlevsen, O. and Madsen, H.O. (1983) Transient load modeling: clipped normal processes,
J. Engineering Mechanics Div., ASCE, 109 (2) 495–515.

Ditlevsen, O. and Madsen, H.O. (1996) Structural Reliability Methods, John Wiley & Sons,
Chichester.

Ditlevsen, O., Melchers, R.E. and Gluver, H. (1990) General multi-dimensional probability
integration by directional simulation, Computers & Structures, 36 (2) 355–368.

Ditlevsen, O., Olesen, R. and Mohr, G. (1987) Solution of a class of load combination
problems by directional simulation, Structural Safety, 4, 95–109.

Divgi, D.R. (1979) Calculation of univariate and bivariate normal probability functions,
Annals of Statistics, 7, 903–910.

Dolinsky, K. (1983) First order second-moment approximation in reliability of structural
systems: critical review and alternative approach, Structural Safety, 1 (3) 211–231.

Dorman, C.L. (1983) Extreme wind gusts in Australia, excluding tropical cyclones, Civ.
Engg. Trans. Inst. Engrs. Aust., CE25, 96–106.

Drezner, Z. (1978) Computation of the bivariate normal integral, Math. Comput., 32 (141)
277–279.

Drury, C.G. and Fox, J.G. (Eds) (1975) Human Reliability in Quality Control, Taylor and
Francis, London.

Drysdale, R.G. (1973) Variation of concrete strength in existing buildings, Mag. Concrete
Research, 25 (85) 201–207.

Du, X. and Chen, W. (2004) Sequential Optimization and Reliability Assessment Method
for Efficient Probabilistic Design, J. Mech. Des., ASME, 126 (2) 225–233.

Dubourg, V., Sudret, B. and Deheeger, F. (2013) Meta-model-based importance sampling
for structural reliability analysis, Prob. Engrg. Mech. 33: 47–57.

Dunker, K.R. and Rabbat, B.G. (1993) Why America’s bridges are crumbling, Sci. American,
March, 66–72.

Dunnett, C.W. and Sobel, M. (1955) Approximations to the probability integral and certain
percentage points of a multivariate analogue of Students t-distribution, Biometrika, 42,
258–260.

Duprat, F., Sellier, A., Xuan Son Nguyen, Pons, G. (2010) The gradient projection algorithm
with error control for structural reliability, Engineering Structures, 32 (11) 3725–3733.

Echard, B., Gayton, N. and Lemaire, M. (2011) AK-MCS: An active learning reliability
method combining Kriging and Monte Carlo simulation, Struct. Safety, 33 (2): 145–154.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 467

El-Tawil, K., Lemaire, M. and Muzeau, J.-P. (1992) Reliability method to solve mechanical
problems with implicit limit functions, Reliability and Optimization of Structural
Systems, Rackwitz, R. and Thoft-Christensen, P. (Eds), Springer, Berlin, 181–190.

Eldred, M.S. and Bichon, B.J. (2006) Second-order reliability formulations in
DAKOTA/UQ, Proc. 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, 1–4 May, Newport, RI. Paper AIAA 2006-1828.

Elderton, W.P. and Johnson, M.L. (1969) Systems of Frequency Curves, Cambridge
University Press, New York.

Ellingwood, B. (1983) Probability-based loading criteria for codified design, 4th Intl. Conf.
on Applications of Statistics and Probability in Soil and Structural Engineering, Augusti,
G., Borri, A. and Vannuchi, G. (Eds), Pitagora Editrice, Bologna, 237–248.

Ellingwood, B. and Culver, C. (1977) Analysis of live loads in office buildings, J. Structural
Div., ASCE, 103 (ST8) 1551–1560.

Ellingwood, B., Galambos, T.V., MacGregor, J.C. and Cornell, C.A. (1980) Development of a
Probability Based Load Criteria for American National Standard A58, NBS Special
Publication No. 577, National Bureau of Standards, US Department of Commerce,
Washington, DC. [See also: Galambos T.V., Ellingwood, B., MacGregor, J.G. and Cornell,
C.A. (1982) Probability-based load criteria: assessment of current design practice, J.
Structural Engineering, ASCE, 108 959–977, and: Ellingwood, B., MacGregor, J.G.,
Galambos, T.V. and Cornell, C.A. (1982) Probability-based load criteria: load factors and
load combinations, J. Structural Engineering, ASCE, 108 978–997.]

Ellingwood, B.R. (1977) Statistical analysis of R.C. beam-column interaction J. Structural
Div., ASCE, 103 (ST7) 1377–1388.

Ellingwood, B.R. (1994) Probability-based codified design: past accomplishments and
future challenges, Structural Safety, 13 (3) 159–176.

Ellingwood, B.R. (1996) Reliability-based condition assessment and LRFD for existing
structures, Structural Safety, 18 (2+3) 67–80.

Ellingwood, B.R. (1997) Probability-based LRFD for engineered wood construction,
Structural Safety, 19 (1) 53–65.

Ellingwood B.R. (2005) Risk-informed condition assessment of civil infrastructure, state of
practice and research issues, J. Structural and Infrastructure Engineering, 1(1) 7–18.

EMSA (2015) Risk Acceptance Criteria and Risk Based Damage Stability. Final Report, part
1: Risk Acceptance Criteria, European Maritime Safety Agency, DV-GL, Hovik, Norway.

Enevoldsen, I. and Sørensen, J.D. (1993) Reliability-based optimization of series system of
parallel systems. J. Struct. Eng. 119 (14) 1069–1084.

Enevoldsen, I. and Sørensen, J.D. (1994) Reliability-based optimization in structural
engineering, Structural Safety, 15: 169–196.

Engelund, S. and Rackwitz, R. (1993) A benchmark study on importance sampling
techniques in structural reliability, Structural Safety, 12 (4) 255–276.

Engelund, S., Rackwitz, R. and Lange, C. (1995) Approximations of first-passage times for
differentiable processes based on higher-order threshold crossings, Probabilistic
Engineering Mechanics, 10, 53–60.

Enright, M.P. and Frangopol, D.M. (1998) Service-life prediction of deteriorating concrete
bridges, J. Structural Engineering, ASCE, 124 (3) 309–317.

Entroy, H.C. (1960) The Variation of Works Test Cubes, Research Report No. 10, Cement
and Concrete Association, UK.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

468 References

Er, G.K. (1998) A method for multi-parameter PDF estimation of random variables,
Structural Safety, 20 (1) 25–36.

Faber, M.H., Kroon, I.B. and Sørensen, J.B. (1996) Sensitivities in structural maintenance
planning, Rel. Engg. Syst. Safety, 51, 317–329.

Faber, M.H., Val, D.V. and Stewart, M.G. (2000) Proof load testing for bridge assessment
and upgrading, Engineering Structures, 22: 1677–1689.

Faravelli, L. (1989) Response-surface approach for reliability analysis, J. Engineering
Mechanics, ASCE, 115 (12) 2763–2781.

Feller, W. (1957) An Introduction to Probability Theory and its Applications, Vol. 1
(2nd Edn), John Wiley & Sons, New York.

Feng, Y. (1989) A method for computing structural system reliability with high accuracy,
Computers & Structures, 33, 1–5.

Feng, Y.S. and Moses, F. (1986) A method of structural optimization based on structural
system reliability. J. Struct. Mech. 14 (4) 437–553.

Ferry-Borges. J. (1954) O Dimensionamento de Estruturas, Publication 54, Ministry of
Public Works, National Laboratory of Civil Engineering, Lisbon, Portugal.

Ferry-Borges, J. and Castenheta, M. (1971), Structural Safety, Laboratoria Nacional de
Engenhera Civil, Lisbon.

Fiessler, B. (1979) Das Programmsystem FORM zur Berechnung der
Versagens-wahrscheinlichkeit von Komponenten von Tragsystemen, Berichte zur
Zuverlässigkeitstheorie der Bauwerke, No. 43, Technical University Munich.

Fiessler, B., Hawranek, R. and Rackwitz, R. (1976) Numerische Methoden für
probabilistische Bemessungsverfahren und Sicherheitsnachweise, Berichte zur
Sicherheitstheorie der Bauwerke No. 14, Technical University Munich.

Fiessler, B., Neumann, H.-J. and Rackwitz, R. (1979) Quadratic limit states in structural
reliability, J. Engineering Mechanics, ASCE, 105 (4) 661–676.

Fishburn, P.C. (1964) Decision and Value Theory, John Wiley & Sons, New York.
Fisher, J.W., Galambos, T.V., Kulak, G.L. and Ravindra, M.K. (1978) Load and resistance

factor design criteria for connectors, J. Structural Div., ASCE, 104 (ST9) 1427–1441.
Fisher, J.W. and Struik, J.H.A. (1974) Guide to Design Criteria for Bolted and Riveted Joints,

John Wiley, New York.
Flint, A.R., Smith, B.W., Baker, M.J. and Manners, W. (1981) The derivation of safety factors

for design of highway bridges, Design of Steel Bridges, Granada Publishing, UK.
Forristall, G. (2000) Wave crests distributions: observations and second order theory,

J. Phys. Ocean., 30: 1931–1943.
Foschi, R.O. (1999) Reliability applications in wood design, Progress in Structural

Engineering and Mechanics, 2 (2).
Fougeres, A.-L., Nolan, J. and Rootzen, H., Models for dependent extremes using stable

mixtures, Scandinavian J. of Statistics, 2009, 36, 42–59.
Frangopol, D.M. (1985a) Sensitivity studies in reliability based analysis of redundant

structures, Structural Safety, 3 (1) 13–22.
Frangopol, D.M. (1985b) Structural optimization using reliability concepts, Journal of

Structural Engineering, 111 (11) 2288–2301.
Frangopol, D.M. (1998) Probablistic structural optimization, Progress in Structural

Engineering and Materials 1 (2) 223–230.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 469

Frangopol, D.M. and Hearn, G. (1996) (Eds) Structural Reliability in Bridge Engineering:
Design, Inspection, Assessment, Rehabilitation and Management, McGraw-Hill, New
York.

Frangopol, D.M., Lin, K.-Y. and Estes, A.C. (1997) Reliability of reinforced concrete girders
under corrosion attack, J. Structural Engineering, ASCE, 123 (3) 286–297.

Frangopol, D.M., Milner, D., Ide, Y., Durmus, A.K. Iwaki, I. and Spacone, E. (1997)
Reliability of reinforced concrete columns under random loads, Reliability and
Optimization of Structural Systems, Frangopol, D.M., Corotis, R.B. and Rackwitz, R.
(Eds), Pergamon, 141–148.

Freeman, H. (1963) An Introduction to Statistical Inference, Addison-Wesley, Reading, MA.
Freudenthal, A.M. (1956) Safety and the probability of structural failure, Trans. ASCE, 121,

1337–1397.
Freudenthal, A. M. (1961) Safety, reliability and structural design, J. Structural Div., ASCE,

87 (ST3) 1–16.
Freudenthal, A.M. (1964) Die Sicherheit der Baukonstruktionen, Acta Tech. Hung., 46,

417–446.
Freudenthal, A.M. (1975) Structural safety, reliability and risk assessment, Reliability

Approach in Structural Engineering, Freudenthal, A. M., et al. (Eds), Maruzen, Tokyo.
Freudenthal, A.M., Garrelts, J.M. and Shinozuka, M. (1966) The analysis of structural

safety, J. Structural Div., ASCE, 92 (ST1) 267–325.
Fu, G. and Tang, J. (1995) Risk-based proof-load requirements for bridge evaluation,

J. Structural Engineering, ASCE, 121 (3) 542–556.
Fujino, Y. (1996) Seismic, structural, economic and societal impacts of the Great Hanshin

earthquake, Applications of Statistics and Probability, Lemaire, M., Favre, J.-L. and
Mebarki, A. (Eds), Balkema, Rotterdam, 1387–1394.

Fujino, Y. and Lind, N.C. (1977) Proof-load factors and reliability, J. Structural Divn., ASCE,
103 (ST4) 853–870.

Galambos, J. (1987) The Asymptotic Theory of Extreme Order Statistics, 2nd Ed, Krieger,
Malabar, FL.

Galambos, T.V. and Ellingwood, B. (1986) Serviceability limit states: deflection, J. Structural
Engineering, ASCE, 112 (1), 67–84.

Galambos, T.V. and Ravindra, M.K. (1978) Properties of steel for use in LRFD, J. Structural
Div., ASCE, 104 (ST9) 1459–1468.

Garson, R.C. (1980) Failure mode correlation in weakest-link systems, J. Structural Div.,
ASCE, 106 (ST8) 1797–1810.

Gasper, B. Teixeira, A.P. and Guedes Soares, C. (2014) Assessment of the efficiency of
Kriging surrogate models for structural reliability analysis, Prob. Engrg. Mech. 37: 24–34.

Gauther, P. (2010) Timber Frame Engineering in Limit States Design, TFE Publishing,
Vancouver.

Gaver, D.P. and Jacobs, P. (1981) On combination of random loads, J. Appl. Maths., SIAM,
40 (3) 454–466.

Ghobarah, A. (2001) Performance-based design in earthquake engineering: state of
development, Engineering Structures, 23: 878–884.

Ghosn, M. and Moses, F. (1985a) Markov renewal model for maximum bridge loading,
J. Engineering Mechanics, ASCE, 111 (9) 1093–1104.

Ghosn, M. and Moses, F. (1985b) Reliability calibration of bridge design code, J. Structural
Engineering, ASCE, 112 (4) 745–763.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

470 References

Gjorv, O.E. (2009) Durability design of concrete structures in severe environments, London,
Taylor & Francis.

Glanville, J.I., Hatzinikolas, M.A. and Ben-Omran, H.A. (1996) Engineered Masonry Design:
Limit States Design, Winston House, Winnepeg.

Gollwitzer, S. and Rackwitz, R. (1983) Equivalent components in first-order system
reliability, Reliab. Engg., 5, 99–115.

Gomes, L. and Vickery, B.J. (1976) Tropical cyclone gust speeds along the northern
Australian coast, Civ. Engg. Trans. Inst. Engrs. Aust., CE18 (2) 40–48.

Gomes, W.J.S. and Beck, A.T. (2014a) Optimal inspection and design of onshore pipelines
under external corrosion process, Structural Safety, 47: 48–58.

Gomes, W.J.S. and Beck, A.T. (2014b) Optimal inspection planning and repair under
random crack propagation, Engineering Structures, 69: 285–296.

Gomes, W.J.S. and Beck, A.T. (2016) The Design Space Root Finding method for efficient
risk optimization by simulation. Probabilistic Engineering Mechanics, 44: 99–110.

Gomes, W.J.S., Beck, A.T. and Haukaas, T. (2013) Optimal inspection planning for onshore
pipelines subject to external corrosion, Reliability Engineering & Systems Safety, 118:
18–27.

Gorman, M.R. (1979) Reliability of Structural Systems, Report No. 79-2, Department of
Civil Engineering, Case Western Reserve University, OH.

Gorman, M.R. (1981) Automatic generation of collapse mode equations, J. Structural Div.,
ASCE, 107 (ST7) 1350–1354.

Gorman, M.R. (1984) Structural resistance moments by quadrature, Structural Safety, 2,
73–81.

Grandhi, R.V. and Wang, L. (1997) Structural failure probability calculations using
nonlinear approximations, Reliability and Optimization of Structural Systems,
Frangopol, D.M., Corotis, R.B. and Rackwitz, R. (Eds), Pergamon, Oxford, 165–172.

Grandori, G. (1991) Paradigms and falsification in earthquake engineering, Meccanica, 26,
17–21.

Grant, L.H., Mizra, S.A. and MacGregor, J.G. (1978) Monte Carlo study of strength of
concrete columns, J. Amer. Concrete Inst., 75 (8) 348–358.

Grausland, H. and Lind, N.C. (1986) A normal probability integral and some applications,
Structural Safety, 4, 31–40.

Greig, G.L. (1992) An assessment of high-order bounds for structural reliability, Structural
Safety, 11, 213–225.

Grigoriu, M. (1975) On the Maximum of the Sum of Random Process Load Models, Internal
Project Working Document No. 1, Department of Civil Engineering, Massachusetts
Institute of Technology, Cambridge, MA.

Grigoriu, M. (1982) Methods for approximate reliability analysis, Structural Safety, 1 (2)
155–165.

Grigoriu, M. (1983) Approximate analysis of complex reliability problems, Structural
Safety, 1 (4) 277–288.

Grigoriu, M. (1984) Crossings of non-Gaussian translation processes, J. Engineering
Mechanics Div., ASCE, 110 (6) 610–620.

Grimmelt, M.J. and Schuëller, G.I. (1982) Benchmark study on methods to determine
collapse failure probabilities of redundant structures, Structural Safety, 1, 93–106.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 471

Grimmelt, M.J., Schuëller, G.I. and Murotsu, Y. (1983) On the evaluation of collapse
probabilities, Proc. 4th ASCE-EMD Speciality Conf. on Recent Advances in Engineering
Mechanics, Vol. II, ASCE, 859–862.

Guan, X.L. and Melchers, R.E. (1998) A load space formulation for probabilistic finite
element analysis of structural reliability, Prob. Engineering Mechanics. 14, 73–81.

Guedes-Soares, C. and Garbatov, Y. (1996) Fatigue reliability of the ship hull girder
accounting for inspection and repair, Reliability Engineering and System Safety, 51,
341–351.

Guedes-Soares, C., Garbatov, Y., Zayed, A., Wang, G., Melchers, R.E., Paik, J.K. and Cui, W.
(2006) Non-linear corrosion model for immersed steel plates accounting for
environmental factors, Transactions 2005 Society of Naval Architects and Marine
Engineers 113: 306–329.

Guenard, Y.F. (1984) Application of System Reliability Analysis to Offshore Structures,
Report No. RMS-1, Department of Civil Engineering, Stanford University.

Guiffre, N. and Pinto, P.E. (1976) Discretisation from a Level II Method, Bulletin
d’Information No. 112, Comité Européen du Béton, Paris, 158–189.

Gumbel, E.J. (1958) Statistics of Extremes, Columbia University Press, New York.
Gupta, S.S. (1963) Probability integrals of multivariate normal and multivariate t, Ann.

Math. Stat., 34, 792–828.
Gurney, K. (1997) An Introduction to Neural Networks, Routledge, London.
Haftka, R.T., Gürdal, Z. and Kamat, M.P. (1990) Elements of Structural Optimization, 2nd

Ed., Springer.
Hagen, J. (Ed) (1983) Deterrence Reconsidered, Sage Publications.
Hagen, O. and Tvedt, L. (1991) Vector process out-crossing as a parallel system sensitivity

measure, Journal of Engineering Mechanics, 117 (10) 2201–2220.
Hall, W.B. (1988) Reliability of service-proven structures, J. Structural Engineering, ASCE,

114 (3) 608–624.
Hall, W.B. and Tsai, M. (1989) Load testing, structural reliability and test evaluation,

Structural Safety, 6, 285–302.
Hallam, M.G., Heaf, N.J. and Wootton, L.R. (1978) Dynamics of Marine Structures,

(2nd Edn), CIRIA Underwater Engineering Group, London.
Hammersley, J.M. and Handscomb, D.C. (1964) Monte Carlo Methods, John Wiley & Sons,

New York.
Harbitz, A. (1983) Efficient and accurate probability of failure calculation by use of the

importance sampling technique, Proc. 4th Int. Conf. on Applications of Statistics and
Probability in Soil and Structural Engineering, Augusti, G., Borri, A. and Vannuchi, O.
(Eds), Pitagora Editrice, Bologna, 825–836.

Harbitz, A. (1986) An efficient sampling method for probability of failure calculation,
Structural Safety, 3 (2) 109–115.

Harris, D.H., and Chaney, F.B. (1969) Human Factors in Quality Assurance, John Wiley &
Sons, New York.

Harris, M.E., Corotis, R.B. and Bova, C.J. (1981) Area dependent processes for structural
live loads, J. Structural Div., ASCE, 107 (ST5) 857–872.

Harris, R.I. (1971) The Nature of Wind, The Modern Design of Wind Sensitive Structures,
Construction Industry Research and Information Association, London.

Harris, R.I. (1996) Gumbel revisited—a new look at extreme value statistics applied to wind
speeds, J. Wind Engg. Indust. Aerodyn., 59, 1–22.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

472 References

Hasofer, A.M. (1974) The upcrossing rate of a class of stochastic processes, Studies in
Probability and Statistics, Williams, E. J. (Ed), North-Holland, Amsterdam, 151–159.

Hasofer, A.M. (1984) Objective probabilities for unique objects, Risk, Structural
Engineering and Human Error, M. Grigoriu (Ed), University of Waterloo Press, Waterloo,
Ontario, 1–16.

Hasofer, A.M., Ditlevsen, O. and Oleson, R. (1987) Vector outcrossing probabilities by
Monte Carlo, DCAMM Report No. 349, Technical University of Denmark.

Hasofer, A.M. and Lind, N.C. (1974) Exact and Invariant Second-moment Code Format,
J. Engineering Mechanics Div., ASCE, 100 (EM1) 111–121.

Hasselmann, K., et al. (1973) Measurements of the wind wave growth and swell decay
during the Joint North Sea Wave Project (JONSWAP), Ergänzungsheft zur
(supplementary volume to) Deutsche Hydrographischen Zeitschrift, A(8) No. 12.

Hastings, C., Jr., (1955) Approximations for Digital Computers, Princeton University Press,
Princeton, NJ.

Haugen, E.B. (1968) Probabilistic Approaches to Design, John Wiley & Sons.
Haukaas, T. and Der Kiureghian, A. (2006) Strategies for finding the design point in

non-linear finite element reliability analysis, Probab. Eng. Mech. 21: 133–47.
Haver, S. and Andersen, J. (2000) Freak waves: rare realizations of a typical population or

typical realizations of a rare population?, Proc. 10th Int. Conf. Offshore and Polar Engrg.,
Seattle, USA, Int. Society of Offshore and Polar Engineers, Cupertino, CA.

Hawrenek, R. and Rackwitz, R. (1976) Reliability calculation for steel columns, Bulletin
d’Information No. 112, Comité Européen du Béton, Paris, 125–157.

Hearn, G. (1996) Deterioration modeling for highway bridges, Structural Reliability in
Bridge Engineering: Design, Inspection, Assessment, Rehabilitation and Management,
Frangopol, D.M. and Hearn, G. (Eds) McGraw-Hill, New York, 60–71.

Henley, E.J. and Kumamoto, H. (1981) Reliability Engineering and Risk Assessment,
Prentice-Hall, Englewood Cliffs, NJ.

Hess, P.E., Bruchman, D. Assakkaf, I.A. and Ayyub, B.M. (2002) Uncertainties in material
and geometric strength and load variables, Naval Engineers J., 114 (2) 139–166.

Heyman, J. (1971) Plastic Design of Frames, Vol. 2, Cambridge University Press.
Hilton, H.H. and Feigen, M. (1960) Minimum Weight Analysis Based on Structural

Reliability, Journal of the Aerospace Sciences, 27: 641–653.
Hoffman, P.C. and Weyers, R.E. (1994) Probabilistic durability analysis of reinforced

concrete bridge decks, Probabilistic Mechanics and Structural Reliability: Proceedings of
the Seventh Speciality Conference, Frangopol, D.M. and Grigoriu, M. (Eds) ASCE,
290–293.

Hohenbichler, M. (1980) Abschätzungen für die versagenswahrscheinlichkeiten von
Seriensystemen, Research Report, Technical University, Munich.

Hohenbichler, M., Gollwitzer, S., Kruse, W. and Rackwitz, R. (1987) New light on first- and
second-order reliability methods, Structural Safety, 4, 267–284.

Hohenbichler, M. and Rackwitz, R. (1981) Non-normal dependent vectors in structural
safety, J. Engineering Mechanics Div., ASCE, 107 (EM6) 1227–1237.

Hohenbichler, M. and Rackwitz, R. (1983a) First-order concepts in systems reliability,
Structural Safety, 1 (3) 177–188.

Hohenbichler, M. and Rackwitz, R. (1983b) Reliability of parallel systems under imposed
uniform strain, J. Engineering Mechanics Div., ASCE, 109 (3) 896–907.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 473

Hohenbichler, M. and Rackwitz, R. (1986a) Sensitivity and importance measures in
structural reliability, Civil Engineering Systems, 3 (4) 203–209.

Hohenbichler, M. and Rackwitz, R. (1986b) Asymptotic outcrossing rate of Gaussian vector
process into intersection of failure domains, Prob. Engineering Mechanics, 1 (3) 177–179.

Hohenbichler, M. and Rackwitz, R. (1988) Improvement of second-order reliability
estimation by importance sampling, J. Engineering Mechanics, ASCE, 114 (12):
2195–2199.

Holmes, J.D. (1990) Directional effects on extreme winds loads, Civ. Engg. Trans. Inst.
Engrs. Aust., CE32, 45–50.

Holmes, J.D. (1998) Wind loading of structures—application of probabilistic methods,
Progress in Structural Engineering and Mechanics, 1 (2) 193–199.

Holmes, J.D. (2007) Wind Loading on Structures, Second Edition, Taylor & Francis,
Abingdon.

Holmes, P. Chaplin, J.R., and Tickell, R.G (1983). Wave loading and structure response,
Design of Offshore Structures, Thomas Telford, London, 3–12.

Holmes, J.D. and Pham, L. (1994) Wind-induced dynamic response and the safety index,
Proc. 6th Int. Conf. on Structural Safety and Reliability, Balkema, Rotterdam, 1707–1709.

Holmes, P. and Tickell, R.G. (1979) Full scale wave loading on cylinders, Proc. Second Int.
Conf. on Behaviour of Offshore Structures, London, Vol. 3, British Hydromechanics
Research Association, Cranfield, 746–761.

Horne, M.R. and Price, P.H. (1977) Commentary on the level 2 procedure, Rationalization
of Safety and Serviceability Factors in Structural Codes, Report No. 63, Construction
Industry Research and Information Association, London, 209–226.

HSE (1992) The tolerability of risk from nuclear power stations, Health and Safety Executive,
London.

Hueste, M.B.D., Chompreda, P., Trejo, D., Cline, D.B.H. and Keating, P.B. (2003)
Mechanical properties of high strength concrete for prestressed concrete bridge girders,
Report FHWA/TX-04/0-2101-2, Texas Transportation Institute, College Station, TX.

Hunter, D. (1976) An upper bound for the probability of a union, J. Appl. Prob., 13,
597–603.

Hunter, D. (1977) Approximate percentage points of statistics expressible as maxima, TIMS
Stud. Management Sci., 7, 25–36.

Huntington, D.E. and Lyrintzis, C.S. (1998) Improvements to and limitations of Latin
hypercube sampling, Prob. Engrg. Mech, 13 (4) 245–253.

Hurtado, J.E. and Alvarez, D.A. (2001) Neural-network-based reliability analysis: a
comparative study, Comp. Methods in App. Mech. and Engrg., 191 (1–2) 113–132.

Ibrahim, Y. (1992) Comparison between failure sequence and failure path for brittle
systems, Computers & Structures, 42 (1) 79–85.

Ingles, O.G. (1979) Human factors and error in civil engineering, Proc. 3rd Intl. Conf. on
Applications of Statistics and Probability in Soil Structural Engineering, Sydney,
402–417.

ISE (1980) Appraisal of Existing Structures, The Institution of Structural Engineers, London.
ISO 31000 (2009) Risk management – Risk Assessment Techniques, International Standards

Office, Geneva.
ISO 13824 (2009) Bases for the design of structures – general principles on risk assessment of

systems involving structures, International Standards Office, Geneva.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

474 References

JCSS (2000) Probabilistic Model Code, Part 3: Material Properties, Danish Technical
University, Lyngby.

JCSS (2001) Probabilistic Model Code, Part 2: Load Models, Danish Technical University,
Lyngby. (http://www.jcss.byg.dtu.dk/About_JCSS).

JCSS (2006) Probabilistic Model Code, Part 2.15: Wave Load, Danish Technical University,
Lyngby. (http://www.jcss.byg.dtu.dk/About_JCSS).

JCSS (2008) Risk Assessment in Engineering – Principles, System Representation & Risk
Criteria, Joint Committee on Structural Safety, Danish Technical University, Lyngby,
ISBN 978-3-909386-78-9.

Jeffrey, R. (2004) Subjective Probability: The Real Thing, Cambridge University Press,
Cambridge.

Jensen, H.A. (2006) Structural optimization of non-linear systems under stochastic
excitation, Probabilistic Engineering Mechanics, 21: 397–409.

Jensen, H.A., Mayorga, F. and Valdebenito, M.A. (2015) Reliability sensitivity estimation of
nonlinear structural systems under stochastic excitation: A simulation-based approach,
Computer Methods in Applied Mechanics and Engineering, 289: 1–23.

Jensen, H.A., Valdebenito, M.A. and Schuëller, G.I. (2008) An efficient reliability-based
optimization scheme for uncertain linear systems subject to general Gaussian excitation,
Computer Methods in Applied Mechanics and Engineering, 198: 72–87.

Jensen, H.A., Valdebenito, M.A., Schuëller, G.I. and Kusanovic, D.S. (2009)
Reliability-based optimization of stochastic systems using line search, Computer
Methods in Applied Mechanics and Engineering, 198: 3915–3924.

Jia, G. and Taflanidis, A.A. (2013) Non-parametric stochastic subset optimization for
optimal-reliability design problems, Computers & Structures, 126: 86–99.

Jia, G., Taflanidis, A.A. and Beck, J.L. (2015) Non-parametric stochastic subset
optimization for design problems with reliability constraints, Structural and
Multidisciplinary Optimization, 52 (6) 1185–1204.

Johnson, A.I. (1953) Strength, Safety and Economical Dimensions of Structures, Division of
Building Statistics and Structural Engineering Bulletin 12, Royal Institute of Technology,
Stockholm, Sweden.

Johnson, A.I. (1971) Strength, safety and economical dimensions of structures, 2nd ed., Nat.
Swedish Building Research Inst., Stockholm.

Johnson, N.L. and Kotz, S. (1972) Distributions in Statistics: Continuous Multivariate
Distributions, John Wiley & Sons, New York.

Johnston, B.G. and Opila, F. (1941) Compression and tension tests of structural alloys,
ASTM Proc., 41, 552–570.

Jonkman, S.N., van Gelder, P.H. and Vrijling, J.K. (2003) An overview of quantitative risk
measures for loss of life and economic damage, Journal of Hazardous Materials, A99:
1–30.

Joos, D.W., Sabri, Z.A. and Hussein, A.A. (1979) Analysis of gross error rates in operation of
commercial nuclear power stations, Nucl. Engg. Des., 52, 265–300.

Julian, O.G. (1957) Synopsis of first progress report of Committee on Safety Factors,
J. Structural Div., ASCE, 83 (ST4) 1316.1–1316.22.

Juocevicius, V. and Kadzys, A. (2009) Structural safety under extreme construction loads,
(In) Safety, Reliability and Risk Analysis: Theory, Methods and Applications, (In)
Martorell, S., Guedes Soares C. and Barnett, J. (Eds.), Taylor & Francis, London,
1677–1683.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 475

Kahn, H. (1956) Use of different Monte Carlo sampling techniques, Proc. Symp. on Monte
Carlo Methods, H.A. Meyer (Ed), John Wiley & Sons, New York, 149–190.

Kaimal, J.C., Wyngaard, J.C., Izumi, Y. and Cote, O.R. (1972) Spectral characteristics of
surface layer turbulence, Q. J. Royal Meteorol. Soc., 98, 563–589.

Kall, P. and Wallace, S.W. (1994) Stochastic programming, John Wiley & Sons, New York.
Kameda, H. and Koike, T. (1975) Reliability analysis of deteriorating structures, Reliability

Approach in Structural Engineering, Maruzen Co., Tokyo, 61–76.
Kanda, J. and Ellingwood, B. (1991) Formulation of load factors based on optimum

reliability, Structural Safety, 9: 197–210.
Karadeniz, H. (2001) Uncertainty modeling in the fatigue reliability calculation of offshore

structures, Reliability Engineering & System Safety, 74(3): 323–336.
Karadeniz, H., van Manen, S. and Vrouwenvelder, A. (1984) Probabilistic Reliability

Analysis for the Fatigue Limit State of Offshore Structures, Bull. Tech. Bur. Veritas,
203–219.

Karamchandani, A. and Cornell, C.A. (1991a) Sensitivity estimation within first and second
order reliability methods, Structural Safety, 11 (1) 59–74.

Karamchandani, A., Bjerager, P. and Cornell, C.A. (1989) Adaptive importance sampling,
Proc. 5th Intl. Conf. Structural Safety and Reliability, San Francisco, Ang, A.-H.,
Shinozuka, M. and Schuëller, G.I. (Eds), ASCE, 855–862.

Karamchandani, A. and Cornell, C.A. (1991b) Adaptive hybrid conditional expectation
approaches for reliability estimation, Structural Safety, 11 (2) 95–107.

Kareem, A. (1988) Effect of parametric uncertainties on wind excited structural response,
J. Wind Engg. Indust. Aerodyn., 30, 233–241.

Karshenas, S. and Ayoub, H. (1994) Analysis of concrete construction live loads on newly
poured slabs, J. Structural Engineering, ASCE, 120 (5) 1525–1542.

Katsuki, S. and Frangopol, D.M. (1994) Hyperspace division method for structural
reliability, J. Engineering Mechanics, ASCE, 120 (11) 2405–2427.

Kaymaz, I. (2005) Application of Kriging method to structural reliability problems, Struct.
Safety, 27 (2) 133–151.

Kecman, V. (2001) Learning and Soft Computing—Support Vector machines, Neural
Networks, Fuzzy Logic Systems, MIT Press, Cambridge, MA.

Kim, S.-H. and Na, S.-W. (1997) Response surface method using vector projected sampling
points, Structural Safety, 19 (1) 3–19.

Kim, S.H. and Wen, Y.K. (1990) Optimization of structures under stochastic loads,
Structural Safety, 7: 177–190

Knappe, O.W., Schuëller, G.I. and Wittmann, F.H. (1975) On the probability of failure of a
reinforced concrete beam in flexure, Proc. 2nd Int. Conf. on Applications of Statistics and
Probability in Soil Structural Engineering, Aachen, 153–170.

Knoll, F. (1985) Quality, Whose Job?, Introductory Report, Symp. on Safety and Quality
Assurance of Civil Engineering Structures, Tokyo, Report No. 50, IABSE, London, 59–64.

Kolisko, J. Hunka, P. and Jung, K. (2012) A statistical analysis of the modulus of elasticity
and compressive strength of concrete C45/55 for pre-stressed precast beams, J. Civil
Engrg. and Architecture, 6 (11) 1571–1579.

Konig, G.L., Hosser, D. and Manser, R. (1985) Superimposed loads in carparks, CIB
Commission W81.

Kounias, E.G. (1968) Bounds for the probability of a union, with applications, Amer. Math.
Stat., 39 (6) 2154–2158.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

476 References

Koutsourelakis, P.S., Pradlwarter, H.J. and Schueller, G.I. (2004) Reliability of structures in
high dimensions, Part I: algorithms and application, Probab. Engrg. Mech. 19: 409-417.

Köylüoglu, H.U. and Nielsen, S.R.K. (1994) New approximations for SORM integrals,
Structural Safety, 13 (4) 235–246.

Kupfer, J. and Rackwitz, R. (1980) Models for human error and control in structural
reliability, Final Report, 11th Congr. IABSE, London, 1019–1024.

Kuschel, N. and Rackwitz, R. (2000) Optimal design under time-variant reliability
constraints, Structural Safety, 22 (2)113–127.

Kyburg, H. (1978) Subjective probability: Criticisms, reflections, and problems, J. of
Philosophical Logic, 7: 157-180.

Lacaze, S., Brevault, L., Missoum, S. and Balesdent, M. (2015) Probability of failure
sensitivity with respect to decision variables, Struct Multidisc Optim. 52: 375–381.

Laird, D.A., Drysdale, R.G., Stubbs, D.W. and Sturgeon, G.R. (2005) The new CSA
S302.1-04 Design of masonry structures, Proc. 10th Canadian Masonry Symposium,
Banff, Alberta, 8–12 June, University of Calgary.

Larrabee, R.D. and Cornell, C.A. (1979) Upcrossing rate solution for load combinations,
J. Structural Div., ASCE, 105 (ST1) 125–132.

Larrabee, R.D. and Cornell, C.A. (1981) Combination of various load processes,
J. Structural Div., ASCE, 107 (ST1) 223–239.

Lay, M.G. (1979) Implications of probabilistic methods in steel structures, Proc. 3rd Int.
Conf. on Applications of Statistics and Probability in Soil and Structural Engineering,
Vol. 3, Sydney, 145–156.

Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1983) Extremes and related properties of
random sequences and processes, Springer, New York.

Lee, J., Yang. S. and Ruy, W. (2002) A comparative study on reliability index and target
performance based probabilistic structural design optimization, Computer & Structures,
257: 269–280.

Legerer, F. (1970) Code theory—a new branch of engineering science, Structural Reliability
and Codified Design, Lind, N.C. (Ed), SM Study No. 3, University of Waterloo, Ontario,
113–127.

Leicester, R.H. and Beresford, R.D. (1977) A probabilistic model for serviceability
specifications, Proc. 6th Australasian Conf. on the Mechanics and Structures of
Materials, Christchurch, 407–413.

Leira, B.J. Evaluation of risk-type integrals by system reliability methods, Structural Safety,
17 (4) 239–254.

Lemaire, M. (2009) Structural Reliability, Wiley-ISTE, London, 261–263.
Lemaire, M., Mohamed, A. and Flores-Macias, O. (1997) The use of finite element codes for

the reliability of structural system, Reliability and Optimization of Structural Systems,
Frangopol, D.M., Corotis, R.B. and Rackwitz, R. (Eds), Pergamon, Oxford, 223–230.

Leonel, E.D., Beck, A.T. and Venturini, W.S. (2011) On the performance of response surface
and direct coupling approaches in solution of random crack propagation problems,
Structural Safety, 33: 261–274.

Li, C.-C. and Der Kiureghian, A. (1993) Optimal discretization of random fields,
J. Engineering Mechanics, ASCE, 119 (6) 1136–1154.

Li, C.Q. (2003) Life-cycle modeling of corrosion-affected concrete structures: Propagation,
J. Struct. Engrg. 129 (6) 753–761.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 477

Li, C.Q. and Melchers, R.E. (1992) Reliability analysis of creep and shrinkage effects,
J. Structural Engineering, ASCE, 118 (9) 2323–2337.

Liang. J., Mourelatos, Z.P. and Nikolaidis, E. (2007) A single-loop approach for system
reliability-based design optimization, J. Mech. Des., 129 (12) 1215–1224.

Liang. J., Mourelatos, Z.P. and Tu, J. (2004) A single-loop method for reliability-based
design optimization, In: Proceedings of ASME design engineering technical conferences,
paper C2004/DAC-57255.

Lighthill, J. (1978) Waves in Fluids, Cambridge University Press, New York.
Lin, T.S. and Corotis, R.B. (1985) Reliability of ductile systems with random strengths,

J. Structural Engineering, ASCE, 111 (6) 1306–1325.
Lin, Y.K. (1970) First excursion failure of randomly excited structures, II, AIAA J., 8 (10)

1888–1890.
Lind, N.C. (1969) Deterministic formats for the probabilistic design of structures, An

Introduction to Structural Optimization, SM Study No. 1, Kachaturian, N. (Ed),
University of Waterloo, Ontario, 121–142.

Lind, N.C. (1972) Theory of Codified Structural Design, University of Waterloo, Ontario.
Lind, N.C. (1976a) Approximate analysis and economics of structures, J. Structural Div.,

ASCE, 102 (ST6) 1177–1196.
Lind, N.C. (1976b) Application to Design of Level I Codes, Bulletin d’Information No. 112,

Comité Européen du Béton, Paris, 73–89.
Lind, N.C. (1976c) Approximate analysis and economics of structures, J. Struct. Div. ASCE,

102 (6) 1177–1196.
Lind, N.C. (1977) Formulation of probabilistic design, J. Engineering Mechanics Div., ASCE,

103 (EM2) 273–284.
Lind, N.C. (1979) Optimal reliability analysis by fast convolution, J. Engineering Mechanics

Div., ASCE, 105 (EM3) 447–452.
Lind, N.C. (1983) Models of human error in structural reliability, Structural Safety, 1 (3)

167–175.
Lind, N.C. (1996) Validation of probabilistic models, Civil Engg. Systems, 13 (3) 175–183.
Lind, N.C. and Davenport, A.G. (1972) Towards practical application of structural

reliability theory, Probabilistic Design of Reinforced Concrete Buildings, Special
Publication No. 31, American Concrete Institute.

Lindley, D.V. (1972) Bayesian Statistics, A Review, Society of Industrial and Applied
Mathematics.

Liu, P.-L. and Der Kiureghian, A. (1986) Multivariate distribution models with prescribed
marginals and covariances, Prob. Engineering Mechanics, 1 (2) 105–112.

Liu, P.-L. and Der Kiureghian, A. (1991a) Finite element reliability of geometrically
nonlinear uncertain structures, J. Engineering Mechanics, ASCE, 117 (8) 1806–1825.

Liu, P.-L, and Der Kiureghian, A. (1991b) Optimization algorithms for structural reliability,
Structural Safety, 9: 161–177.

Liu, S.C., Neghabat, F. and Dougherty, M.R. (1976) Optimal aseismic design of building and
equipment, J. Engrg. Mech. ASCE, 102 (3), 395–414.

Liu, Y.W. and Moses, F. (1994) A sequential response surface method and its application in
the reliability analysis of aircraft structural systems, Structural Safety, 16 (1+2) 39–46.

Longuet-Higgins, M.S. (1952) On the statistical distribution of the heights of sea waves,
J. Marine Sci., 11, 245–266.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

478 References

Lopez, R.H. and Beck, A.T. (2012) Reliability-based design optimization strategies based on
FORM: a review. Journal of the Brazilian Society of Mechanical Sciences and Engineering,
34: 506–514.

Luthans, F. (2010) Organizational Behaviour (12th Edn) McGraw-Hill, New York.
Lyse, I. and Keyser, C.C. (1934) Effect of size and shape of test specimens upon the

observed physical properties of structural steel, ASTM, Proc., 34, Part II, 202–210.
Ma, H.-F. and Ang, A. H.-S. (1981) Reliability Analysis of Redundant Ductile Structural

Systems, Structural Research Series No. 494, Department of Civil Engineering,
University of Illinois, Urbana.

MacGregor, J.G. (1976) Safety and limit states design for reinforced concrete, Can. J. Civil
Engg., 3 (4) 484–513.

Madsen, H.O. (1982) Deterministic and Probabilistic Models for Damage Accumulation due
to Time Varying Loading, DIALOG 5-82, Danish Engineering Academy, Lyngby,
Denmark.

Madsen, H.O. (1987) Model updating in reliability analysis, Proc. 5th Int. Conf. on
Applications of Statistics and Probability in Soil and Structural Engineering, Vancouver,
564–577.

Madsen, H.O. (1988) Omission sensitivity factors, Structural Safety, 5, 35–45.
Madsen, H.O. and Bazant, Z.P. (1983) Uncertainty analysis of creep and shrinkage effects in

concrete structures, ACI Journal, 80 (2) 116–127.
Madsen, H.O. and Egeland, T. (1989) Structural reliability—models and applications, Int.

Stat. Rev., 57 (3) 185–203.
Madsen, H.O., Kilcup, R. and Cornell, C.A. (1979) Mean upcrossing rate for stochastic load

processes, Probabilistic Mechanics and Structural Reliability, ASCE, New York, 54–58.
Madsen, H.O., Krenk, S. and Lind, N.C. (1986) Methods of Structural Safety. Prentice Hall,

Englewood Cliffs.
Madsen, H.O. and Turkstra, C. (1979) Residential floor loads—a theoretical and field study,

Report No. ST79-9, Department of Civil Engineering, McGill University.
Madsen, H.O. and Zadeh, M. (1987) Reliability of plates under combined loading, Proc.

Marine Struct. Rel. Symp., SNAME, Arlington, Virginia, 185–191.
Maes, M.A. (1996) Ignorance factors using model expansion, J. Engineering Mechanics,

ASCE, 122 (1) 39–45.
Maes, M.A., Breitung, K. and Dupois, D.J. (1993) Asymptotic importance sampling,

Structural Safety, 12 (3) 167–186.
Mann, N.R., Schafer, R.E. and Singpurwalla, N.D. (1974) Methods for Statistical Analysis of

Reliability and Life Data, John Wiley, New York.
Marsaglia, G. (1968) Random numbers fall mainly in the planes, Proc. Nat. Acad. Sci. USA.

61, 25–28.
Matheron, G. (1973) The intrinsic random functions, and their applications, Adv. Appl.

Prob., 5: 439–468.
Matheron, G. (1989) Estimating and Choosing, Springer, Berlin.
Matousek, M. and Schneider, J. (1976) Untersuchungen zur Struktur des

Sicherheitsproblems bei Bauwerken, Bericht No. 59, Institut für Baustatik und
Konstruktion, Eidgenössiche Technische Hochschule, Zurich.

Matthies, H.G., Brenner, C.E., Bucher, C.G. and Guedes Soares, C. (1997) Uncertainties in
probabilistic numerical analysis of structures and solids—Stochastic finite elements,
Structural Safety, 19 (3) 283–336.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 479

Mayer, H. (1926) Die Sicherheit der Bauwerke, Springer, Berlin.
Maymon, G. (1993) Probability of failure of structures without a closed-form failure

function, Computers & Structures, 49 (2) 301–313.
McGuire, R.K. and Cornell, C.A. (1974) Live load effects in office buildings, J. Structural

Div., ASCE, 100 (ST7) 1351–1366.
Meister, S. (1966) Human factors in reliability, Reliability Handbook, Ireson, W.G. (Ed),

McGraw-Hill, New York.
Melbourne, W.H. (1977) Probability distributions associated with the windloading of

structures, Civ. Engg. Trans. Inst. Engrs. Aust., CE19 (1) 58–67.
Melbourne, W.H. (1998) Comfort criteria for wind-induced motion in structures,

Structural Engg. Intl., 8 (1) 40–44.
Melchers, R.E. (1977) Influence of organization on project implementation, J. Construction

Div., ASCE, 103 (CO4) 611–625.
Melchers, R.E. (1978) The influence of control processes in structural engineering, Proc.

Inst. Civil Engrs., 65, Part 2, 791–807.
Melchers, R.E. (1979) Selection of control levels for maximum utility of structures, Proc.

3rd Int. Conf. on Applications of Statistics and Probability in Soil and Structural
Engineering, Sydney, 839–849.

Melchers, R.E. (1980) Societal options for assurance of structural performance, Final
Report, 11th Congr. IABSE, London, 983–988.

Melchers, R.E. (1981) On Bounds and Approximations in Structural Systems Reliability,
Research Report No. 1/1981, Department of Civil Engineering, Monash University,
Australia.

Melchers, R.E. (1983a) Reliability of parallel structural systems, J. Structural Div., ASCE,
109 (11) 2651–2665.

Melchers, R.E. (1983b) Static theorem approach to the reliability of parallel plastic
structures, Proc. 4th Int. Conf. on Applications of Statistics and Probability in Soil and
Structural Engineering, Vol. 2, Augusti, G., Borri, A., and Vannuchi, G. (Eds), Pitagora
Editrice, Bologna, 1313–1324.

Melchers, R.E. (1984) Efficient Monte-Carlo Probability Integration, Research Report No.
7/1984. Department of Civil Engineering, Monash University, Australia.

Melchers, R.E. (1989a) Improved importance sampling for structural reliability calculation,
Proc. 5th International Conference on Structural Safety and Reliability, Ang, A. H.-S.
Shinozuka, M. and Schuëller, G.I. (Eds), ASCE, New York, 1185–1192.

Melchers. R.E. (1989b) Discussion to Bucher (1988) Structural Safety, 6 (1) 65–66.
Melchers, R.E. (1990a) Search-based importance sampling, Structural Safety, 9 (2)

117–128.
Melchers, R.E. (1990b) Radial importance sampling for structural reliability, J. Engineering

Mechanics, ASCE, 116 (1) 189–203.
Melchers, R.E. (1991) Simulation in time-invariant and time-variant reliability problems,

Proc. 4th IFIP Conference on Reliability and Optimization of Structural Systems,
Rackwitz, R. and Thoft-Christensen P. (Eds), Springer, Berlin, 39–82.

Melchers, R.E. (1992) Load space formulation of time dependent structural reliability,
J. Engineering Mechanics, ASCE, 118 (5) 853–870.

Melchers, R.E. (1993) Society, tolerable risk and the ALARP principle, Probabilistic Risk
and Hazard Assessment, Melchers, R.E. and Stewart, M.G. (Eds), Balkema, Rotterdam,
243–252.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

480 References

Melchers, R.E. (1994), Structural System Reliability Assessment using Directional
Simulation, Structural Safety, 16 (1 & 2) 23–39.

Melchers, R.E. (1995a) Human errors in structural reliability, Probabilistic Structural
Mechanics Handbook, C. (Raj) Sundararajan (Ed), Chapman and Hall, New York,
211–237.

Melchers, R.E. (1995b) Load space reliability formulation for Poisson pulse processes,
J. Engineering Mechanics, ASCE, 121 (7) 779–784.

Melchers, R.E. (1997) Modeling of marine corrosion of steel specimens, Corrosion Testing
in Natural Waters; Second Volume, Kain, R.M. and Young, W.T. (Eds), ASTM STP 1300,
Philadelphia, 20–33.

Melchers, R.E. (1998a) Load path dependence in directional simulation in load space, Proc.
8th IFIP WG7.5 Conf. Reliability and Optimization of Structural Systems, Krakow,
Poland.

Melchers, R.E. (1998b) Corrosion Uncertainty Modelling for Steel Structures, J. Const. Steel
Res.

Melchers, R.E. (2001) On the ALARP approach to risk management, Reliability Engineering
and System Safety, 71: 201–208.

Melchers, R.E. (2008a) Reliability of aged land-based structures, (In) Condition Assessment
of Aged Structures, Paik, J.K. and Melchers, R.E. (Eds.), Woodhead Publishing Ltd,
Cambridge, 352–363.

Melchers, R.E. (2008b) Chapter 4, Corrosion wastage in aged structures, (In) Condition
Assessment of Aged Structures, Paik, J.K. and Melchers, R.E. (Eds.), Woodhead Publishing
Ltd, Cambridge, 77–106.

Melchers, R.E. (2013) Human intervention and the safety of complex structural systems,
Civil Engineering and Environmental Systems, 30 (3–4) 211–220.

Melchers, R.E. (2014a) Bi-modal trend in the long-term corrosion of aluminium alloys,
Corrosion Science, 82: 239–247.

Melchers, R.E. (2014b) Long-term immersion corrosion of steels in seawaters with elevated
nutrient concentration, Corrosion Science, 81: 110–116.

Melchers, R.E. (2015a) Bi-modal trends in the long-term corrosion of copper and copper
alloys, Corrosion Science, 95: 51–61.

Melchers, R.E. (2015b) Chapter 23: Progression of pitting corrosion and structural
reliability of welded steel pipelines, (in) Oil and Gas Pipelines: Integrity and Safety
Handbook, edited by R. Winston Revie, John Wiley & Sons, Hoboken, 327–341.

Melchers, R.E., Baker, M.J. and Moses, F. (1983) Evaluation of experience, Quality
Assurance within the Building Process, Report No. 47, IABSE, 21–38.

Melchers R.E. and Chaves I.A. (2016) A study of initiation and active reinforcement
corrosion in conventional reinforced concrete, Proc. Australasian Corrosion Conference,
Auckland, NZ, Australasian Corrosion Association, Melbourne, Paper 52.

Melchers, R.E. and Chaves, I.A. (2017) A comparative study of chlorides and longer-term
reinforcement corrosion. Materials and Corrosion, 68 DOI: 10.1002/maco.201609310.

Melchers, R.E. and Jeffrey, R.J. (2014) Corrosion of steel piling in seawater harbours, Proc.
Instn. of Civil Engineers, Maritime Engineering, 167, MA4, 159–172.

Melchers, R.E. and Li, C.Q. (1994) Discussion of Engelund, S. and Rackwitz, R. (1993),
Structural Safety, 14 (4) 299–302.

Melchers, R.E. and Li, C.Q. (2006). Phenomenological modeling of corrosion loss of steel
reinforcement in marine environments, ACI Materials Journal, 103 (1) 25–32.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 481

Melchers, R.E. and Li, C.Q. (2009a). Reinforcement corrosion in concrete exposed to the
North Sea for over 60 years, Corrosion, 65 (8) 554–566.

Melchers, R.E. and Li, C.Q. (2009b). Reinforcement corrosion initiation and activation
times in concrete structures exposed to severe marine environments, Cement and
Concrete Research, 39: 1068–1076.

Melchers, R.E., Li, C.Q. and Lawanwisut, W. (2008) Probabilistic modelling of structural
deterioration of reinforced concrete beams under saline environment corrosion,
Structural Safety, 30 (5) 447–460.

Melchers, R.E. and Tang, L.K. (1983) Reliability of Structural Systems with Stochastically
Dominant Modes, Research Report No. 2/1983, Department of Civil Engineering,
Monash University, Australia.

Melchers, R.E. and Tang, L.K. (1984) Dominant failure modes in stochastic structural
systems, Structural Safety, 2, 127–143.

Melchers, R.E. and Tang, L.K. (1985a) Failure modes in complex stochastic systems, Proc.
4th Int. Conf. on Structural Safety and Reliability, Vol. 1, Kobe, Japan, 97–106.

Melchers, R.E. and Tang, L.K. (1985b) Reliability analysis of multi-member structures,
NUMETA’85, Proc. Int. Conf. on Numerical Methods in Engineering Theory and
Applications, A. A. Balkema, 763–772.

Menzies, J.B. (1996) Bridge safety targets and needs for performance feedback, Structural
Reliability in Bridge Engineering: Design, Inspection, Assessment, Rehabilitation and
Management, Frangopol, D.M. and Hearn, G. (Eds), McGraw-Hill, New York, 156–161.

Mettem, C.J. and Tietz, S. (1999) Demystifying Limit States Design in timber: Practice
update, The Structural Engineer, 77 (15) 13-18.

Micic, T.V., Chryssanthopoulos, M.K. and Baker, M.J. (1995) Reliability analysis for highway
bridge deck assessment, Structural Safety, 17 (3) 135–150.

Milton, R.C. (1972) Computer evaluation of the multivariate normal integral,
Technometrics, 14 (4) 881–889.

Mirza, S.A. (1996) Reliability-based design of reinforced concrete columns, Structural
Safety, 18 (2&3) 179–194.

Mirza, S.A., Hatzinikolas, M. and McGregor, J.G. (1979) Statistical descriptions of strength
of concrete, J. Structural Division, ASCE, 105 (ST6) 1021–1037.

Mirza, S.A. and MacGregor, J.G. (1979a) Variations in dimensions of reinforced concrete
members, J. Structural Div., ASCE, 105 (ST4) 751–766.

Mirza, S.A. and MacGregor, J.G. (1979b) Variability of mechanical properties of reinforcing
bars, J. Structural Div., ASCE, 105 (ST5) 921–937.

Mitchell, G.R. and Woodgate, R.W. (1971a) Floor Loading in Office Buildings—The Results
of a Survey, Building Research Current Paper 3/71, Building Research Station,
Department of the Environment, Watford, UK.

Mitchell, G.R. and Woodgate, R.W. (1971b) Floor Loading in Retail premises—the Results of
a Survey, Building Research Current Paper 24/71, Building Research Station,
Department of the Environment, Watford, UK.

Mitchell, G.R. and Woodgate, R.W. (1977) Floor Loading in Domestic Premises—the Results
of a Survey, Building Research Current Paper 2/77, Building Research Station,
Department of the Environment, Watford, UK.

Mitteau, J.-C. (1996) Error estimates for FORM and SORM computations of failure
probability, Proc. Speciality Conf. Probabilistic Mechanics and Structural Reliability,
Worcester, MA, ASCE, 562–565.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

482 References

Moarefzadeh, M.R. and Melchers, R.E. (1996a) Sample-specific linearization in reliability
analysis of off-shore structures, Structural Safety, 18 (2 & 3) 101–122.

Moarefzadeh, M.R. and Melchers, R.E. (1996b) Non-linear wave theory in reliability
analysis of off-shore structures, Research Report No. 139.7.1996, Department of Civil
Engineering and Surveying, The University of Newcastle, Australia.

Moarefzadeh, M.R. and Melchers, R.E. (1996c) Directional simulation applied to idealized
off-shore structures, Proc. 7th IFIP WG 7.5 Conference on Reliability and Optimization
of Structural Systems, (Eds) D.M. Frangopol, R.B. Corotis and R. Rackwitz, Springer
Verlag, 247–254.

Mori, Y. and Ellingwood, B.R. (1993a) Time-dependent system reliability analysis by
adaptive importance sampling, Structural Safety, 12 (1) 59–73.

Mori, Y. and Ellingwood, B.R. (1993b) Reliability-based service-life assessment of aging
concrete structures, J. Structural Engineering, ASCE, 119 (5) 1600–1621.

Morison, J.R., O’Brien, M.P. Johnston, J.W. and Schaaf, S.A. (1950) The force exerted by
surface waves on piles, Pet. Trans., AIME, 189, 149–154.

Moses, F. (1969) Approaches to structural reliability and optimization, in: An Introduction
to Structural Optimization, Cohn, M.Z. (Ed.), Solid Mechanics Division, University of
Waterloo, Study No. 1, 81-120.

Moses, F. (1974) Reliability of structural systems, J. Structural Div., ASCE, 100 (ST9)
1813–1820.

Moses, F. (1977) Structural system reliability and optimization, Computers & Structures, 7:
283–290.

Moses, F. (1982) System reliability development in structural engineering, Structural Safety,
1 (1) 3–13.

Moses, F. (1996) Bridge evaluation based on reliability, Structural Reliability in Bridge
Engineering: Design, Inspection, Assessment, Rehabilitation and Management, Frangopol,
D.M. and Hearn, G. (Eds), McGraw-Hill, New York, 42–53.

Moses, F. and Kinser, D. E. (1967) Analysis of structural reliability, J. Structural Div., ASCE,
93 (ST5) 147–164.

Moses, F., Lebet, J. and Bez, R. (1994) Applications of field testing to bridge evaluation,
J. Structural Engineering, ASCE, 120, 1745–1762.

Moses, F. and Stevenson, J.D. (1970) Reliability-based structural design, J. Structural
Division, ASCE, 96 (ST2) 221–244.

Murdock, L.J. (1953) The control of concrete quality, Proc. Inst. Civil Eng., 2, Part 1, (4)
426–453.

Murotsu, Y., Okada, H. and Matsuzaki, S. (1985) Reliability analysis of frame structures
under combined load effects, Proc. 4th Int. Conf. on Structural Safety and Reliability,
Kobe, Vol. 1, 117–128.

Murotsu, Y., Okada, H., Taguchi, K., Grimmelt, M. and Yonezawa, M. (1984) Automatic
generation of stochastically dominant failure modes of frame structures, Structural
Safety, 2, 17–25.

Murotsu, Y., Okada, H., Yonesawa, M. and Kishi, M. (1983) Identification of Stochastically
Dominant Failure Models in Frame Structures, Proc. 4th Int. Conf. on Applications of
Statistics and Probability in Soil and Structural Engineering, Augusti, G., Borri, A., and
Vannuchi, O. (Eds), Pitagora Editrice, Bologna, 1325–1338.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 483

Murotsu, Y., Yonesawa, M., Oba, F. and Niwa, K. (1977) Methods for reliability analysis and
optimal design of structural systems, Proc. 12th Int. Symp. on Space Technology and
Science, Tokyo, 1047–1054.

Myers, R.H. (1971) Response Surface Methodology, Allyn and Bacon, New York.
Nadolski, V. and Sykora, M. (2015) Model uncertainties in resistance of steel members, (In)

Safety and Reliability of Complex Engineering Systems, ESREL2015, (Eds.) Podofillina,
L., Sudret, B., Stojadinovic, B., Zio. E. and Kroger, W., Taylor & Francis, London,
pp. 4189–4195.

Naess, A., Leira, B.J. and Batsevych, O. (2009) System reliability analysis by enhanced
Monte Carlo simulation, Struct Safety, 31: 349–355.

Naess A, Leira B.J., Batsevych O (2012). Reliability analysis of large structural systems, Prob.
Eng. Mechanics 28: 164-168.

Nakken, O. and Valsgard, S. (1995) Life Cycle Costs of Ships Hulls, Paper Series No.
94-P003, Det Norske Veritas Classification AS.

Nataf, A. (1962) Determination des Distributions dont les Marges sont Donnees, Comptes
Rendus de l’Academie des Sciences, 225, 42–43.

NBS (1953) Probability Tables for the Analysis of Extreme Value Data, Applied
Mathematics Series No. 22, National Bureau of Standards, Washington, DC.

NBS (1959) Tables of the Bivariate Normal Probability Distribution and Related Functions,
Applied Mathematics Series No. 50, National Bureau of Standards, Washington, DC.

Nessim, M.A. and Jordaan, I.J. (1983) Decision-making for error control in structural
engineering, Proc. 4th Int. Conf. on Applications of Statistics and Probability in Soil and
Structural Engineering, Augusti, G., Borri, A. and Vannuchi, O. (Eds), Pitagora Editrice,
Bologna, 713–727.

Newland, D.E. (1984) An Introduction to Random Vibrations and Spectral Analysis (2nd
Edn) Longman.

Nguyen, T.H., Song, J. and Paulino, G.H. (2010) Single-Loop system reliability-based design
optimization using matrix-based system reliability method: Theory and applications,
Journal of Mechanical Design, 132: 011005-1-11.

Nocedal, J. and Wright, S. (2006) Numerical Optimization, 2nd Edition, Springer, New
York.

Nowak, A.S. (1979) Effects of human error on structural safety, J. Amer. Concrete Inst., 76
(9) 959–972.

Nowak, A.S. (1986) (Ed), Modeling Human Error in Structural Design and Construction,
ASCE, New York.

Nowak, A.S. (1993) Live load model for highway bridges, Structural Safety, 13 (1 & 2)
53–66.

Nowak, A.S. and Carr, R.I. (1985) Sensitivity analysis of structural errors, J. Structural
Engineering, ASCE, 111 (8) 1734–1746.

Nowak, A.S. and Lind, N.C. (1979) Practical bridge code calibration, J. Structural Div.,
ASCE, 105 (ST12) 2497–2510.

Nowak, A.S., Rakoczy, A.M. and Szeliga, E.K. (2012) Revised Statistical Resistance Models
for R/C Structural Components, Report ACI SP-284-6, American Concrete Institute,
Detroit, pp. 1–16.

Nowak, A.S. and Tharmabala, T. (1988) Bridge reliability evaluation using load tests,
J. Structural Engineering, ASCE, 114 (10) 2268–2279.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

484 References

NRCC (1977) National Building Code of Canada, National Research Council of Canada,
Ottawa.

NSW DEP (2011) Planning Guidelines for hazardous development, NSW Department of
Planning and Environment, Sydney.

OHBDC (1983) Ontario Highway Bridge Design Code, Ontario Ministry of Transport,
Canada.

Okasha, N.M. (2016) An improved weighted average simulation approach for solving
reliability-based analysis and design optimization problems, Structural Safety, 60: 47–55.

Okasha, N.M. and Frangopol, D.M. (2009) Lifetime-oriented multi-objective optimization
of structural maintenance considering system reliability, redundancy and life-cycle cost
using GA, Structural Safety, 31: 460–474.

Olagnon, M. and Prevosto, M., (Eds.) (2008) Rogue Waves 2008 Workshop, Proceedings,
IFREMER, Brest.

Olsson, A., Sandberg, G. and Dahlblom, O. (2003) On Latin hypercube sampling for
structural reliability analysis, Structural Safety, 25: 47–68.

Orcesi, A.D. and Frangopol, D.M. (2011) Use of lifetime functions in the optimization of
nondestructive inspection strategies for bridges, J. Struct. Engrg. 137 (4) 531–539.

Osborne, A.F. (1957) Applied Imagination: Principles and Practices of Creative Thinking,
Scribners, New York.

Ostlund, L. (1993) Load combination in codes, Structural Safety, 13 (1 & 2) 83–92.
Oswald, G.F. and Schuëller, G.I. (1983) On the reliability of deteriorating structures, Proc.

4th Int. Conf. on Applications of Statistics and Probability in Soil and Structural
Engineering, Augusti, G., Borri, A. and Vannuchi, O. (Eds), Pitagora Editrice, Bologna,
597–608.

Otway, H.J., Battat, M.E., Lohrding, R.K., Turner, R.D. and Cubitt, R.L. (1970) A Risk
Analysis of the Omega West Reactor, Report No. LA 4449, Los Alamos Scientific
Laboratory, University of California, Los Alamos, CA.

Owen, D.B. (1956) Tables for computing bivariate normal probabilities, Ann. Math. Stat.,
27, 1075–1090.

Owen, D.B. (1980) A Table of Normal Integrals. Communications in Statistics, Simulation
and Computation B, 9 (2), 389–419.

Paik. J.K. and Melchers, R.E. (Eds.) (2008) Condition Assessment of Aged Structures,
Woodhead Publishing, Cambridge.

Paloheimo, E. and Hannus, M. (1974) Structural design based on weighted fractiles,
J. Structural Div., ASCE, 100 (ST7) 1367–1378.

Pandey, M.D. (1998) An effective approximation to evaluate multinormal integrals,
Structural Safety, 20 (1) 51–67.

Pandey, M.D. and Nathwani, J.S. (2004) Life quality index for the estimation of societal
willingness-to-pay for safety, Structural Safety, 26 (2) 181–199.

Papoulis, A. (1965) Probability, Random Variables and Stochastic Processes, McGraw-Hill,
New York.

Parkinson, D.B. (1980) Computer solution for the reliability index, Engineering Structures,
2, 57–62.

Parzen, E. (1962) Stochastic Processes, Holden-Day.
Pearce, H.T. and Wen, Y.K. (1984) Stochastic combination of load effects, Journal of

Structural Engineering, 110 (7) 1613–1629.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 485

Pearson, E.S. and Johnson, N.L. (1968) Tables of the Incomplete Beta Function (2nd Edn),
Cambridge University Press.

Pedroni, N. and Zio, E. (2009) Functional failure analysis of a thermal-hydraulic passive
system by means of line sampling, Reliab. Engrg. System Safety, 94: 1764–1781.

Petrini, F. and Ciampoli, M. (2012) Performance-based wind design of tall buildings,
Structure and Infrastructure Engineering, 8 (10) 954–966.

Petroski, H. (1992) To Engineer Is Human: The Role of Failure in Successful Design,
1st Vintage Books, New York.

Petroski, H. (2012) To Forgive Design: Understanding Failure, Harvard University Press,
Cambridge, MA.

Pham, L. (1985) Load combinations and probabilistic load models for limit state codes, Civ.
Engg. Trans. Inst. Engrs. Aust., CE27, 62–67.

Pham, L., Holmes, J.D. and Leicester, R.H. (1983) Safety indices for wind loading in
Australia, J. Wind Engg. Indust. Aerodyn., 14, 3–14.

Philpot, T.A., Rosowsky, D.V. and Fridley, K.J. (1993) Serviceability design in LRFD for
wood, J. Structural Div., ASCE, 119 (12), 3649–3667.

Piak, J.K., Kim, S.K., Yang, S.H. and Thayamballi, A.K. (1997) Ultimate strength reliability of
corroded ship hulls, Trans. Royal Inst. Naval Arch., 137, 1–14.

Pier, J.-C., and Cornell, C.A. (1973) Spatial and temporal variability of live loads,
J. Structural Div., ASCE, 99 (ST5) 903–922.

Pierson, W.J. and Moskowitz, L. (1964) A proposed spectral form for fully developed wind
seas based on the similarity theory of S. A. Kitaigorodskii, J. Geophys. Res., 69 (24)
5181–5190.

Popper, K.R. (1959) The Logic of Scientific Discovery, Basic Books, New York.
Pradlwarter, H.J., Pellissetti, M.F., Schenk. C.A., Schueller, G.I., Kreis, A., Fransen, S., Calvi,

A. and Klein, M. (2005) Realistic and efficient reliability estimation for aerospace
structures, Comput. Meth. Appl. Mech. Eng. 194: 1597–1617.

Pradlwarter, H.J. Schueller, G.I., Koutsourelakis, P.S. and Charmpis, D.C. (2007)
Application of line sampling simulation method to reliability benchmark problems,
Structural Safety, 29: 208–221.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (2007), Numerical Recipes:
The Art of Scientific Computing (3rd ed.), Cambridge University Press, New York.

Prest, A.R. and Turvey, R. (1965) Cost Benefit Analysis: A Survey, Econ. J., 685–735.
Provan, J. (ed.) (1987) Probabilistic Fracture Mechanics and Reliability, Martinus Nijhoff,

Dordrecht, The Netherlands.
Pugsley, A.G. (1962) Safety of Structures, Edward Arnold, London.
Pugsley, A.G. (1973) The prediction of proneness to structural accidents, Structural

Engineer, 51 (6) 195–196.
Pugsley, A. et al., (1955) Report on structural safety, Structural Engineer, 33 (5) 141–149.
Rackwitz, R. (1976) Practical Probabilistic Approach to Design, Bulletin d’Information No.

112, Comité Européen du Béton, Paris.
Rackwitz, R. (1977) Note on the Treatment of Errors in Structural Reliability, Berichte zur

Sicherheitstheorie der Bauwerke, SFB 96, Vol. 21, Technical University, Munich.
Rackwitz, R. (1984) Failure rates for general systems including structural components,

Reliab. Engg., 9, 229–242.
Rackwitz, R. (1985a) Reliability of systems under renewal pulse loading, J. Engineering

Mechanics, ASCE, 111 (9) 1175–1184.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

486 References

Rackwitz, R. (1985b) Predictive distribution of strength under control, Materiaux et
Construction, 16 (94) 259–267.

Rackwitz, R. (1993) On the combination of non-stationary rectangular wave renewal
processes, Structural Safety, 13 (1+2) 21–28.

Rackwitz, R. (1996) Static properties of reinforcing steel, Working Notes, JCSS Probabilistic
Model Code, Part 3: Resistance Models, Second draft.

Rackwitz, R. (2001) Optimizing systematically renewed structures, Reliability Engineering
and System Safety, 73, 269–279.

Rackwitz, R. (2002) Optimization and risk acceptability based on the Life Quality Index,
Structural Safety, 24: 297–331.

Rackwitz, R. (2004) Life quality index revisited, Structural Safety, 26: 443–451.
Rackwitz, R. and Fiessler, B. (1978) Structural reliability under combined random load

sequences, Computers and Structures, 9, 489–494.
Rackwitz, R. and Joanni, A. (2009) Risk acceptance and maintenance optimization of aging

civil engineering infrastructures, Structural Safety, 31: 251–259.
Rajashekhar, M.R. and Ellingwood, B.R. (1993) A new look at the response surface

approach for reliability analysis, Structural Safety, 12 (3) 205–220 (see also Discussion
(1994), Structural Safety, 16 (3) 227–230).

Rakoczy, A.M. and Nowak, A.S. (2013) Resistance model of lightweight concrete members,
Materials Journal, ACI, 110 (1): 99-108.

Ramachandran, K. (1984) Systems bounds: A critical study, Civil Engg. Systems, 1, 123–128.
Rand Corporation (1955) A Million Random Digits with 1,000,000 Normal Deviates, Free

Press, New York.
Rao, N.R.N., Lohrman, M. and Tall, L. (1966) The effect of strain rate on the yield stress of

structural steels, ASTM, J. Mater., 1 (1) 241–262.
Rao, S.S. (2009) Engineering Optimization: Theory and Practice, 4th Edition, Wiley, New

York.
Rashki, M., Miri, M. and Moghaddam, M.A. (2012) A new efficient simulation method to

approximate the probability of failure and most probable point, Structural Safety, 39:
22–29.

Rashki, M., Miri, M. and Moghaddam, MA. (2014a) A simulation-based method for
reliability based design optimization problems with highly nonlinear constraints, Autom
Constr., 47: 24–36.

Rashki, M., Miri, M. and Moghaddam, M.A. (2014b) Closure to “A new efficient simulation
method to approximate the probability of failure and most probable point”. Structural
Safety, 46: 15–16.

Ravindra, M.K. and Galambos, T.V. (1978) Load and resistance factor design for steel,
J. Structural Div., ASCE, 104 (ST9) 1337–1353.

Ravindra, M.K., Heany, A.C., and Lind, N.C. (1969) Probabilistic evaluation of safety
factors, Symp. on Concepts of Safety of Structures and Methods of Design, Final Report,
IABSE, London, 36–46.

Reason, J. (1990) Human Error, Cambridge University Press, Cambridge.
Rebelo, C., Lopes, N., Simões da Silva, L., Nethercot, D. and Vila Real, P.M.M. (2009)

Statistical evaluation of the lateral–torsional buckling resistance of steel I-beams, Part 1:
Variability of the Eurocode 3 resistance model, J. Construct. Steel Res. 65 (4) 818–831.

Reid, S.G. (1997) Probability-based patterned live load for design, Structural Safety, 19 (1)
37–52.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 487

Reid, S.G. and Caprani, C.C. (2014) Influence on bridge reliability of uncertainty in
estimated traffic load effects, (In) Deodatis, G., Ellingwood, B.R. and Frangopol, D.M.
(Eds.) Safety, Reliability, Risk and Life-Cycle Performance of Structures and
Infrastructures, Taylor & Francis, London, 3787–3793.

Reid, S.G. and Turkstra, C.J. (1980) Serviceability Limit States—Probabilistic Description,
Report No. ST80-1, McGill University, Montreal.

Rice; S.O. (1944) Mathematical analysis of random noise, Bell System Tech. J., 23, 282–332;
(1945), 24, 46–156. Reprinted in Wax, N. (1954) Selected Papers on Noise and Stochastic
Processes, Dover Publications.

Riera, J.D. and Rocha, M.M. (1997) Implications of phenomenological uncertainty in
engineering reliability assessments, Proc. Int. Conf. on Structural Safety and Reliability,
Kobe.

Ritter, M.A. and Nowak, A.S. (1994) LRFD provisions for wood bridges, Structures
Congress 12, American Society of Civil Engineers, Vol. 1, 549–554.

Rockafellar, R.T. and Royset, J.O. (2010) On buffered failure probability in design and
optimization of structures, Rel. Eng. & System Safety, 95: 499–510.

Romero, V.J., Swiler, L.P. and Giunta, A.A. (2004) Construction of response surfaces based
on progressive-lattice-sampling experimental designs with applications to uncertainty
propagation, Struct. Safety, 26 (2) 201–219.

Rosenblatt, M. (1952) Remarks on a multivariate transformation, Ann. Math. Stat., 23,
470–472.

Rosenblueth, E. (1976a) Optimum design for infrequent disturbances, J. Struct. Div. ASCE
102 (9) 1807–1825.

Rosenblueth, E. (1976b) Towards optimum design through building codes, J. Struct. Div.
ASCE, 102 (3) 591–607.

Rosenblueth, E. (1985a) Discussion of Ditlevsen, O., Fundamental postulate in structural
safety, J. Engineering Mechanics, ASCE, 111 (1) 109.

Rosenblueth, E. (1985b) On computing normal reliabilities, Structural Safety, 2 (3)
165–167.

Rowe, W. D. (1977) An Anatomy of Risk, John Wiley & Sons, New York.
Royal Society Study Group (1991) Risk: analysis, perception and management, The Royal

Society, London.
Royset, J.O., Der Kiureghian, A. and Polak, E. (2001) Reliability-Based Optimal Design of

Series Structural Systems, J. Eng. Mech. 127 (6), 607–614.
Royset, J.O. and Polak, E. (2004) Reliability-based optimal design using sample average

approximations, Prob. Eng. Mech. 19: 331–343.
Rubinstein, R. Y. (1981) Simulation and the Monte Carlo Method, John Wiley & Sons,

New York.
Rüsch, H. and Rackwitz, R. (1972) The significance of the concept of probability of failure as

applied to the theory of structural safety, Development—Design—Construction, Held und
Francke Bauaktiengesellschaft, Munich.

Rüsch, H., Sell, R. and Rackwitz, R. (1969) Statistical Analysis of Concrete Strength,
Deutscher Ausschuss für Stahlbeton, No. 206, Berlin (in German).

Russell, L.R. and Schuëller, G.I. (1974) Probabilistic models for Texas Gulf coast hurricane
occurrences, J. Pet. Tech., 279–288.

Ruszczynski, A. and Shapiro, A. (2003) Stochastic Programming, Elsevier, New York.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

488 References

Rzhanitzyn, R. (1957) It is Necessary to Improve the Standards of Design of Building
Structures, A Statistical Method of Design of Building Structures, Allan, D. E. (transl.),
Technical Translation No. 1368, National Research Council of Canada, Ottawa.

Santner, T.J., Williams, B.J. and Notz, W.I. (2003) The Design and Analysis of Computer
Experiments, Springer, New York.

Santos, S.R. and Beck, A.T. (2015) A benchmark study on intelligent sampling techniques in
Monte Carlo Simulation, Latin American Journal of Solids and Structures, 12: 624–648.

Santos, S.R., Matioli, L.C. and Beck, A.T. (2012) New Optimization Algorithms for
Structural Reliability, Computer Modeling in Engineering & Sciences, 83: 23-55.

Sarpkaya, T. and Isaacson, M. (1981) Mechanics of Wave Forces on Offshore Structures, Van
Nostrand Reinhold, New York.

Schall, G., Faber, M.H. and Rackwitz, R. (1991) The ergodicity assumption for sea states in
the reliability estimation of offshore structures, Journal of Offshore Mechanics and Arctic
Engineering, 113: 241–246.

Schijve, J. (1979) Four lectures on fatigue crack growth, Engg. Fract. Mech., 11, 167–221.
Schittkowskii, K. (1980) Nonlinear Programming Codes: Information, Tests, Performance,

Lecture Notes in Economics and Mathematical Systems No. 183, Springer, Berlin.
Schneider, J. (1981) Organization and management of structural safety during design,

construction and operation of structures, Structural Safety and Reliability, Moan, T. and
Shinozuka, M. (Eds), Elsevier, Amsterdam, 467–482.

Schneider, J. (Ed) (1983) Quality Assurance within the Building Process, Report No. 47,
IABSE, London.

Schuëller, G.I. (1981) Einführung in die Sicherheit und Zuverlässigkeit von Tragwerken,
W. Ernst, Berlin.

Schuëller, G.I. (Ed) (1997) A state-of-the-art report on computational stochastic
mechanics, Prob. Engineering Mechanics, 12 (4) 203–321.

Schuëller. G.I. (2007) On the treatment of uncertainties in structural mechanics and
analysis, Comput. Struct. 85: 235–243.

Schuëller, G.I. and Bucher, C.G. (1991) Computational stochastic structural analysis—a
contribution to the software development for the reliability assessment of structures
under dynamic loading, Prob. Engineering Mechanics, 6 (3–4) 134–138.

Schuëller, G.I. and Choi, H.S. (1977) Offshore platform risk based on a reliability function
model, Proc. 9th Offshore Technology Conf., Houston, 473–482.

Schuëller, G.I., Hirtz, H. and Booz, G. (1983) The effect of uncertainties in wind load
estimation on reliability assessments, J. Wind Engg. Indust. Aerodyn., 14, 15–26.

Schuëller, G.I. and Jensen, H.A. (2009) Computational methods in optimization
considering uncertainties—an overview, Computer Methods in Applied Mechanics and
Engineering, 198: 2–13.

Schuëller, G.I., Pradlwarter, H.J. and Bucher, C.G. (1991) Efficient computational
procedures for reliability estimates of MDOF systems, J. Nonlinear Mechanics, 26 (6)
961–974.

Schueremans, L. (2001) Probabilistic Evaluation of Structural Unreinforced Masonry,
Doctor of Civil Engineering dissertation, Katholieke Universiteit Leuven, Belgium.

Schueremans. L. and van Gemert, D. (2004) Assessing the safety of existing structures:
Reliability based assessment framework, examples and applications, J. Civil Engineering
and Management, 10 (2) 131–141.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 489

Schwarz, R. F. (1980) Beitrag zur Bestimmung der Zuverlässigheit nichtlinearer Strukturen
unter Berücksichtigung kombinierter Stochastischer Einwirkungen, Doctoral Thesis,
Technical University, Munich.

SEAOC (1995) Vision 2000, Performance based seismic engineering of buildings, Vols. I and
II: Conceptual framework. Sacramento (CA), Structural Engineers Association of
California.

Segal, I.E. (1938) Fiducial distribution of several parameters with applications to a normal
system, Proc. Cambridge Philosophical Society, 34, 41–47.

Sentler, L. (1974) A Live Load Survey in Office Buildings and Hotels, Division of Building
Technology, Lund Institute of Technology, Lund.

Sentler, L. (1975) A Stochastic Model for Live Loads on Floors in Buildings, Report 60,
Division of Building Technology, Lund Institute of Technology, Lund.

Sentler, L. (1976) Live Load Surveys, a Review with Discussions, Report 78, Division of
Building Technology, Lund Institute of Technology, Lund.

Sexsmith, R.G. and Lind, N.C. (1977) Policies for selection of target safety levels, Proc.
Second Int. Conf. on Structural Safety and Reliability, Technical University Munich,
Werner, Düsseldorf, 149–162.

Shao, S.F. and Murotsu, Y. (1991) Reliability evaluation of methods for systems with
complex limit states, Proc. 4th IFIP Conference on Reliability and Optimization of
Structural Systems, Rackwitz, R. and Thoft-Christensen P. (Eds), Springer, Berlin,
325–338.

Shellard, H.C. (1958) Extreme wind speeds over Great Britain and Northern Ireland,
Meteorol. Mag., 87, 257–265.

Sheppard, W.F. (1900) On the calculation of the double integral expressing normal
correlation, Trans. Camb. Phil. Soc., 19, 23–66.

Shinozuka, M. (1983) Basic analysis of structural safety, J. Structural Div., ASCE, 109 (3)
721–740.

Shinozuka, M. (1987) Stochastic fields and their digital simulation, Stochastic Methods in
Structural Dynamics, Schuëller, G.I. and Shinozuka, M. (Eds), Martinus Nijhoff, The
Hague.

Shiraishi, N. and Futura, H. (1989) Evaluation of lifetime risk of structures—recent
advances of structural reliability in Japan, Structural Safety and Reliability, Ang, A. H-S,
Shinozuka, M. and Schuëller, G.I. (Eds), ASCE, New York, 3, 1903–1910.

Shiryaev, A.N., 1996, Probability, Second Edition, Springer, New York.
Shooman, M.L. (1968) Probabilistic Reliability: An Engineering Approach, McGraw-Hill,

New York.
Shreider, Y.A. (Ed) (1966) The Monte Carlo Method, Pergamon Press, Oxford.
Sibley, P.G. and Walker, A.C. (1977) Structural accidents and their causes, Proc. Inst. Civil

Engrs., 62, Part 1, 191–208.
Sichani, M.T., Nielsen, S.R.K. and Bucher, C. (2011a) Applications of asymptotic sampling

on high dimensional structural dynamic problems, Struct. Safety, 33: 305–316.
Sichani, M.T., Nielsen, S.R.K. and Bucher, C. (2011b) Efficient estimation of first passage

probability of high-dimensional nonlinear systems, Prob. Eng. Mech, 26: 539–549.
Sigurdsson, G. Sørensen, J.O. and Thoft-Christensen, P. (1985) Development of Applicable

Methods for Evaluating the Safety of Offshore Structures (Part 1), Report No. 8501,
Institute of Building Technology and Structural Engineering, Aalborg University Centre,
Aalborg, Denmark.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

490 References

Silk, M.G., Stoneham, A.M. and Temple, J.A. (1987) The Reliability of Non-destructive
Inspection, Adam Hilger, Bristol.

Silvestri, S., Gasperini, G., Trombetti, T. and Ceccoli, C. (2008) Statistical analysis towards
the identification of accurate probability distribution model for the compressive strength
of concrete, (in) Proc. 14th World Congress on Earthquake Engineering, 12–17 Oct. 2008,
Beijing, China.

Simiu, E., Bietry, J. and Filliben, J.J. (1978) Sampling errors in estimation of extreme winds,
J. Structural Div., ASCE, 104 (ST3) 491–501.

Simiu, E. and Filliben, J.J. (1980) Weibull distributions and extreme wind speeds,
J. Structural Div., ASCE, 106 (ST12) 491–501.

Simiu, E. and Scanlan, R.U. (1978) Wind Effects on Structures, An Introduction to Wind
Engineering, John Wiley & Sons, New York.

Simões da Silva, L., Rebelo, C., Nethercot, D., Marques, L., Simões, R. and Vila Real, P.M.M.
(2009) Statistical evaluation of the lateral-torsional buckling resistance of steel I-beams,
Part 2: Variability of steel properties, J. Construct. Steel Res. 65 (4) 832–849.

Simpson, R.H. and Riehl, H. (1981) The Hurricane and its Impact, Louisiana State
University Press.

Skov, K. (1976) The Calibration Procedure Applied by the NKB Safety Committee, Bulletin
d’Information No. 112, Comité Européen du Béton, Paris, 108–124.

Slepian, D. (1962) The one-sided barrier problem in Gaussian noise, Bell Syst Tech. J., 41 (2)
463–501.

Sobczyk, K. and Spencer, B. F. (1992) Random Fatigue: From Data to Theory, Academic
Press, New York.

Sokolnikoff, I.S and Redheffer, R. M. (1958) Mathematics of Physics and Modern
Engineering, McGraw-Hill, New York.

Solari, G. (1993) Gust buffeting I. Peak wind velocity and equivalent pressure, J. Struct.
Engrg, ASCE, 119 (2) 365–382.

Song, J., and Der Kiureghian, A. (2003) Bounds on system reliability by Linear
Programming, J. Eng. Mech. 129 (6), 627–636.

Song, J., and Kang, W.-H. (2009) System reliability and sensitivity under statistical
dependence by matrix-based system reliability method, Struct. Safety, 31 (2), 148–156.

Sørensen, J.D. and Enevoldsen, I. (1993) Sensitivity weaknesses in application of some
statistical distributions in First Order Reliability Methods, Structural Safety, 12 (4)
315–325.

Sørensen, J.D. and Faber, M.H. (1991) Optimal inspection and repair strategies for
structural systems, Proc. 4th IFIP Conference on Reliability and Optimization of
Structural Systems, Rackwitz, R. and Thoft-Christensen, P. (Eds), Springer, Berlin,
383–394.

Spall, J.C. (2003) Introduction to Stochastic Search and Optimization, Wiley Interscience,
New York.

Steenbergen, R.D.J.M. and Vrouwenvelder, A.C.W.M. (2010) Safety philosophy for existing
structures and partial factors for traffic loads on bridges, Heron, 55 (2) 123–140.

Stevenson, J. and Moses, F. (1970) Reliability analysis of frame structures, J. Structural Div.,
ASCE, 96 (ST11) 2409–2427.

Stewart, M.G. (1991) Safe load tables: a design aid in the prevention of human error,
Structural Safety, 10, 269–282.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 491

Stewart, M.G. (1995) Workmanship and its influence on probabilistic models of concrete
compressive strength, ACI Materials Journal, 92 (4) 361–372.

Stewart, M.G. (1996a) Optimization of serviceability load combinations for structural steel
beam design, Structural Safety, 18 (2–3) 225–238.

Stewart, M.G. (1996b) Serviceability reliability analysis of reinforced concrete structures,
J. Structural Engineering, ASCE, 122 (7) 794–803.

Stewart, M.G. (1997) Concrete workmanship and its influence on serviceability reliability,
ACI Materials Journal, 94 (6) 1–10.

Stewart, M.G. (1998) Reliability-based bridge design and assessment, Progress in Structural
Engineering and Mechanics, 1 (2) 214–222.

Stewart, M.G. (2001) Effect of construction and service loads on reliability of existing RC
structures, J. Struct. Engrg, ASCE, 127 (10) 1232–1236.

Stewart, M.G. and Melchers, R.E. (1988) Simulation of human error in a design loading
task, Structural Safety, 5 (4) 285–297.

Stewart, M.G. and Melchers, R.E. (1989a) Checking models in structural design,
J. Structural Engineering, ASCE, 116 (ST6) 1309–1324.

Stewart, M.G. and Melchers, R.E. (1989b) Error control in member design, Structural
Safety, 6 (1) 11–24.

Stewart, M.G. and Melchers, R.E. (1997) Probabilistic Risk Assessment of Engineering
Systems, Chapman & Hall, London.

Stewart, M.G. and Rosowsky, D.V. (1998) Time-dependent reliability of deteriorating
reinforced concrete bridge decks, Structural Safety, 20 (1) 91–109.

Stewart, M.G. and Val, D.V. (1998) Effect of proof and prior service loading on bridge
reliability, Proc. Australasian Structural Engineering Conf., Auckland, New Zealand.

Stewart, M.G. and Val, D.V. (2003) Multiple limit states and expected failure costs for
deteriorating reinforced concrete bridges, J. Bridge Engrg. 8 (6) 405–415.

Strauss, A., Bergmeister, K., Hoffmann, S., Pukl, R. and Navak, D. (2008) Advanced
life-cycle analysis of existing concrete bridges, J. Materials in Civil Engrg. 20 (1) 9–19.

Stroud, A.H. (1971) Appropriate Calculation of Multiple Integrals, Prentice-Hall,
Englewood Cliffs.

Tabsh, S.W. and Aswad, A. (1995) Statistical properties of plant-produced high strength
concrete in compression, PCI Journal, 40 (4) 72–76.

Taflanidis, A.A. and Beck, J.L. (2008a) Stochastic subset optimization for optimal reliability
problems, Prob. Eng. Mech. 23 (2–3) 324–338.

Taflanidis, A.A. and Beck, J.L. (2008b) An efficient framework for optimal robust stochastic
system design using stochastic simulation, Computer Methods in Applied Mechanics and
Engineering, 198: 88–101.

Taflanidi, A.A. and Beck, J.L. (2009) Stochastic Subset Optimization for reliability
optimization and sensitivity analysis in system design, Computers & Structures, 87:
318–331.

Tall, L. (Ed) (1964) Structural Steel Design, Ronald Press, New York.
Tall, L. and Alpsten, G.A. (1969) On the scatter of yield strength and residual stresses in

steel members, Symp. on Concepts of Safety of Structures and Methods of Design, Final
Reports, IABSE, London, 151–163.

Tallis, G.M. (1961) The moment generating function of the truncated multi-normal
distribution, J. Royal Statistical Society, Series B, 23, 223–229.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

492 References

Tang, L.K. and Melchers, R.E. (1987a) Improved approximations for multi-normal integral,
Structural Safety, 4, 81–93.

Tang, L.K. and Melchers, R.E. (1987b) Dominant mechanisms in stochastic plastic frames,
Reliability Engineering, 18, (2) 101–116.

Tang, L.K. and Melchers, R.E. (1988) Incremental formulation for structural reliability
analysis, Civil Engg. Systems, 5, 153–158.

Tang, W.H. (1973) Probabilistic updating in reliability analysis, J. Testing and Evaluation,
ASTM, 1(6) 459-467.

Terada, S. and Takahashi, T. (1988) Failure-conditioned reliability index, J. Structural
Engineering, ASCE, 114 (4) 943–952.

Terza, J.V. and Welland, U. (1991) A comparison of bivariate normal algorithms, J. Statist.
Comput. Simul. 39, 115–127.

Thoft-Christensen, P., Jensen, F.M., Middleton, C. and Blackmore, A. (1996) Revised rules
for concrete bridges, International Symposium on the Safety of Bridges, Institution of
Civil Engineers and Highways Agency, London, UK, 4-5 July, 1–12.

Thoft-Christensen, P. and Murotsu, Y. (1986) Application of Structural System Reliability
Theory, Springer, Berlin.

Thoft-Christensen, P. and Sørensen, J.D. (1982) Calculation of Failure Probabilities of
Ductile Structures by the Unzipping Method, Report No. 8208, Institute for Building
Technology and Structural Engineering, Aalborg University Centre, Aalborg, Denmark.

Thoft-Christensen, P. and Sørensen, J.D. (1987) Optimal strategies for inspection and repair
of structural systems, Civil Engineering Systems, 4, 94–100.

Thom, H.C.S. (1968) New distributions of extreme winds in the United States, J. Structural
Div., ASCE, 94 (ST7) 1787–1802.

Tichy. M, (1994) First-order third-moment reliability method, Structural Safety, 16 (4)
189–200.

Tickell, R.G. (1977) Continuous random wave loading on structural members, Structural
Engineer, 55 (5) 209–222.

Tribus, M. (1969) Rational Descriptions, Decisions and Designs (2nd Edn), Macmillan, New
York.

Tu, J., Choi, K.K. and Park, Y.H. (1999) A new study on reliability-based design
optimization, Journal of Mechanical Design, 121 (4) 557–564.

Turkstra, C.J. (1970) Theory of Structural Design Decisions Study No. 2, Solid Mechanics
Division, University of Waterloo, Waterloo, Ontario.

Turkstra, C.J. and Daley, M.J. (1978) Two-moment structural safety analysis, Can. J. Civil
Engg., 5, 414–426.

Turkstra, C.J. and Madsen, H.O. (1980) Load combinations in codified structural design,
J. Structural Div., ASCE, 106 (ST12) 2527–2543.

Tvedt, L. (1985) On the Probability Content of a Parabolic Failure Set in a Space of
Independent Standard Normal Distributed Random Variables, Veritas Report, Det
Norske Veritas, Hovik.

Tvedt, L. (1990) Distribution of quadratic forms in normal space—application to structural
reliability, J. Engineering Mechanics, ASCE, 116 (6) 1183–1197.

Val, D.V. (2004) Effect of different limit states on life-cycle cost of RC structures in corrosive
environments, J. Infrastructure Systems, 11 (4) 231–240.

Val, D.V. (2007) Deterioration of strength of RC beams due to corrosion and its influence
on beam reliability, J. Struct. Engrg., 133 (9) 1297–1306.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 493

Val, D.V. and Melchers, R.E. (1997) Reliability of deteriorating RC slab bridges, J. Structural
Engineering, ASCE, 123 (12) 1638–1644.

Val, D.V., Stewart, M.G. and Melchers, R.E. (1998a) Assessment of existing RC structures:
statistical and reliability issues, Proc. Second International RILEM Conference on the
Rehabilitation of Structures, Melbourne.

Val, D.V., Stewart, M.G. and Melchers, R.E. (1998b) Effect of reinforcement corrosion on
reliability of highway bridges, Engineering Structures , 20 (11) 1010–1019.

Valdebenito, M.A. and Schuëller, G.I. (2011) Efficient strategies for reliability-based
optimization involving non-linear, dynamical structures, Computers & Structures, 89:
1797–1811.

Vanmarcke, E.H. (1973) Matrix formulation of reliability analysis and reliability-based
design, Computers and Structures, 3, 757–770.

Vanmarcke, E.H. (1975) On the distribution of the first-passage time for normal stationary
processes, J. Applied Mech., ASME, 42, 215–220.

Vanmarcke, E.H. (1983) Random Fields, Massachusetts Institute of Technology Press,
Cambridge, MA.

Vanmarcke, E., Shinozuka, M., Nakagiri, S., Schuëller, G.I. and Grigoriu, M. (1986) Random
fields and stochastic finite elements, Structural Safety, 3, 143–166.

Veneziano, D. (1974) Contributions to Second Moment Reliability, Research Report No.
R74-33, Department of Civil Engineering, Cambridge, MA.

Veneziano, D. (1976) Basic Principles and Methods of Structural Safety, Bulletin
d’Information No. 112, Comité Européen du Béton, Paris, 212–288.

Veneziano, D. Casciati, F. and Faravelli, L. (1983) Methods of seismic fragility for
complicated systems, Proc. Second Conf. on the Safety of Nuclear Installations (CSNI),
Specialist meeting on Probabilistic Methods in Seismic Risk Assessment for NPP,
Livermore, California.

Veneziano, D., Galeota, D. and Giammatteo, M.M. (1984) Analysis of bridge proof-load
data I: Model and statistical procedures, Structural Safety, 2, 91–104.

Veneziano, D., Grigoriu, M. and Cornell, C.A. (1977) Vector-process models for system
reliability, J. Engineering Mechanics Div., ASCE, 103, (EM3) 441–460.

Vrouwenvelder, A.C.M. (1983) Monte Carlo Importance Sampling—Application to
Structural Reliability Analysis, TNO-IBBC, Report No. B-83-529/62.6.0402, Rijswijk,
Netherlands.

Vrouwenvelder, A.C.M. (1997) The JCSS probabilistic model code, Structural Safety, 19 (3)
245–251.

Vrouwenvelder, A.C.M. and Waarts, P.H. (1992) Traffic Flow Models, TNO Report No.
B-91-0293, TNO Building and Construction Research, Delft.

Vu, K.A. and Stewart, M.G. (2005) Predicting the likelihood and extent of reinforced
concrete corrosion-induced cracking, Journal of Structural Engineering, ASCE, 131 (11):
1681–1689.

Wadsworth, G.P. and Bryan, J.G. (1974) Applications of Probability and Random Variables
(2nd Edn.), McGraw-Hill, New York.

Walker, A.C. (1981) Study and analysis of the first 120 failure cases, Structural Failures in
Buildings, Institution of Structural Engineers, 15–39.

Wang, W., Corotis, R.B. and Ramirez, M.R. (1995) Limit states of load-path-dependent
structures in basic variable space, J . Engineering Mechanics, ASCE, 121 (2) 299–308.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

494 References

Wang, W., Ramirez, M.R. and Corotis, R.B. (1994) Reliability analysis of rigid-plastic
structures by the static approach, Structural Safety, 15 (3) 209–235.

Wang, Y., Mallahzadeh, M.K., Abu Hussain, M.K., Mohd Zaki, Ni.I. and Hajafian, G. (2013)
Probabilistic modelling of extreme offshore structural response due to random wave
loading, Proc. Offshore Mechanics and Arctic Engineering Conf., Vol. 2B: Structures,
Safety and Reliability, Nantes, France, paper 10905. (ISBN 978-0-7918-5533-1).

Warner, R.F. and Kabaila, A.P. (1968) Monte Carlo study of structural safety, J. Structural
Div., ASCE, 94 (ST12) 2847–2859.

Warr, P.B. (1971) Psychology at Work, Penguin Books, Harmondsworth.
Watwood, V.B. (1979) Mechanism generation for limit analysis of frames, J. Structural Div.,

ASCE, 109 (ST1) 1–15.
Waugh, C. B. (1977) Approximate Models for Stochastic Load Combination, Report No.

R77-1, 562, Department of Civil Engineering, Massachusetts Institute of Technology,
Cambridge, MA.

Weibull, W. (1939) A statistical theory of the strength of materials, Proc. Roy. Swed. Inst.
Engg. Res., 15.

Weigel, R.L. (1964) Oceanographical Engineering, Prentice-Hall, Englewood Cliffs, NJ.
Wen, Y.-K. (1977a) Statistical combination of extreme loads, J. Structural Div., ASCE, 103

(ST5) 1079–1093.
Wen, Y.-K. (1977b) Probability of extreme load combination, J. Structural Div., ASCE, 104

(ST10) 1675–1676.
Wen, Y.-K. (1981) A clustering model for correlated load processes, J. Structural Div.,

ASCE, 107 (ST5) 965–983.
Wen, Y.-K. (1983) Wind direction and structural reliability: I, J. Structural Engineering,

ASCE, 109, 1028–1041.
Wen, Y.-K. (1984) Wind direction and structural reliability: II, J. Structural Engineering,

ASCE, 110, 1253–1264.
Wen, Y.-K. (1990) Structural Load Modeling and Combination for Performance and Safety

Evaluation, Elsevier Science Publishers, Amsterdam.
Wen, Y.-K. and Chen, H.C. (1987) On fast integration for time variant structural reliability,

Prob. Engineering Mechanics, 2 (3) 156–162.
Wen, Y.-K. and Kang Y.J. (2001a) Minimum building life-cycle cost design criteria i:

methodology, Journal of Structural Engineering, ASCE, 127 (3) 330–337.
Wen, Y.-K. and Kang Y.J. (2001b) Minimum building life-cycle cost design criteria II:

Applications, Journal of Structural Engineering, ASCE, 127 (3) 338–346.
Wickham, A. (1985) Reliability analysis techniques for structures with time-dependent

strength parameters, Proc. 4th Int. Conf. on Structural Safety and Reliability, Kobe,
Vol. 3, 543–552.

Winterstein, S. and Bjerager, P. (1987) The use of higher moments in reliability estimation,
Proc. 5th Intl. Conf. Applications Stats. and Probability, Vancouver, 1027–1036.

Wirsching, P. (1998) Fatigue reliability, Progress in Structural Engineering and Materials, 1
(2) 200–206.

Wu, B. (2013) Reliability Analysis of Dynamic Systems, Academic Press, Amsterdam.
Wu, Y.-T., Millwater, H.R. and Cruse, T.A. (1990) Advanced probabilistic structural analysis

method for implicit performance functions, AIAA Journal, 28 (9) 1663–1669.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

References 495

Wu., Y.-T., Shah, C.R. and Deb Baruah, A.K. (2002) Progressive advanced-mean-value
method for CDF and reliability analysis, Int. J. Materials and Product Techn., 17 (5–6)
303–318.

Xiao, Q. and Mahadevan, S. (1994) Fast failure mode identification for ductile structural
system reliability, Structural Safety, 13 (4) 207–226.

Xiaopeng, L., Zhenzhou, L. and Xin, X. (2014) Discussion of paper: “A new efficient
simulation method to approximate the probability of failure and most probable point”:
M. Rashki, M. Miri and M.A. Moghaddam, Structural Safety, 39 (2012) 22–29,
Structural Safety, 46: 13–14.

Yang, J.-N. (1975) Approximation to first passage probability, J. Engineering Mechanics Div.,
ASCE, 101 (EM4) 361–372.

Yang, R.J., Chuang, C., Gu, L. and Li, G. (2005) Experience with approximate reliability
based optimization methods II: an exhaust system problem. Structural and
Multidisciplinary Optimization, 29: 488–497.

Yang, R.J. and Gu, L. (2004) Experience with approximate reliability based optimization
methods, Structural and Multidisciplinary Optimization, 26 (1–2) 152–159.

Yi, P. and Cheng, G.D. (2008) Further study on efficiency of sequential approximate
programming strategy for probabilistic structural design optimization, Structural and
Multidisciplinary Optimization, 35: 509–522.

Yi, P., Cheng, G.D. and Jiang, L. (2008) A Sequential approximate programming strategy for
performance measure based probabilistic structural design optimization, Structural
Safety, 30: 91–109.

Youn, B.D. and Choi, K.K. (2004a) Selecting Probabilistic Approaches for Reliability Based
Design Optimization, AIAA Journal, 124: 131–42.

Youn, B.D. and Choi, K.K. (2004b) An investigation of nonlinearity of reliability-based
design optimization approaches, Journal of Mechanical Design, 126: 403–411.

Youn, B.D., Choi, K.K. and Park, Y.H. (2003) Hybrid analysis method for reliability-based
design optimisation, Journal of Mechanical Design, 125: 221–32.

Yu, L., Das, P.K. and Zheng, Y. (2009) A response surface approach to fatigue reliability of
ship structures, Ships and Offshore Structures, 4(3): 253–259.

Yuan, X. and Lu, Z. (2014) Efficient approach for reliability-based optimization based on
weighted importance sampling approach, Rel. Eng. & System Safety, 132: 107–114.

Yura, J.A., Galambos, T.V. and Ravindra, M.K. (1978) The bending resistance of steel beams,
J. Structural Div., ASCE, 104 (ST9) 1355–1370.

Zang, C., Friswell, M.I. and Mottershead, J.E. (2005) A review of robust optimal design and
its application in dynamics, Comput. & Struct. 83: 315–326.

Zaremba, S.K. (1968) The mathematical basis of Monte-Carlo and quasi-Monte-Carlo
methods, SIAM Rev., 10 (3) 303–314.

Zhang, J. and Ellingwood, B. (1995) Error measure for reliability studies using reduced
variable set, J . Engineering Mechanics, ASCE, 121 (8) 935–937.

Zhang, Y.C. (1993) High-order reliability bounds for series systems and application to
structural systems. Comput. & Struct. 46: 381–386.

Zimmerman, J.J., Corotis, R.B. and Ellis, J.H. (1992) Collapse mechanism identification
using a system-based objective, Structural Safety, 11 (3 & 4) 157–171.

Zio, E. (2011) The Monte Carlo Simulation Method for System Reliability and Risk Analysis,
Springer-Verlag, London.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

1

1

Measures of Structural Reliability

1.1 Introduction

The manner in which an engineering structure will respond to loading depends on
the type and magnitude of the applied load and the structural strength and stiffness.
Whether the response is considered satisfactory depends on the requirements that
must be satisfied. These include safety of the structure against collapse, limitations on
damage, or on deflections or other criteria. Each such requirement may be termed a
limit state. The ‘violation’ of a limit state can then be defined as the attainment of an
undesirable condition for the structure. Some typical limit states are given in Table 1.1.

Table 1.1 Typical limit states for structures.

Limit state type Description Examples

Ultimate (safety) Collapse of all or part of
structure

Tipping or sliding, rupture, progressive
collapse, plastic mechanism, instability,
corrosion, fatigue, deterioration, fire.

Damage (often
included in above)

Excessive or premature cracking, deformation
or permanent inelastic deformation.

Serviceability Disruption of normal use Excessive deflections, vibrations, local
damage, etc.

From observation it is known that very few structures collapse, or require major
repairs, etc., so that the violation of the most serious limit states is a relatively rare
occurrence. When violation of a limit state does occur, the consequences may be
extreme, as exemplified by the spectacular collapses of structures such as the Tay
Bridge (wind loading), Ronan Point Flats (gas explosion), Kielland Offshore Platform
(local strength problems), Kobe earthquake (ductility), etc.

The study of structural reliability is concerned with the calculation and prediction of
the probability of limit state violation for an engineered structural system at any stage
during its life. In particular, the study of structural safety is concerned with the viola-
tion of the ultimate or safety limit states for the structure. More generally, the study of
structural reliability is concerned with the violation of performance measures (of which
ultimate or safety limit states are a subset). This broader definition allows the scope
of application to move from structural criteria as specified in traditional design codes

Structural Reliability Analysis and Prediction, Third Edition. Robert E. Melchers and André T. Beck.
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2 Structural Reliability Analysis and Prediction

(Chapter 9) to broader-based performance requirements for structures, such as might
be used in design optimization processes (Chapter 11).

In the simplest case, the probability of occurrence of an event such as limit state vio-
lation is a numerical measure of the chance of its occurrence. This measure either may
be obtained from measurements of the long-term frequency of occurrence of the event
for generally similar structures, or it may be simply a subjective estimate of the numer-
ical value. In practice it is seldom possible to observe for a sufficiently long period of
time, and a combination of subjective estimates and frequency observations for struc-
tural components and properties may be used to predict the probability of limit state
violation for the structure.

In probabilistic assessments any uncertainty about a variable (expressed, as will be
seen, in terms of its probability density function) is taken into account explicitly. This is
not the case in traditional ways of measuring safety, such as the ‘factor of safety’ or ‘load
factor’. These are ‘deterministic’ measures, since the variables describing the structure,
its strength and the applied loads are assumed to take on known (if conservative) values
about which there is assumed to be no uncertainty. Precisely because of their traditional
and really quite central position in structural engineering, it is appropriate to review the
deterministic safety measures prior to developing probabilistic safety measures.

1.2 Deterministic Measures of Limit State Violation

1.2.1 Factor of Safety

The traditional method to define structural safety is through a ‘factor of safety’, usually
associated with elastic stress analysis and which requires that:

𝜎i(𝜀) ≤ 𝜎p i (1.1)

where 𝜎i(𝜀) is the i th applied stress component calculated to act at the generic point 𝜀
in the structure, and 𝜎pi is the permissible stress for the i th stress component.

The permissible stresses 𝜎pi are usually defined in structural design codes. They are
derived from material strengths (ultimate moment, yield point moment, squash load,
etc.), expressed in stress terms 𝜎ui but reduced through a factor F :

𝜎pi = 𝜎ui∕F (1.2)

where F is the ‘factor of safety’. The factor F may be selected on the basis of exper-
imental observations, previous practical experience, economic and, perhaps, political
considerations. Usually, its selection is the responsibility of a code committee.

According to (1.1), failure of the structure should occur when any stressed part of
it reaches the local permissible stress. Whether failure actually does occur depends
entirely on how well 𝜎i(𝜀) represents the actual stress in the real structure at 𝜀 and how
well 𝜎pi represents actual material failure. It is well known that observed stresses do
not always correspond well to the stresses calculated by linear elastic structural analysis
(as commonly used in design). Stress redistribution, stress concentration and changes
due to boundary effects and the physical size effect of members all contribute to the
discrepancies.
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Measures of Structural Reliability 3

Similarly, the permissible stresses that, commonly, are associated with linear elastic
stress analysis are not infrequently obtained by linear scaling down, from well beyond
the linear region, of the ultimate strengths obtained from tests. From the point of view of
structural safety, this does not matter very much, provided that the designer recognizes
that his calculations may well be quite fictitious and provided that (1.1) is a conservative
safety measure.

By combining expressions (1.1) and (1.2) the condition of ‘limit state violation’ can be
written as

𝜎ui(𝜀)
F

≤ 𝜎i(𝜀) or
𝜎ui(𝜀)

F

/
𝜎i(𝜀) ≤ 1 (1.3)

Expressions (1.3) are ‘limit state equations’ when the inequality sign is replaced by an
equality. These equations can be given also in terms of stress resultants, obtained by
appropriate integration:

Ri(𝜀)
F

≤ Si(𝜀) or
Ri(𝜀)

F

/
Si(𝜀) ≤ 1 for all i (1.4)

where Ri is the i th resistance at location 𝜀 and Si is the i th stress resultant (internal
action). In general, the stress resultant Si are made up of the effects of one or more
applied loads Qj; typically

Si = SiD + SiL + SiW

where D is the dead load, L is the live load and W is the wind load.
The term ‘safety factor’ also has been used in another sense, namely in relation to

overturning, sliding, etc., of structures as a whole, or as in geomechanics (dam failure,
embankment slip, etc.). In this application, expressions (1.3) are still valid provided that
the stresses 𝜎ui and 𝜎i are interpreted appropriately.

1.2.2 Load Factor

The ‘load factor’𝜆 is a special kind of safety factor developed for use originally in the plas-
tic theory of structures. It is the theoretical factor by which a set of loads acting on the
structure must be multiplied, just enough to cause the structure to collapse. Commonly,
the loads are taken as those acting on the structure during service load conditions. The
strength of the structure is determined from the idealized plastic material strength prop-
erties for structural members [Heyman, 1971].

For a given collapse mode (i.e. for a given ultimate ‘limit state’), the structure is con-
sidered to have ‘failed’ or collapsed when the plastic resistances Rpi are related to the
factored loads 𝜆Qj by

WR(RR) ≤ WQ(𝜆Q) (1.5)

where RP is the vector of all plastic resistances (e.g. plastic moments) and Q is the vector
of all applied loads. Also, W R( ) is the internal work function and W Q( ) the external work
function, both described by the plastic collapse mode being considered.

If proportional loading is assumed, as is usual, the load factor can be taken out of
parentheses. Also the loads Qj usually consist of several components, such as dead, live,
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4 Structural Reliability Analysis and Prediction

wind, etc. Thus (1.5) may be written in the form of a limit state equation:

WR(Rpi)
𝜆WQ(QD + QL +…)

= 1

with ‘failure’ denoted by the left-hand side being less than unity.
Clearly there is much similarity in formulation between the factor of safety and the

load factor as measures of structural safety. What is different is the reference level
at which the two measures operate: the first at the level of working loads and at the
‘member’ level; the second at the level of collapse loads and at the ‘structure level’.

1.2.3 Partial Factor (‘Limit State Design’)

A development of the above two measures of safety is the so-called ‘partial factor’
approach. For limit state i it can be expressed at the level of stress resultants (i.e. member
design level) as

𝜙iRi ≤ 𝛾DiSDi + 𝛾LiSLi +… (1.6)

where R is the member resistance, 𝜙 is the partial factor on R and SD, SL are the dead
and live load effects respectively with associated partial factors 𝛾D, 𝛾L. Expression (1.6)
was originally developed during the 1960s for reinforced concrete codes. It enabled
the live and wind loads to have greater ‘partial’ factors than the dead load, in view of
the former’s greater uncertainty, and it allowed a measure of workmanship variability
and uncertainty about resistance modelling to be associated with the resistance R
[MacGregor, 1976]. This extension of earlier safety formats had considerable appeal
since it allowed better representation of the factors and uncertainties associated with
loadings and resistances.

For a plastic collapse analysis at the structure level, formulation (1.6) becomes

WR(𝜙R) ≤ WQ(𝛾DQD + 𝛾LQL +…)

where R and Q are vectors of resistance and loads respectively. Clearly the partial factors
(𝜙, 𝛾) in this expression will be different from those of expression (1.6).

Example 1.1 The simple portal frame of Figure 1.1(a) is subject to loads Q1 and Q2. If
the relative moments of inertia of the members are known, the elastic bending moment
diagram can be found as in Fig 1.1(b). The ‘limit states’ for bending capacity are then

section 2: 𝜙MC2 = 𝛾1
3l
16

Q1 + 𝛾2
3l
16

Q2

sections 1 and 3: 𝜙MC1,3 = 𝛾1
l

16
Q1 + 𝛾2

l
16

Q2

where 𝜙, 𝛾1 and 𝛾2 are partial factors described by a structural design code. The MCi are
the ultimate moment capacities required at sections i(i = 1, 2, 3) for the structure to be
considered ‘just safe’.

If the frame is to be designed or analysed assuming rigid-plastic theory, the relative
distribution of the plastic moments Mpi around the frame must be known or assumed.
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Q1, Q2

1
2

3(a)

(b)

(c)

I values

known

elastic BMD

plastic BMD

all Mp equal

(Q1, Q2)
16

l

(Q1, Q2)
3l

16

(Q1, Q2)
l

8
(Q1, Q2)

l

8

(Q1, Q2)
l

8

(Q1, Q2)l
16

Figure 1.1 Bending moment diagrams for Example 1.1.

If they all are equal, the plastic bending moment diagram of [Figure 1.1(c) is obtained
and only one limit state equation is needed for sections 1–3:]

𝜙pMpi = 𝛾p1
l
8

Q1 + 𝛾p2
l
8

Q2

where now Mpi is the required plastic moment capacity at sections 1, 2 and 3 and
where 𝜙p, 𝛾p1 and 𝛾p2 are now code-prescribed partial factors for plastic structural
systems.

1.2.4 A Deficiency in Some Safety Measures: Lack of Invariance

From Example 1.1, it will be evident that the partial factors 𝜙 and 𝛾i(i = 1,…) in (1.6)
depend on the limit state being considered. Hence they depend on the definitions of
R, SD and SL. However, even for a given limit state, these definitions are not necessarily
unique, and therefore the partial factors may not be unique either. This phenomenon is
termed the ‘lack of invariance’ of the safety measure. It arises because there are different
ways in which the relationships between resistances and loads may be defined. Some
examples of this are given below. Ideally, the safety measure should not depend on the
way in which the loads and resistances are defined.

Example 1.2 The structure shown in Figure 1.2 is supported on two columns. The
capacity of column B is R = 24 in compression. The safety of the structure can be mea-
sured in three different ways using the traditional ‘factor of safety’ F :
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6 Structural Reliability Analysis and Prediction

Column capacity R = 24

(compression)

BA

V1 V2

H = 10

W = 4

h = 10

d = 10

Figure 1.2 Example 1.2: Structure subject to overturning under lateral load H and with vertical load W
and supported by two columns applying vertical forces V1 and V2.

(a) Overturning resistance about A

F1 =
resisting moment about A

overturning moment about A
= dR

Hh + Wd∕2
= 10 × 24

10 × 10 + 4 × 5
= 2.0

(b) Capacity of column B

F2 =
compression resistance of column B

compressive load on column B
= R

Hh∕d + W∕2
= 2.0

(c) Net capacity of column B (resistance minus load effect of W)

F3 =
net compression resistance of column B

net compressive load on column B
=

R − W∕2
Hh∕d

= 2.2

All three of these factors of safety Fi(i = 1, 2, 3) for column B apply to the same struc-
ture and the same loading, so that the difference in the values of Fi is due entirely what
is considered to represent the resistance of the structure and what is considered to be
the applied load. In general such a difference in outcomes is not helpful for the unique
definition of a factor of safety. However, for some special cases of the partial factors
the outcomes can be made the same. Thus it is easily verified that the calculations give
the identical result F1 = F2 = F3 = 1.0 if a partial safety factor 𝜙 = 1

2
is applied to the

resistance R, thus:

F1 = d𝜙R
Hh + Wd∕2

, F2 = 𝜙R
Hh∕d + W∕2

F3 =
𝜙R − W∕2

Hh∕d

Similarly, the result F1 = F2 = F3 = 1.0 would be achieved if the loads H and W were
factored by 𝛾 = 2. More generally, any choice of combination of 𝜙 and 𝛾 could be
appropriate, provided that Fi = 1. This can be expressed as:

F1 = d𝜙R
𝛾(Hh + Wd∕2)

, F2 = 𝜙R
𝛾(Hh∕d + W∕2)

, F3 =
𝜙R − 𝛾W∕2

𝛾Hh∕d
with F1 = F2 = F3 = 1
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Measures of Structural Reliability 7

A different way of defining a measure of safety is the ‘safety margin’. It measures the
excess of resistance compared with the stress resultant (or loading); thus:

Z = R − S (1.7)

For the present example, the safety margins are

Z1 = dR − (Hh + Wd∕2) (1.7a)
Z2 = R − (Hh∕d + W∕2) (1.7b)

and

Z3 = R − W∕2 − Hh∕d (1.7c)

It is readily verified that when Z = 0, i.e. at the point of failure, these three expressions
are equivalent. This shows that the safety margin concept of safety is ‘invariant’ with
respect to the limit state functions (1.7a–c).

Example 1.3 [adapted from Ditlevsen, 1973] The reinforced concrete beam shown
in Figure 1.3(a) has a moment capacity R when it is subject to an axial force N and a
moment M applied at the beam centroid 𝜉 = 0. Both N and M are composed of the
effects of a dead load and a live load: N = ND + NL and M = MD + ML. The moment
capacity calculated about 𝜉 = a is R1 = R + aN, from simple statics. (Note that the actual
moment capacity of the beam is not changed!) Also, at 𝜉 = a, the applied moment is
given by M1 = M + aN. The state ‘just safe’ can now be defined for given moment capac-
ity R, and given axial force N , by the factor of safety as:

F0 = R
M

at 𝜉 = 0 (1.8a)

F1 =
R1

M1
= R + aN

M + aN
at 𝜉 = a (1.8b)

In this format F1 = F0 is true only when 𝜉 = a = 0. This means that the factor of safety
depends on the convention chosen for the origin of the applied actions and of the resis-
tance. If, as in Example 1.2, R is replaced by the factored term 𝜙R, such that F0 = 1, then
it follows readily that F1 is also unity. Hence, provided that ‘partial factor’ 𝜙 is chosen in
such a way that the ‘factor of safety’ F is unity, the origin chosen to define R, N and M is
immaterial. A similar result holds if N and M are replaced by 𝛾 N and 𝛾 M, where 𝛾 is
an appropriately chosen partial factor on the loading.

R M
N

a ξ
N

R1 = R + aN

M1 = M + aN

(a) (b)

Figure 1.3 Reinforced concrete beam: Example 1.3.
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The state ‘just safe’ can be written also in the partial factor format of (1.6). Indeed,
noting that M = MD + ML and N = ND + NL, at 𝜉 = 0 it follows that

𝜙R = 𝛾DMD + 𝛾LML (1.9a)

and at 𝜉 = a, treating, as before, R1 = R + aN as the resistance to bending,

𝜙(R + aND + aNL) = 𝛾D(MD + aND) + 𝛾L(ML + aNL) (1.9b)

Subtracting (1.9a) from (1.9b) and dividing out by a leaves

(𝜙 − 𝛾D)ND + (𝜙 − 𝛾L)NL = 0 (1.10)

Since in general ND, NL > 0, it follows that (1.10) will be satisfied only if either
𝛾D ≤ 𝜙 ≤ 𝛾L or 𝛾L ≤ 𝜙 ≤ 𝛾D. Except for 𝜙 = 𝛾D = 𝛾L = 1 these expressions are both
inconsistent with the conventional interpretation that 𝜙 ≤ 1 (to reduce the calculated
resistance) and 𝛾D, 𝛾L ≥ 1 (to increase the loads or applied stresses).

The reason for this result should be clear. In (1.9b) the term (aND + aNL) on the
left-hand side was treated as a resistance, per se, whereas it is strictly a resistance effect
caused directly by the applied loading (note that it is not affected by workmanship,
material strength, etc., as is R). The key to an invariant safety measure is thus at hand.
Partial factors such as 𝜙 should be applied directly to resistances only, and partial
factors such as 𝛾 to loads only, and the direct application of (1.6) to a mixed variable
R1 = R + aN is not correct.

It is important to note that the safety margin Z (Equation 1.7) is invariant for both
definitions of resistance in this example. In the first case Z0 = R − M, while in the second
case Z1 = (R + aN) − (M + aN) = R − M.

1.2.5 Invariant Safety Measures

As can be seen from the above examples, one form of invariant safety measure is
obtained if the resistances Ri and the loads Qj acting on the structure are so factored
that the ratio between any relevant pair 𝜙iRi and 𝛾 jQj is unity at the point of limit state
violation. In simple terms, this requires that all variables be reduced to a common
base before being compared. This is the case for the permissible stress measure of
structural safety expressed by equation (1.3). Another and important form of invariant
safety measure is the safety margin Z = R − S defined in equation (1.7). It will be used
extensively in the sections to follow because of its invariant properties.

Some readers may recognize a parallel between the above discussion and the decision
criteria in cost-benefit analysis. The safety margin corresponds to the ‘net present value’
criterion and the problem of safety factor invariance to the ‘numerator-denominator’
problem [e.g. Prest and Turvey, 1965].

1.3 A Partial Probabilistic Safety Measure of Limit State
Violation—The Return Period

In the historical development of engineering design, loads due to natural phenomena
such as winds, waves, storms, floods, earthquakes, etc. were recognized quite early as
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having randomness in time as well as in space. The randomness in time was considered
in terms of the ‘return period’. The return period is defined as the average (or expected)
time between two successive statistically independent events. Of course, the actual time
T between events is a random variable.

In most practical applications an ‘event’ constitutes the exceedance of a certain
threshold, for example as associated with loading (e.g. wind velocity > 100 m∕s). Such
an event may be used to define a ‘design load’ and the design of the structure itself is
then usually considered deterministically, i.e. using conventional design procedures.
Hence this approach is only a partially probabilistic method.

The return period may be defined as follows. For independent samples from a
population (i.e. for a Bernoulli trial sequence), the trial T on which the first occurrence
of an event takes place is given by the geometric distribution (A.23), which states that
the probability that the first occurrence occurs on the t th trial is:

P(T = t) = p (1 − p)t−1 t = 1, 2,… (1.11)

where p is the probability of occurrence of the event (e.g. X > x) in any one trial and
1 − p is the probability that the event does not occur. If trials are now interpreted as
time intervals, during each of which only the occurrence of events X > x is recorded,
the first occurrence of an event becomes the ‘first occurrence time’, given by expression
(1.11). The ‘mean recurrence time’ or the ‘return period’ is then the expected value of
T (see A. 10):

E(T) = T =
∞∑

t=1
tp(1 − p)t−1 = p[1 + 2(1 − p) + 3(1 − p)2 +…]

=
p

[1 − (1 − p)]2 for (1 − p) < 1.0

= 1
p

or = [1 − Fx(x)]−1 (1.12)

where FX(x) = P(X ≤ x) is the cumulative distribution function of X.
Thus the return period T is equal to the reciprocal of the probability of the occurrence

of the event in any one (or a single) time interval. For most engineering problems, the
chosen time interval is one year, so that p is the probability of occurrence of the event
X > x in any one year (e.g. the probability that a load> x will occur (at least once) during
the year). Then T is the number of years, on average, between events.

Because the exceedance events that occur during a time period (e.g. during a year)
are associated with the end of that period, T is dependent on the time period chosen
[Borgman, 1963]. This is illustrated in Figure 1.4, where four exceedance events, A, B, C
and D are shown occurring after an arbitrary initial event 0. The mean recurrence time
T1 for the actual observations is shown in Figure 1.4(a) and is given by the average of
the distance (i.e. time) between the events, i.e. by T1 ≈ 1.5 years.

In Figure 1.4(b) with the time period taken as 1 year, and the events counted at the
end of each time period, it follows easily that T2 = 7∕4 = 1.75 years. Similarly, for
T3 = 2 years. However, when a 4-year time period is used (Figure 1.4(d)) two of the
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T1 time

years

T2 > T1 time
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T3 > T2 time

(2 years)

T4 > T3 time

(4 years)

Figure 1.4 Idealizations of actual load phenomenon for the ‘return period’ concept.

events in each period are counted as one at the end of the period, and T4 in this case
becomes 4 years.

This somewhat artificial example shows three things. Firstly, that the return period
depends, as noted, on the definition of the time scale, and secondly that the possible
occurrence of more than one event within a time period is ignored. This means that,
where event occurrence is relatively frequent compared with the time period employed,
the return period measure is not accurate.

The third and a most important point is that the probability distribution of the
magnitude of X (i.e. the phenomenon being considered) is not considered. Only
magnitudes X > x are counted. This means that the return period is a probabilistic
measure in terms of time only, but not in terms of the magnitude of the loading and its
interaction with the resistance.

It should be clear that in practice the events may not be independent, as postulated,
particularly if the events occur rather frequently. Fortunately, the return period concept
is used mainly for rather rare events (i.e. the level X is quite high), and it is then
reasonable to assume event independence. Time scale dependence is then also not a
significant issue. Chapter 6 gives a much more detailed discussion.

Example 1.4 For a structure subject to a ‘50-year wind’ of 60 km/h velocity:

(a) the return period for a 60-km/h wind = T = 50 years
(b) the probability of exceeding 60 km/h in any one year is

p = 1∕T = 1∕50 = 2%;

(c) the probability of exceeding the design wind velocity (i.e. V > 60) for the first time
during the fourth year, is (geometric distribution A.23):

PT (T = 4) = (0.02)(0.98)3 = 0.01882
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(d) the probability of exceeding the design wind velocity in only one of the years in a
4-year period is given by the binomial distribution (A.17):

PX(x = 1) =
(

4
1

)
(0.02)(0.98)3 = 4 × 3 × 2 × 1

1(3 × 2 × 1)
(0.02)(0.98)3 = 0.0753

(e) the probability of exceeding the design wind velocity (i.e. V > 60) during any of the
years in a 4 year period is given by the geometric distribution (A.23):

PT (T ≤ 4) =
4∑

t=1
PT (T = t) =

4∑
t=1

(0.02)(0.98)t−1

= 0.02 + 0.0196 + 0.01921 + 0.01883
= 0.0776

or alternatively,

PT (T ≤ 4) = 1 − [P(V < 60)]4 = 1 − (1 − 0.02)4 = 0.0776

Note that the period 4 years can be generalized to ‘design life’ tL and the question
rephrased to ‘the probability of exceeding the design velocity within the design life’:

PT (T ≤ tL) =
tL∑

t=1
PT (T = t) or = 1 − (1 − p)tL (1.13)

Some typical values for the relationship between the exceedance probability
PT (T ≤ tL) the return period T = 1∕p and the design life tL are given in Table 1.2
[Borgman, 1963].

(f ) the probability of exceeding the design wind velocity within the return period is

PT (T ≤ T) = 1 − [P(V < 60)]T

but P(V < 60) = 1 − P(V ≥ 60) = 1 − p where p = 1∕T . Hence

PT (T ≤ T) = 1 − (1 − p)T

= 1 −

(
1 − Tp + T(T − 1)

2!
p2 −…

)
≈ 1 − exp(−Tp) for large T (i.e. small p)
≈ 1 − exp(−1) = 1 − 0.3679 = 0.6321

Note that even for smaller T , this result is a good approximation; thus, for T = 5,

PT (T ≤ 5) = 1 −
(

1 − 1
5

)5
= 0.6723

This shows that there is a chance of about 2 in 3 that the exceedance event will occur
within a design life equal to the return period.
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Table 1.2 Return period T as function of design life tL and exceedance probability PT (T ≤ tL).

Return period T for the following exceedance probabilities (see 1.13)

Design life tL 0.02 0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.70

1 50 20 10 7 5 3 3 2 1
2 99 39 19 13 9 6 4 3 2
3 149 59 29 29 14 9 6 5 3
4 198 78 38 25 18 12 8 6 4
5 248 98 48 31 23 15 10 8 5
6 297 117 57 37 27 17 12 9 6
7 347 137 67 44 32 20 14 11 6
8 396 156 76 50 36 23 16 12 7
9 446 176 86 56 41 26 18 13 8
10 495 195 95 62 45 29 20 15 9
12 594 234 114 74 54 34 24 18 10
14 693 273 133 87 63 40 28 21 12
16 792 312 152 99 72 45 32 24 14
18 892 351 171 111 81 51 36 26 15
20 990 390 190 124 90 57 40 29 17
25 1238 488 238 154 113 71 49 37 21
30 1485 585 285 185 135 85 59 44 25
35 1733 683 333 216 157 99 69 51 30
40 1981 780 380 247 180 113 79 58 34
45 2228 878 428 277 202 127 89 65 38
50 2475 975 475 308 225 141 98 73 42

1.4 Probabilistic Measure of Limit State Violation

1.4.1 Introduction

The return period concept considers only the probability that a loading exceeds a set
limit and assumes such exceedances (or ‘level crossings’ – see Chapter 6) to be randomly
distributed in time. This is a useful improvement over deterministic descriptions of
loading but ignores the fact that, even at a given point in time, the actual value of the
loading is uncertain. This is illustrated in Figure 1.5 for floor loading.

The histogram of Figure 1.5 shows, for example, that the probability that the floor
loading lies between 0.6 and 0.7 kPa is about 7%. Such information is obtained from
actual surveys of floor loads (see Chapter 7), and can be represented by the probability
density function f Q(q). (Recall that f Q( ) denotes the probability that the load Q will take
on a value between q and q + Δq as Δq → 0 - see also Section A.3.) The load Q can
be converted to a load effect S by conventional structural analysis procedures. Using
the same transformation(s), the probability density function f S( ) can be obtained also,
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No. obs  = 625

Max. val.  = 2.22 kN/m2

Mean  = 0.44 kN/m2

Min. val.   = 0 kN/m2

Std. dev.   = 0.27 kN/m2
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Figure 1.5 Histogram of private office live loads [after Culver, 1976].

if necessary, using methods such as outlined in Section A.10. However, details of this
need not be of concern for the present.

Resistance, geometric and workmanship variables and many others may be described
similarly in probabilistic terms. For example, a typical resistance histogram and the
inferred probability distribution for the yield strength of steel are shown in Figure 1.6.
Naturally, material strengths such as steel yield strength can be converted to member
resistance R by multiplying by section properties (such as A, the cross-sectional area).
Then it is possible to determine a probability density function f R( ).

In general, the loads applied to a structure fluctuate with time and are of uncertain
value at any one point in time. This is carried over directly to the load effects (or internal
actions) S. Somewhat similarly the structural resistance R will be a function of time
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Figure 1.6 Histogram and inferred distribution for structural steel yield strength [adapted from
Alpsten, 1972 with permission of ASCE].

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

14 Structural Reliability Analysis and Prediction

fS (s | t = ta)
fS (s | t = tb)

fR (r | t = ta) fR (r | t = tb)

0
ta tt

L
tbTypical Load Effect

Trace S(t)

S(t)

R, S

Figure 1.7 Schematic time-dependent reliability problem.

(but not usually a fluctuating one) owing to fatigue, deterioration and similar actions.
Loads have a tendency to increase, and resistances to decrease, with time. It is likely also
that the uncertainty in both quantities increases with time, particularly if they have to
be predicted. This means that the probability density functions f S( ) and f R( ) become
wider and flatter with time and that the mean values of S and R also change with time.
As a result, the general reliability problem can be represented as in Figure 1.7.

The safety limit state will be violated whenever, at any time t,

R(t) − S(t) < 0 or R(t)
S(t)

< 1 (1.14)

The probability that this occurs for any one (single) load application (or load cycle) is
the probability of limit state violation, or simply the probability of failure pf . Roughly, it
may be represented by, but is not actually equal to, the amount of overlap of the prob-
ability density functions f R and f S in Figure 1.7. Since this overlap may vary with time,
pf also may be a function of time.

To make the problem more tractable, it is convenient for many situations to assume
that Q and R are ‘time-invariant’, that is they are not functions of time. An example of
this is the case when the load Q is applied to the structure only once and the probability
of limit state violation is sought for that particular load application only.

However, if the load is applied many times (e.g. a single time-varying load might be
considered this way) and R is taken as constant, then the maximum value of that load
(within a given time interval [0, T]) is of interest if it is assumed that the structure will fail
under the (once-only) application of this maximum load. One way to properly represent
this maximum load is through the use of an extreme value distribution, such as the Gum-
bel (EV-I) or Frechet (EV-II) distributions (see Appendix A). If this is done, the effect of
time may be ignored in the reliability calculations. This approach is not satisfactory when
more than one load is involved or when the resistance changes with time. Discussion of
these matters and the more general reliability problem is deferred to Chapter 6.

1.4.2 The Basic Reliability Problem

The basic structural reliability problem considers only one load effect S resisted by
one resistance R. Each is described by a known probability density function, f S( ) and@Seismicisolation@Seismicisolation
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f R( ) respectively. As noted, S may be obtained from the applied loading Q through a
structural analysis (either deterministic or with random components). It is important
that R and S be expressed in the same units.

For convenience, but without loss of generality, only the safety of a structural element
will be considered here and, as usual, that structural element will be considered to have
failed if its resistance R is less than the stress resultant S acting on it. The probability pf
of failure of the structural element can then be stated in any of the following ways:

pf = P(R ≤ S) (1.15a)
= P(R − S ≤ 0) (1.15b)

= P
(R

S
≤ 1

)
(1.15c)

= P(ln R − ln S ≤ 1) (1.15d)

or in general

= P[G(R, S) ≤ 0] (1.15e)

where G( ) is termed the ‘limit state function’ and the probability of failure is identical
with the probability of limit state violation. Equations (1.15) could, of course, also have
been written in terms of R and Q for the structure as a whole.

Quite general (marginal) density functions f R and f S for R and S respectively are
shown in Figure 1.8 together with the joint (bivariate) density function f RS(r, s) (see also
Section A.6). For any infinitesimal element (Δr Δs), the latter represents the probability
that R takes on a value between r and r + Δr and S a value between s and s + Δs as
Δr and Δs each approach zero. In Figure 1.8, Equations (1.15) are represented by the
hatched failure domain D, so that the failure probability may be written as:

pf = P(R − S ≤ 0) = ∫D∫ fRS(r, s) dr ds (1.16)

fSR(sr) fR(r)

fRS( )

fS(s)

r

μR

μS

s

0

G = 0

G < 0 : Failure

domain D

G > 0 : Safe

domain

Figure 1.8 Space of the two random variable (r, s) and the joint density function fRS(r, s), the marginal
density functions fR and fS and the failure domain D.
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When R and S are independent, fRS(r, s) = fR(r) fS(s) (see A.6.3), and (1.16) becomes:

pf = P(R − S ≤ 0) = ∫
∞

−∞ ∫
S≥r

−∞ fR(r) fS(s)dr ds (1.17)

Noting that for any random variable X, the cumulative distribution function is given
by (A.8):

FX(x) = P(X ≤ x) = ∫
x

−∞ fX(y)dy

provided x ≥ y, it follows that for the common, but special, case when R and S are inde-
pendent, (1.17) can be written in the single integral form:

pf = P(R − S ≤ 0) = ∫
∞

−∞ FR(x)fS(x)dx (1.18)

This is also known as a ‘convolution integral’ with meaning easily explained by reference
to Figure 1.9. FR(x) is the probability that R ≤ x or the probability that the actual resis-
tance R of the member is less than some value x. This represents failure if the loading
is ≥ x. The probability that this is the case is given by the term f S(x) that represents the
probability that the load effect S acting in the member has a value between x and x + Δx
in the limit as Δx → 0. By considering all possible values of x, i.e. by taking the integral
over all x, the total failure probability is obtained. This is also seen in Figure 1.10 where
the (marginal) density functions f R and f S have been drawn along the same axis.

Through integration of f R( ) in (1.17), the order of integration was reduced by one. This
is convenient and useful, but not general. It was only possible because R was assumed
independent of S. In general, dependence between variables should be considered. This
more complex situation is discussed further is Section 1.5 and Chapters 3 and 4.

For the present, restricting attention to simpler formulations, an alternative to
expression (1.18) is:

pf = ∫
∞

−∞ [1 − FS(x)] fR(x)dx (1.19)

This can be seen to be simply the ‘sum’ of the failure probabilities over all the cases of
resistance for which the load exceeds the resistance.

FR (x),  fS (x)

fS (x) = lim P (x ≤ S ≤ x + Δx)

P (R ≤ x) R = x
x + Δx

(Δx→0)

x

1.0

0

FR (x)

fS (x)

Figure 1.9 Basic R − S problem: FR( )fS( ) representation.
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fR(x),fS(x)

FR(x) fS(x)

Load effect - S
e.g. bending moment

Resistance - R
e.g. flexural capacity

x

x
x + Δxx

Failure

density
Area =∫FR(x) fS(x)dx

∞

–∞

Figure 1.10 Basic R − S problem: fR( ) fS( ) representation.

The lower limit of integration shown in Expressions (1.17) to (1.19) may not be totally
satisfactory, since a ‘negative’ resistance usually is physically not possible. The lower
integration limit therefore strictly should be zero, although this may be inconvenient
and slightly inaccurate if R or S or both are modelled by distributions unlimited in the
lower tail (such as the Normal or Gaussian distribution). The inaccuracy arises strictly
from the modelling of R and/or S, and not from the theory involved with (1.17) to
(1.19). This important point is sometimes overlooked in discussions about appropriate
distributions to represent random variables.

1.4.3 Special Case: Normal Random Variables

For a few distributions of R and S it is possible to integrate the convolution integral
(1.18) analytically. The most notable example is when both R and S are normal ran-
dom variables with means 𝜇R and 𝜇S and variances 𝜎2

R and 𝜎2
S respectively. The safety

margin Z = R − S then has a mean and variance given by well-known rules for addition
(subtraction) of normal random variables:

𝜇Z = 𝜇R − 𝜇S (1.20a)
𝜎2

Z = 𝜎2
R + 𝜎2

S (1.20b)

Equation (1.15b) then becomes

pf = P(R − S ≤ 0) = P(Z ≤ 0) = Φ
(0 − 𝜇Z

𝜎Z

)
(1.21)

where Φ( ) is the standard normal distribution function (zero mean and unit variance)
extensively tabulated in statistics texts (see also Appendix D). The random variable
Z = R − S is shown in Figure 1.11, in which the failure region Z ≤ 0 is shown shaded.
Using (1.20) and (1.21) it follows that [Cornell, 1969a]

pf = Φ

[
−(𝜇R − 𝜇S)
(𝜎2

S + 𝜎2
R)1∕2

]
= Φ(−𝛽) (1.22)

where 𝛽 = 𝜇Z∕𝜎Z is defined as the ‘safety index’ (1.21).

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

18 Structural Reliability Analysis and Prediction

fZ (z)

Z < 0 Z > 0

Failure   Safety

Pf

Z0 μz

σz σz

βσz

Figure 1.11 Distribution of safety margin Z = R − S.

If either of the standard deviations 𝜎S or 𝜎R or both is increased, the term in square
brackets in (1.22), will become smaller and hence pf will increase, as might be expected.
Similarly if the difference between the mean of the load effect and the mean of the
resistance is reduced, pf increases. These observations may be deduced also from
Figure 1.7, taking the amount of overlap of f R( ) and f S( ) as a rough indicator of pf at
any point in time.

Example 1.5 A simply supported timber beam of length 5 m is loaded with a central
load Q having mean 𝜇Q = 3 kN and variance 𝜎2

Q = 1 (kN)2. The bending strength of
similar beams has been found to have a mean strength 𝜇R = 10 kNm with a coefficient
of variation (COV) of 0.15. It is desired to evaluate the probability of failure.

Assume that the beam self-weight and any variation in the length of the beam can
be ignored. From basic structural theory, the applied moment (the load effect S) at the
centre of the beam (due to the load Q) is given by S = (QL)∕4. Since L = 5 it follows that
the mean load effect and the variance of S are:

𝜇S = 5
4
𝜇Q = 5

4
× 3 = 3.75 kNm (see A.160)

𝜎2
S =

(5
4

)2
𝜎2

Q = 25
16

× 1 = 1.56 (kNm)2 (see A.162)

Also, the mean resistance and its variance are:

𝜇R = 10 kNm
𝜎2

R = [(COV )𝜇R]2 = (0.15 × 10)2 = 2.25 (kNm)2

Hence

𝜇Z = 𝜇R − 𝜇S = 10 − 3.75 = 6.25
𝜎2

Z = 𝜎2
R + 𝜎2

S = 2.25 + 1.56 = 3.81
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Therefore 𝛽 =
𝜇Z

𝜎Z
= 6.25

1.95
= 3.20 and from (1.21) and Appendix D

pf = Φ(−3.20) = 7 × 10−4.

1.4.4 Safety Factors and Characteristic Values

The traditional deterministic measures of limit state violation, namely the factor of
safety and the load factor, can be related directly to the probability pf of limit state
violation. Analytically this is demonstrated most easily for the basic ‘one-resistance
one-load-effect’ case, when R and S (or Q) are each normally distributed.

Consider a convenient simple safety measure sometimes referred to as the ‘central’
safety factor 𝜆0 and defined as

𝜆0 =
𝜇R

𝜇S
or =

𝜇R

𝜇Q
(1.23)

This definition does not accord with conventional usage, since generally some upper
range value of applied load or stress is compared with some lower range value of strength
of material. Such values might be termed ‘characteristic’ values, reflecting that in con-
ventional usage (e.g. in design) the load or strength is described only by this value. Thus
the characteristic yield strength of steel bars is the strength that most (say 95%) bars will
exceed. There is a finite (but small) probability that some bars will have a lower strength.

For resistances, the design or ‘characteristic’ values are defined on the low side of the
mean resistance (see Figure 1.12):

Rk = 𝜇R(1 − kRVR) (1.24)

where Rk is the characteristic resistance, 𝜇R the mean resistance, V R the coefficient of
variation for R and kR a constant. This description is based on the Normal distribution.
Rk is the value of resistance below which only, say 5% of samples will fail. Also, for the
standardized Normal distribution function (see Section A.5.7), it follows that

0.05 = Φ
(
−

Rk − 𝜇R

𝜎R

)
and for a 5% ‘one-sided tail’, k0.05 = 1.645 = (𝜇R − Rk)∕𝜎R (e.g. see Appendix D).
Expression (1.24) now follows directly, noting that the standard deviation can be
expressed as 𝜎R = 𝜇RVR.

Rk = μR (1 – kRVR)
fR

RR0.05

0.05

μR

Figure 1.12 Definition of characteristic resistance.
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Qk = μQ (1+kQVQ)
fQ

QQ0.95

0.05

μQ

Figure 1.13 Definition of characteristic load.

Similarly, for the load effect the characteristic value is estimated on the high side of
the mean:

Sk = 𝜇S(1 + kSVS) (1.25)

where Sk is the characteristic load effect (a design value), 𝜇S the mean load effect, V S
the coefficient of variation for S and kS is a constant. If design values are defined, for
example, as not being exceeded 95% of the time a load effect is applied, then kS = 1.645
if S is Normally distributed (see Figure 1.13). Where loads (actions) are used, Q replaces
S in (1.25).

In codified design, the percentiles used (such as 5% and 95% above) either are explic-
itly specified or may be deduced from the characteristic value specified in existing codes
or documents. Other percentile characteristic values can be obtained in the manner
indicated above for Normal distributions, and also for non-Normal distributions.
Example 1.6 below shows a typical calculation, while Table 1.3 summarizes 5 and 95

Table 1.3 5% and 95% values for Xk∕𝝁X .

Xk∕𝝁X for the following coefficients of variation

Distribution type q % 0.1 0.2 0.3 0.4 0.5

Normal 5 0.8355 0.6710 0.5065 0.3421 0.1176
95 1.164 1.329 1.493 1.658 1.822

Lognormal 5 0.8445 0.7080 0.5910 0.4927 0.4112
95 1.172 1.358 1.552 1.750 1.945

Gumbel 5 0.8694 0.7389 0.6083 0.4778 0.3472
95 1.187 1.373 1.560 1.746 1.933

Frechet 5 0.8802 0.7809 0.6999 0.6344 0.5818
95 1.187 1.367 1.534 1.681 1.809

Weibull 5 0.8169 0.6470 0.4979 0.3736 0.2747
95 1.142 1.305 1.489 1.689 1.903

Gamma 5 0.8414 0.6953 0.5608a) 0 4355a) 0.3416
95 1.170 1.350 1.541a) 1.752a) 1.938

a) Note that values are for VX = 0.302 and 0.408 respectively, since the Gamma distribution usually only
allows discrete values of V 2

X (= k) (see Section A.5.6).
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percentile values for some common distributions. Similar results may be derived for
other percentile values.

In some situations it may be appropriate to use the mean of the extreme value
distribution to define a design load value. The precise choice is rather arbitrary and
need not be of specific concern provided it is consistent. The important point is that
the characteristic values are derived values and are convenient and useful for practical
design rules but they have no fundamental meaning.

Using the characteristic values for the basic variables, it is now possible to define the
so-called ‘characteristic safety factor’ 𝜆k :

𝜆k =
Rk

Sk
or =

Rk

Qk
(1.26)

which corresponds closely to the conventional understanding of the factor of safety if
the characteristic values are taken to correspond to the usual design values.

A relationship can be established between the characteristic safety factor 𝜆k (and the
central 𝜆0) and the probability pf of limit state violation. Obviously this relationship will
depend on the probability distributions for R and S, so that no general result can be given.
Again, a particularly simple but quite useful case is when both R and S are described by
Normal distributions. From (1.22), the probability of failure is

pf = Φ

[
−(𝜇R − 𝜇S)

(V 2
R𝜇

2
R + V 2

S 𝜇
2
S)1∕2

]
(1.27)

and dividing through by 𝜇S

pf = Φ

[
−(𝜆0 − 1)

(V 2
R𝜆

2
0 + V 2

S )1∕2

]
= Φ(−𝛽) say (1.28)

where 𝜆0 is given by (1.23) and 𝛽 is the ‘safety index’ as before. It follows that

𝜆0 =
1 + 𝛽(V 2

R + V 2
S − 𝛽2V 2

R V 2
S )

1∕2

1 − 𝛽2V 2
R

(1.29)

Also (1.24)–(1.26) give

𝜆k =
1 − kRVR

1 + kSVS
𝜆0 (1.30)

so that a relationship between pf , 𝜆0 and 𝜆k for given V R, V S, kR and kS follows
immediately. Some typical relationships obtained by numerical integration are given in
Figure 1.14.

Expressions (1.29) and (1.30) indicate that the factors 𝜆0 and 𝜆k depend on the
variability or uncertainty associated with R and S; with greater V R and V S requiring
greater factors if the failure probability pf is to be kept constant (Figure 1.14). This
demonstrates again the deficiencies of the deterministic measures of limit state
violation. They ignore much information that may be available about uncertainties in
structural strengths or applied loads.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

22 Structural Reliability Analysis and Prediction

10–7

10–6

10–5

10–4

10–3

10–2

10–7

10–6

10–5

10–4

10–3

10–2

10–7

10–6

10–5

10–4

10–3

10–2

2

12

1
4

5
3

7

6

1110

9 8

1.5 2.0 2.5 3.0 4.03.5

Central load factorR = EVIII:S = EVI

1.5 2.0 2.5 3.0 4.0

1.5 2.0 2.5 3.0 4.03.5

Central load factorR = LN:S = EVI

Central load factorR = LN:S = EVIII

12
10

5

6 9

113

8

7

21

4

0.1 0.2  0.3

0.05    1     2     3

0.10    4     5     6

0.15    7     8     9

0.20   10   11   12

V
SV

R

V
SV

R

V
SV

R

0.1 0.2  0.3

0.05    1     2     3

0.10    4     5     6

0.15    7     8     9

0.20   10   11   12

12

10
5

6 9

11
3

87 21 4

0.1 0.2  0.3

0.05    1     2     3

0.10    4     5     6

0.15    7     8     9

0.20   10   11   12

Failure probability

(a)

(b)

(c)

3.5

Figure 1.14 Failure probability pf versus central safety factor 𝝀0 for lognormal (LN) and extreme value
(EV-) distributions and different coefficients of variation.
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Example 1.6 For a random variable S with 𝜇S = 60, VS = 0.2, the 95 percentile for the
Gumbel (EV-I) distribution, for example, may be determined as follows (see A.77)

0.95 = FY (y) = exp[−e−𝛼(y−u)]

where, from (A.79), 𝛼2 = 𝜋2∕6 𝜎2
Y and, from (A.78), u = 𝜇Y − 𝛾∕𝛼 with 𝛾 = 0.57722.

Now 𝜎Y = 𝜎S = 0.2 × 60 = 12, 𝜇Y = 𝜇S = 60, so that 𝛼 = (𝜋∕
√

6)∕12 = 0.1069 and
u = 60 − 0.57722∕0.1069 = 54.60. Hence

0.95 = exp[−e−0.1069(S−54.60)]

or

S0.95 = 82.38

Alternatively, Table 1.3 shows that, for the Gumbel distribution, S0.95∕𝜇S = 1.373. Thus
the 95 percentile value of S is S0.95 = 1.373𝜇S = 82.38.

1.4.5 Numerical Integration of the Convolution Integral

As noted above, closed-form integration of Expressions (1.16) or (1.18) is only possible
for some special cases. One of these cases, when both R and S are normally distributed,
has already been considered (see Section 1.4.3). When both R and S are lognormal, and
failure is defined as Z = R∕S < 1, an exactly parallel result is obtained (see Example 1.7
below).

In general, however, to evaluate (1.16) or (1.18) for non-normal distributions, recourse
must be made to numerical integration. The simplest approach, using the trapezoidal
rule, is often quite effective [e.g. Dahlquist and Bjorck, 1974; Davis and Rabinowitz,
1975]. Step sizes around x = 0.2𝜎R have proved sufficiently accurate together with an
integration range of about ± 5 𝜎Z instead of ±∞ [Ferry-Borges and Castenheta, 1971].

Some typical results obtained by numerical integration are given in Figure 1.14.
Other, and similar, results have been given by Freudenthal (1964) and Ferry-Borges and
Castenheta (1971).

Example 1.7 As an exercise for readers, use the probability density function (A.61) for
the lognormal variable Z = R∕S, where R and S are each lognormal, to show that

pf = Φ(−𝛽1) = Φ

⎧⎪⎪⎨⎪⎪⎩
−

ln
{

𝜇R

𝜇S
[(1 + V 2

S )∕(1 + V 2
R )]

1|2}
{ln[(1 + V 2

R )(1 + V 2
S )]}1∕2

⎫⎪⎪⎬⎪⎪⎭
Also show that this simplifies to

pf = Φ(−𝛽1) ≈ Φ

{
−

ln(𝜇R∕𝜇S)
(V 2

R + V 2
S )1|2

}
for VR < 0.3, VS < 0.3
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Finally, show that the expression for the central safety factor 𝜆0 = 𝜇R∕𝜇S simplifies to

𝜆0 ≈ exp[𝛽1(V 2
R + V 2

S )
1∕2]

1.5 Generalized Reliability Problem

For many problems the simple formulations (1.15a)–(1.15e) are not entirely adequate,
since it may not be possible to reduce the structural reliability problem to a simple R
versus S formulation with R and S independent random variables.

In general, R is a function of material properties and element or structure dimensions,
while S is a function of applied loads Q, material densities and perhaps dimensions of the
structure, each of which may be a random variable. Also, R and S may not be indepen-
dent, such as when some loads act to oppose failure (e.g. overturning) or when the same
dimensions affect both R and S. In this case it is not valid to use the convolution integral
(1.18). It is also not valid when there is more than one applied stress resultant acting at a
section, or more than one factor contributing to the resistance of the structure. A more
general formulation is required. The first step is to define the variables involved in the
generalized reliability problem.

1.5.1 Basic Variables

The fundamental variables that define and characterize the behaviour and safety of a
structure may be termed the ‘basic’ variables. Usually they are the variables employed in
conventional structural analysis and design. Typical examples are dimensions, densities
or unit weights, materials, loads, material strengths. The compressive strength of
concrete would be considered a basic variable even though it can be related to more
fundamental variables such as cement content, water-to-cement ratio, aggregate size,
grading and strength, etc. However, structural engineers do not normally use these
latter variables in strength or safety calculations.

It is very convenient to choose the basic variables such that they are independent.
However, this may not always be possible. Thus the compressive and tensile strengths
and the elastic modulus of concrete are related; yet in a particular analysis they might
each be treated as a basic variable. Dependence between basic variables usually adds
some complexity to a reliability analysis. It is important that the dependence structure
between dependent variables be known and expressible in some form. Usually this will
be through a correlation matrix; however, as noted in Appendix A, this can at best
provide only limited information.

The probability distributions to be assigned to the basic variables depend on the
knowledge that is available. If it can be assumed that past observations and experience
for similar structures can be used, validly, for the structure under consideration the
probability distributions might be inferred directly from such observed data. More
generally, subjective information may be employed or some combination of techniques
may be required. Thus, in practice some subjective influence is nearly always present,
since only seldom are sufficient data available to identify unambiguously only one
distribution as the most appropriate.

Sometimes physical reasoning may be used to suggest an appropriate probability
distribution. Thus, where a basic variable consists of the sum of many other variables
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(which are not explicitly considered), the central limit theorem (see Section A.5.8) can
be invoked to suppose that a normal distribution (see Section A.5.7) is appropriate.
This reasoning would be appropriate for the compressive strength of concrete (many
component strengths) and for the dead load of a beam or slab (again many components
of weight and several dimensions). In another example, the maximum wind velocity
per year might be represented by the Gumbel (EV-I) distribution (see Section A.5.11),
as this is based on an underlying wind phenomenon that, at any instantaneous point
in time can be considered described as essentially Normal in probability distribution
(see Chapter 7).

The parameters of the distribution may be estimated from the data using one of the
usual methods, e.g. methods of moments, maximum likelihood, or order statistics.
These are well described in standard statistics texts and will not be considered here
[e.g. Ang and Tang, 1975]. However, it must be emphasized that such techniques should
not be used blindly. Critical examination of the data for trends and outliers is always
necessary, and the reasons for these phenomena should be established. It is quite
possible for such behaviour to be the result of data recording and storage procedures
rather than the behaviour of the variable itself.

Finally, when model parameters have been selected, the model should be compared
with the data if at all possible. A graphical plot on appropriate probability paper is often
very revealing, but analytical ‘goodness of fit’ tests (e.g. Kolmogorov-Smirnov test) can
be used also.

It may not be possible, always, to describe each basic variable by an appropriate
probability distribution. The required information may not be available. In such
circumstances a ‘point estimate’ of the value of the basic variable might be used, i.e.
the best estimate, given the known information. If some uncertainty information
about the variable is also available, it might be appropriate to represent it by an
estimate of its mean and its variance only. This is then known as a ‘second moment’
representation. One way in which such a representation might be interpreted is that
in the absence of more precise data, the variable might be assumed to have a normal
distribution (as this is completely described by the mean and variance, i.e. the first two
moments (see Section A.5.7)). However, other probability distributions might be more
appropriate, even if only the first two moments are known or can be determined.

1.5.2 Generalized Limit State Equations

With the basic variables and their probability distributions established, the next step
is to replace the simple R − S form of limit state function with a generalized version,
expressed directly in terms of basic variables.

Let the vector X represent all the basic variables involved in the problem. Then the
resistance R can be expressed as R = GR(X) and the loading or load effect as S = GS(X).
Since the functions GR and GS may be non-linear, the cumulative distribution function
FR( ), for example, must be obtained by multiple integration over the relevant basic
variables (see A.155):

FR(r) = ∫r …∫ fX(x)dx

A similar expression would apply for S and FS( ). These could then be used in (1.18)
or (1.19). Fortunately, it is seldom necessary to follow this somewhat complex and
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piecemeal approach. Instead it is noted that in (1.l5e) the limit state function G(R, S)
itself can be generalized. When the functions GR(X) and GS(X) are used in G(R, S), the
resulting limit state function can be written simply as G(X), where X is the vector of all
relevant basic variables and G( ) is some function expressing the relationship between
the limit state and the basic variables. The limit state equation G(x) = 0 now defines
the boundary between the satisfactory or ‘safe’ domain G > 0 and the unsatisfactory
or ‘unsafe’ domain G ≤ 0 in n-dimensional basic variable space. Usually the limit state
equation(s) is derived from the physics of the problem. (Note that X is the vector of
random variables and that X = x defines a particular ‘point’ x in the basic variable space.)

Where some loads may influence resistance (e.g. in overturning situations
(see Figure 1.2)) care should be taken that G(X) is defined properly. Again by
analogy with the simple case of Figure 1.2 a useful rule is that any basic variable adding
resistance to the limit state should have a positive gradient, that is: 𝜕G∕𝜕Xi > 0.

Example 1.8 Consider a simple pin-ended strut supporting one end of a simply
supported beam of length L1, loaded at midpoint by a load Q. The actual load on the
strut is thus QL1 / 2. The strength of the strut is governed by its length L2, its radius
r of gyration, its cross-sectional area A and either the yield strength 𝜎Y of the steel
or some combination of axial load capacity and bending capacity, usually expressed
by an interaction rule in structural design codes. Such rules are based, usually, on
experimental observations and are then modified for code users by adding conservative
assumptions and factors of safety. It is apparent, therefore, that code rules must be used
with great caution in reliability analyses. A better approach is to use the original data
and/or original relationships for ultimate strength.

For the squash load limit state, it follows easily that the relevant limit state equation is:

G1(X) = 𝜎Y A −
QL1

2
Here usually all the variables may be considered to be random variables, although some
might be considered closely deterministic, for example the variable A since usually
there is little uncertainty about its value.

For the interaction case, the limit state equation is:

G2(X) = FN
(
𝜎Y A,

L2

r

)
−

QL1

2

where FN( ) is an appropriate interaction equation for ultimate strength of pin-ended
struts.

1.5.3 Generalized Reliability Problem Formulation

With the limit state function expressed as G(X), the generalization of (1.16) becomes:

pf = P[G(X) ≤ 0] = ∫…∫G(X)≤0 fX(x)dx (1.31)

Here f X(x) is the joint probability density function for the n-dimensional vector X
of basic variables. Note that the resistance R and load effect S are not shown in the
formulation — they are implicit in X. Moreover, even if X were dissected, R and S
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may not show up explicitly and may be represented by the variables of which they are
composed. If the basic variables are all independent, formulation (1.31) is simplified,
with (see A.117):

fX(x) =
n∏

i=1
fXi
(xi) = fX1

(x1). fX2
(x2). fX3

(x3)… (1.32)

Here fXi
(xi) is the ‘marginal’ probability density function for the basic variable Xi.

The region of integration G(X) ≤ 0 in (1.31) denotes the (hyper-)space in which
limit state violation occurs. It is directly analogous to the failure domain D shown
in Figure 1.8. Except for some special cases, the integration of (1.31) over the failure
domain G(X) ≤ 0 cannot be performed analytically. However, the solution of (1.31)
can be made more tractable by simplification or by numerical treatment (or both) of
(i) the integration process, (ii) the integrand f X( ) and (iii) the definition of the failure
domain. Each approach has been explored in the literature. Two dominant approaches
have emerged:

(a) using numerical approximations such as simulation to perform the multidimen-
sional integration required in (1.31)—the so-called ‘Monte Carlo’ methods;

(b) sidestepping the integration process completely by transforming f X(x) in (1.31) to
a multi-Normal probability density function and using some remarkable properties
which may then be used to determine, approximately, the probability of failure—the
so-called ‘First Order Second Moment’ methods and developments thereof.

These methods are described in more detail in Chapters 3 and 4 respectively. Some
special results are given also in Appendix C.

1.5.4 Conditional Reliability Problems*

The probability estimate given by (1.31) becomes conditional when complete statistical
information about the random variables X is not available. For example, the means or
the variances might be estimated or not known with precision. In this case the probabil-
ity expressed by (1.31) is a ‘point estimate’, given a particular set of assumptions about
the probability distributions for X. If the relevant statistical parameters are denoted 𝜽
and are considered as random variables, the probability estimate becomes a conditional
estimate and is a function of 𝜽. Further, the limit state function now will be a function
of 𝜽 as well, i.e. G(x, 𝜽) = 0 and the joint probability function in X will be a function
of 𝜽 also, thus fX|𝜽( ). It should be noted that the nature of the uncertainties for the
basic random variables X are different from the uncertainties in 𝜽, the first expressing
inherent variability (see Chapter 2) and the latter expressing uncertainty, which can be
influenced by the collection of additional data (and perhaps by the use of alternative
probability models). The net result is that the probability can now be expressed as a
conditional probability estimate:

pf (𝜽) = ∫G(x,𝜽)≤0 fx|𝜽(x |𝜽)dx (1.33)

Of course, for decision-making an unconditional probability estimate is required.
This can be done by invoking the total probability theorem (see A.6). For the present
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this can be done by taking the expected value of the conditional probability estimate
[Der Kiureghian, 1990]:

pf = E[pf (𝜽)] = ∫𝜽 pf (𝜽)f𝚯(𝜽)d𝜽 (1.34)

where E[ ] is the expectation operator and f𝚯(𝜽) is the joint probability density function
of the parameters 𝜽. Substitution of (1.33) into (1.34) then yields the unconditional
probability estimate.

In passing it is noted that the integral of fX|𝚯( ) over 𝜽 sometimes is referred to, in the
present context, as a ‘predictive’ distribution (since it takes into account uncertainties
in 𝜽), defined as:

fX(x) = ∫𝜽 fX|𝚯(x |𝜽)f𝚯(𝜽)d𝜽 (1.35)

Methods to solve for these integrals are the subject of discussion in Chapters 3 and 4
and are relevant also to Bayesian updating in Chapter 10.

Another way in which the probability estimate (1.31) can be conditional is if the limit
state function is given a more general interpretation. Consider, for convenience, the
indicator function I( ) defined such that (Figure 1.15(a)):

I(x) = 0 if x ≤ 0
= 1 if x > 0

(1.36)

It follows that I[G(X)] may then be interpreted as a ‘utility function’ with the failure
state G(X) ≤ 0 having a ‘utility’ of zero, and the safe state G(X) > 0 having unit ‘utility’.

In practice, such as in problems involving serviceability considerations, the distinc-
tion between full utility and zero utility may not always be clear cut, and values between
zero and unity may be appropriate (see Figure 1.15). Thus it may be that utility depends
inversely on concrete crack size, with no cracks having a utility of 1, cracks < 0.1 mm
a utility of 0.5 and greater cracks zero utility. Clearly many other possibilities and
applications exist [e.g. Reid and Turkstra, 1980; Stewart, 1996b; Augusti and Ciampoli,
2008; Barbato et al., 2013].

If now J(x) denotes the above more general interpretation of the indicator function
(see Figure 1.15(b)) and Jc( ) = 1 − J( ) defines the complement of J , the generalization
of (1.31) becomes:

pf = P{Jc[G(X)]} = ∫∫X {Jc[G(x)] fx(x)}dx (1.37)

As might be imagined, evaluation of (1.34) is not necessarily a simple matter.

(b)(a) (c)

I[Z]

Z0

1
J[Z]

Z0

1
J[Z]

State i

Z0

1

δZ→0

Figure 1.15 Limit state violation indicators.
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If J (or Jc) is defined as a probability distribution function (see A.8), then (1.37) may be
interpreted also as a total probability (see A.6) with (1.31) providing only the conditional
probability of failure for a given realization of the limit state function. This more general
interpretation is useful in structural reliability problems that are part of more general
risk and reliability studies. For these, a range of possible limit state functions, not all
structural, might arise. A good example is that of Probabilistic Safety Analysis (PSA)
for nuclear facilities such as power stations or Probabilistic Risk Analysis (PRA) for
other potentially hazardous facilities. In the case of nuclear power stations suffering
a ‘loss of coolant accident’ (LOCA), the ability of the reactor block and its building to
contain the resulting run-away reaction and its products is critical. The conditional
probability of failure under a LOCA can be estimated for a defined external event such
as for a level of (earthquake-induced) ground shaking. Repeating this for other levels
of ground shaking and using the probability density for these levels together with the
conditional probabilities of plant failure in the theorem of total probability allows the
total probability of failure to be estimated. Similarly the occurrence of a LOCA may by
the result of failure of critical pipework, and this may depend on the relative dynamic
response of the reactor block and the reactor building under earthquake conditions (and
others). More details of integrating structural reliability estimates as conditional events
in larger risk assessments are discussed elsewhere [e.g. Stewart and Melchers, 1997].

1.6 Conclusion

Various ways in which structural reliability may be defined have been reviewed in this
chapter. To do so it was necessary to introduce the concept of ‘limit states’. This was seen
to be a formalization of the possibly multiple criteria under which the structure can be
considered to have ‘failed’ or have reached an unsatisfactory state.

Traditional measures of limit state violation were reviewed, including the factor of
safety, the load factor and possible ‘limit state design’ concepts. It was shown that care is
required in their definition; otherwise the safety measure might depend on how safety
is defined, i.e. the formulation might not be ‘invariant’.

Another common measure, the return period, was reviewed prior to the introduction
of a fully probabilistic measure of limit state violation. Several aspects of this were then
outlined and generalizations given.
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Structural Reliability Assessment

2.1 Introduction

Before proceeding to elaborate the concepts introduced in Chapter 1, it is necessary to
address fundamental questions about the meaning of the calculated probability of limit
state violation (whether for ultimate limit states or otherwise). Specifically, what does
the calculated probability pf mean? Can it be related to observed rates of failure for real
structures? How can knowledge of pf help in achieving better (safer?) or more econom-
ical structures? And how does it relate to failure probabilities for other constructed or
existing facilities? Surprising as it may seem, a degree of controversy and disagreement
still remains about these important questions.

It will be helpful to examine the meaning of some terms. ‘Probability’ has already been
used in Chapter 1. It denotes the chance that a particular, predefined event occurs. Clas-
sically, the probability of event occurrence was considered to be obtainable only from
many repeated observations of the process that led to the event, the so-called ‘frequen-
tist’ (or objective) definition. Obviously, the events must be observed. The observation
process itself immediately adds an element of subjectivity, even to an otherwise frequen-
tist meaning, in much the same way that observations in, say, physics are always partly
subjective [de Finetti, 1974; Popper, 1959; Blockley, 1980; Jeffrey, 2004]. This aspect
is sometimes (erroneously) ignored, and relative frequency data assumed to be purely
‘objective’ information.

An alternative interpretation is that probability expresses a ‘degree of belief’ about the
occurrence of an event, rather than the actual (but unknown) frequency. It is therefore
a ‘subjective’ or ‘personal’ probability. This interpretation is much wider than the rela-
tive frequency definition, and in its extreme form could be based on no previous data
or experience of any sort to express degree of belief. Subjective probabilities are often
referred to as ‘Bayesian’ probabilities, reflecting the tract on probability theory express-
ing these ideas, written by the Rev. Thomas Bayes in the early 1700s and since developed
by many others. It is sometimes noted that a subjective probability estimate reflects the
degree of ignorance about the phenomenon under consideration. There is a large lit-
erature on subjective probabilities [e.g. as summarized in Lindley, 1972; Jeffrey, 2004].
Reconciliation of the various interpretations of the meaning of probability still has inter-
esting practical and sometimes quite controversial issues, although the latter are more
philosophical than practical in nature [e.g. Fishburn, 1964; Kyburg, 1978; Hasofer, 1984;
Lind, 1996; CIRIA 2014].

Structural Reliability Analysis and Prediction, Third Edition. Robert E. Melchers and André T. Beck.
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In socio-technical contexts the possibility of no information is rather rare, particularly
for infrastructure applications. In most situations some relevant or related frequentist
information is available to form a basis for subjective probability estimates. Generally,
as more frequentist data become available the subjective probability estimates will tend
to be adjusted so as to be in broad agreement with such data. The manipulation of sub-
jective estimates and use of compatible data to amend and improve the estimates may
be achieved through Bayes’ theorem (A.7).

The term ‘reliability’ is commonly defined as the complement of the probability
of failure (= 1 − pf ), but more properly it is the probability of safety (or proper
performance) of the structure over a given period of time.

‘Risk’ has two meanings. In the context of structural engineering, the first meaning
is equivalent to the probability of structural failure from all possible causes, both from
violation of predefined limit states and from other causes.

The second interpretation of ‘risk’ refers to the magnitude of the ‘failure’ condition,
usually expressed in money terms and is commonly used in connection with insurance.
This meaning will not be used herein.

‘Structural failure’ might be considered to be the occurrence of one or more types of
undesirable structural responses including the violation of predefined limit states. Thus
collapse of all or part of a structure, major cracking and excessive deflection are some
possible forms of failure (see Table 1.1).

Fortunately, in practice structures fail only rarely in a serious manner, but when
they do it is often due to causes not related directly to the predicted nominal loading
or strength probability distributions considered in Chapter 1. Other factors such as
human error, negligence, poor workmanship or neglected loadings are most often
involved [Melchers et al., 1983; Brown et al., 2008]. To a large extent these factors
are foreseeable and predictable. In fact, their occurrence might be considered as
the occurrence of ‘imaginable’ events. Obviously, they must be accounted for in any
analysis of structural reliability that attempts to replicate or predict reality with some
degree of confidence. However, not all possible reasons for structural failure are always
imaginable [Ditlevsen, 1982a; Brown et al., 2008]. Events that must once have been
’unimaginable’ have led to structural failure; examples include the collapse of the Tay
Bridge (1879) due (mainly) to underestimation of wind loading in storm conditions,
and the Tacoma Narrows Bridge (1940) due to wind excitation of the deck. Even in
these cases, there is some evidence to suggest that the phenomena involved were not
totally ‘unimaginable’ before the accidents occurred. They were, however, apparently
unimaginable to those involved with the projects [Sibley and Walker, 1977; Petroski,
1992; 2012]. In this respect, hindsight is not helpful.

Making estimates of failure probabilities for truly unimaginable events obviously is
impossible. However, for imaginable events designers and others need to take care to
ensure that they are aware of the state of the art of their specialization. Further, it is
suggested that the public is more likely to accept the consequences of truly unimag-
inable events than it is likely to accept those of imaginable (and therefore foreseeable)
events.

The theory needed to carry out a structural reliability analysis for imaginable events
is the topic of this book. To do so, it will be necessary to consider the various types of
such uncertainty that must be taken into account. These are considered in Section 2.2.
Some uncertainties will be describable in terms of probability density functions. Others
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may only be describable in less precise ways, such as by ‘point’ estimates of probabilities
(see also Example 2.3). For the most part, the latter type of uncertainty will not be
considered herein, although how it might be incorporated into a reliability assessment
is described in Section 2.3. There are other, complementary, views of how this might be
done [Schuëller, 2007].

Reliability analysis considering only a subset of uncertainties will result in a probability
estimate that herein will be termed a ‘nominal’ or ‘formal’ measure. The meaning of such
a measure is considered in Section 2.5, together with the implications of using such a
measure for deriving rules such as those given in structural design codes.

Finally, some criteria that may be used to decide the acceptability of calculated relia-
bilities are discussed in Section 2.4.

2.2 Uncertainties in Reliability Assessment

2.2.1 Identification of Uncertainties

The uncertainties considered in Chapter 1 were the load acting on a structural element
and its resistance. More generally, a range of uncertainties may need to be considered.
These might include various environmental conditions, workmanship and human error,
and prediction of future events.

Identification of uncertainties for complex systems may be difficult. Usually it is
advantageous to use a systematic scheme to help to enumerate all operational and
environmental loading states and, for each, to consider possible combinations of
error or malfunction. This is essentially ‘event-tree analysis’ [Henley and Kumamoto,
1981; Stewart and Melchers, 1997]. Rather similarly, the systematic development
of all possible forms of hazard to which a structure might be subjected has been
termed ‘hazard scenario analysis’ even for structural systems [Schneider, 1981]. More
generally, techniques such as ‘brain storming’ originally developed by Osborn (1957)
and since much developed, may be of use. Various other techniques are available in
the risk assessment literature [e.g. Stewart and Melchers, 1997]. Essentially all amount
to a critical analysis of the problem to be analysed, consideration of all imaginable
consequences and all imaginable possibilities and retaining only those with some
finite probability of occurrence. Further, all techniques rely on having available expert
opinion and up-to-date information on which to base assessments.

There are various ways in which the types of uncertainty might be classified in the
wider context. Derived largely from the nuclear industry, one distinction is between
what have been called ‘epistemic’ uncertainties and ‘aleatory’ uncertainties. The first
refers to those uncertainties arising from lack of or gaps in knowledge. To reduce epis-
temic uncertainty requires more investigation of the basic phenomenon or issue so as to
improve understanding. On the other hand, ‘aleatory’ uncertainty covers uncertainties
intrinsic to the component or system being considered and thus might be reduced with
gathering of additional data or information, improved numerical or other modelling and
better parameter estimation. While much has been made of the difference between these
two broad classes of uncertainty, it is clear both represent incomplete states of knowl-
edge, whether it is in understanding or in data. In this respect, the difference is more
philosophical than practical [Der Kiureghian and Ditlevsen, 2009].
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Decision Phenomenological

Modelling

Prediction

Statistical

Physical Human factors

Figure 2.1 Uncertainties in reliability assessment.

A more practical breakdown of uncertainties is shown schematically in Figure 2.1.
Each of the uncertainty classifications shown will now be discussed. Extra attention is
given to human factors as these have been found to be particularly important.

2.2.2 Phenomenological Uncertainty

As already noted, sometimes an apparently ‘unimaginable’ phenomenon occurs to cause
structural failure. The Tacoma Narrows Bridge noted earlier was apparently one such
case. It was also of a design that departed considerably from earlier suspension bridge
designs.

Phenomenological uncertainty may be considered to arise whenever the form of con-
struction or the design technique generates uncertainty about any aspect of the possible
behaviour of the structure under construction, service and extreme conditions. There-
fore it is of particular importance for novel projects, or those which attempt to extend
the ‘state of the art’ [Pugsley, 1962]. Evidently, only subjective estimates of the effect of
this type of uncertainty can be given.

2.2.3 Decision Uncertainty

Decision uncertainty arises in connection with the decision as to whether a particu-
lar phenomenon has occurred. In terms of limit states, it is concerned purely with the
decision as to whether a limit state violation has occurred.

A typical example concerns crack widths or deflections. It is unlikely, in general, that
a slight increase in either will suddenly render the structure unsafe or unserviceable. At
most, it is a question of relative loss of structural usefulness. One way in which decision
uncertainty might be formulated has already been suggested in Section 1.5.4 using the
indicator function J( ). This might also be taken as a measure of utility (see Figure 1.15).
Decision uncertainty might be formulated also in terms of a probability density function
for the (uncertain) criterion.

2.2.4 Modelling Uncertainty

Modelling uncertainty is associated with the use of one (or more) simplified relation-
ship between the basic variables to represent the ‘real’ relationship or phenomenon of
interest. In its simplest form, modelling uncertainty concerns the uncertainty in rep-
resentation of physical behaviour, such as through the limit state equations. Modelling
uncertainty is often simply due to lack of knowledge. It can be reduced with research or
increased availability of data.
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Figure 2.2 Modelling error (schematic).

Modelling uncertainty can be incorporated into a reliability analysis by introducing a
modelling variable Xm, say, to represent the ratio between actual and predicted model
response or output (see Figure 2.2). Here Xm may be represented by a probability
density function or simply as a mean and standard deviation (i.e. a second moment
representation). This is a convenient approach where both the model and the actual
phenomenon are measured by the same type of variables (e.g. deflection, or crack
width). However, if structural system capacity or behaviour is modelled by individual
member capacity or behaviour, say (as is implicit in permissible stress design philoso-
phy), there usually will be a considerable amount of variability, depending on the type
and the degree of static indeterminacy of the structure. It would be preferable in this
case to include the structural system analysis more formally in the reliability analysis
(see Chapter 5).

A special case of model uncertainty relates to the treatment of human errors and
human intervention effects. If sufficient information about these effects is known,
allowance could, in principle, be made for them in the modelling. Because of their spe-
cial nature, a separate and detailed discussion of human factors is given in Section 2.2.8
below.

2.2.5 Prediction Uncertainty

Many problems in structural reliability assessment involve the prediction of some future
state of affairs—in this case the prediction of the reliability of some structure at some
time t > 0 in the future.

An estimate of structural reliability depends on the state of knowledge available to the
analyst(s). As new knowledge related to the structure becomes available, the estimate
will become more refined, with, usually but not necessarily, a concomitant reduction in
uncertainty. This applies particularly during the construction phase of a project, when
information about actual strengths of materials, workmanship, etc., becomes available to
replace estimates based on the past performances of, and the experiences with, similar
structures. When the structure is placed in service, its response to initial loading (or
perhaps to ‘proof loading’) will constitute further information from which the reliability
estimate may be revised.
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It will be clear, therefore, that a probability estimate is not only a function of the prop-
erties of the structure, but also a reflection of the analyst’s knowledge of the structure
and the forces and influences likely to act on it. Similarly, if a reliability estimate for a
particular structural lifetime is required, the analyst’s uncertainty in the prediction of
the lifetime (as well as the loadings that might be expected during that time) enter into
the uncertainty of the reliability estimate (see Chapter 6).

2.2.6 Physical Uncertainty

Physical uncertainty is that identified with the inherent random nature of a basic vari-
able. Examples include:

(1) variation in steel yield strength,
(2) variability of wind loading,
(3) variability of actual floor loading, and
(4) physical dimensions of a structural component.

Physical uncertainty might be reduced with greater availability of data or, in some cases,
such as with steel yield strength, with greater effort in quality control. However, usually
it cannot be eliminated, as is evident for natural phenomena such as wind loading, snow
loading or earthquake loading.

Generally, the physical uncertainty for any basic variable is not known a priori and
must be estimated from observations of the variable or assessed subjectively (see
Section 1.5.1).

2.2.7 Statistical Uncertainty

Statistical estimators such as the sample mean and higher moments can be determined
from available data and then used to suggest an appropriate probability density function
and associated parameters. Generally the observations of the variable do not represent
it perfectly, and as a result there may be bias in the data as recorded. In addition, dif-
ferent sample data sets will usually produce different statistical estimators. This causes
statistical uncertainty. The process of using sample statistic estimators to infer (subjec-
tively) a probability distribution for a variable is described in many standard texts [e.g.
Benjamin and Cornell, 1970] and is not be considered here.

Statistical uncertainty can be incorporated in a reliability analysis by letting parame-
ters such as the mean and variance (and other parameters which describe the probabil-
ity distribution) themselves be random variables (see Section 1.5.4). Alternatively, the
reliability analysis might be repeated using different values of the parameters to indi-
cate sensitivity. If this is done often enough, quantitative estimates of sensitivity can be
obtained (see Chapters 3, 4).

Example 2.1 Consider cylinder test results for a concrete of specified nominal
strength as delivered by a number of concrete suppliers. To achieve the required
nominal strength, some suppliers, with lesser control or quality, will aim for a higher
mean strength to counter the greater variability of their product. There will also be
variability due to between-batch variability for any one supplier, and variability due to
the casting and testing of the test cylinders.
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It is clear that the probability distribution that can be developed for concrete cylinder
strength will depend on the manner in which each of these uncertainties contributes
to the strength being measured. Evidently, if one supplier is changed, or deleted, the
recorded histogram and hence the inferred probability distribution function for con-
crete strengths would be expected to change. Ideally, sampling should be on homoge-
nous samples (i.e. those for which there is no evidence of non-homogeneity), with other
factors separately sampled and perhaps included in a combined distribution model if
required. Thus, restricting attention to only two different suppliers, the probability den-
sity function for concrete strength, irrespective of supplier, is given by

fc( ) = q1 f1( ) + q2 f2( )

with

q1 + q2 = 1

where q1, q2 represent the respective contributions of suppliers 1 and 2, having concrete
strength probability distribution f 1 and f 2 respectively. Clearly, a change in q1 or in q2
changes f c.

2.2.8 Uncertainties Due to Human Factors

The uncertainties resulting from human involvement in the design, construction, use,
etc., of structures may, for convenience, be considered as due to the effects of (i) human
errors and (ii) human intervention. In practice, there is likely to be some interaction
between these.

2.2.8.1 Human Error
Human errors can be divided, roughly, into errors V due to natural variation in task per-
formance and gross errors E, G (see Table 2.1). As shown, gross error might be consid-
ered again in two categories: those errors which occur in the normal processes of design,

Table 2.1 Classification of human errors.

Error type Human variability V Human error E Gross human error G

Failure process In a mode of behaviour against which
the structure was designed In a mode of behaviour

against which the structure
was not designed

Mechanism of
error

One or more errors during design,
documentation, construction and/or use
of the structure

Engineer’s ignorance or
oversight of fundamental
behaviour. Profession’s
ignorance of fundamental
behaviour

Possibility of
analytic
representation

High Medium Low

Adapted from Baker and Wyatt (1979).
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documentation, construction and use of the structure within accepted procedures, and
those which are a direct result of ignorance or oversight of fundamental structural or
service requirements.

The relative importance of these types of errors can be gauged from Tables 2.2 and 2.3,
which summarize the findings of Matousek and Schneider (1976) and Walker (1981).
Other surveys suggest similar findings [Melchers et al., 1983; Nowak, 1986; Melchers,
1995a; Brown et al., 2008]. Note that unimaginable events, as interpreted from the infor-
mation in Tables 2.2 and 2.3, constitute a rather low percentage of error factors.

The overriding conclusion from these surveys is that human error is involved in the
majority of cases of recorded failure. Human error must, it seems, be considered if a
reliability assessment is to relate to reality.

Unfortunately, understanding of human error is limited, and much of that under-
standing is qualitative [Reason, 1990; Blockley, 1992; Brown et al., 2008]. It is known
that humans perform best at an appropriate level of arousal, as indicated schemat-
ically in Figure 2.3 [e.g. Warr, 1971]. If the level of arousal is too high or too low,
performance deteriorates, although at the extremes there are rather vague barriers
due to legal sanctions (see Section 2.2.8.2 below). Further, different persons operate at
different arousal levels and, even at peak arousal, their performance will vary (cf. IQ
tests).

Table 2.2 Error factors in observed failure cases.

Factor %

Ignorance, carelessness, negligence 35
Forgetfulness, errors, mistakes 9
Reliance upon others without sufficient control 6
Underestimation of influences 13
Insufficient knowledge 25
Objectively unknown situations (unimaginable?) 4
Remaining 8

Adapted from Matousek and Schneider (1976).

Table 2.3 Prime ‘causes’ of failure.

Cause %

Inadequate appreciation of loading conditions or structural behaviour 43
Mistakes in drawings or calculations 7
Inadequate information in contract documents or instructions 4
Contravention of requirements in contract documents or instructions 9
Inadequate execution of erection procedure 13
Unforeseeable misuse, abuse and/or sabotage, catastrophe, deterioration 7
Random variation in loading, structure, materials, workmanship etc. 10
Others 7

Adapted from Walker (1981).
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Figure 2.3 Human performance function [Melchers, 1980].

In his classic discussion of the problem, Pugsley (1973) considered that the main fac-
tors which affect ‘proneness to structural accidents’ are:

(1) new or unusual materials,
(2) new or unusual methods of construction,
(3) new or unusual types of structure,
(4) experience and organisation of design and construction teams,
(5) research and development background,
(6) financial climate,
(7) industrial climate, and
(8) political climate.

Evidently, these factors will have an influence on individual arousal and hence
performance; they will also affect other aspects of human behaviour, such as human
interaction, a matter also observed more generally in the management, psychology and
sociology literature [e.g. Luthans, 2010].

Because of its complexity, human behaviour cannot yet be related to all the various
factors that influence it. However, some specific empirical results for operator error in
the nuclear, aircraft and chemical process industries, for example, are available [Joos
et al., 1979; Harris and Chaney, 1969; Drury and Fox, 1975]. Typical rates for human
error in psycho-motor tasks (such as monitoring or active control of a process) are of
the order of 10−2 per stimulus, but with quite wide variations [e.g. Meister, 1966].

Preliminary investigation of typical (micro-)tasks used in detail structural design has
found that errors occur in numerical desk-top calculator computation at a rate of about
0.02 per mathematical step. As the mean length of computation involves about two
mathematical steps, the average error per calculation is about 0.04 [Melchers, 1995a].
Somewhat similar error rates were found to occur in ‘table look-up’ tasks and for ‘table
interpolation’ tasks.

Such errors, while indicative of those that may occur in detail design may not be very
significant by themselves. What needs to be considered is the effect that an error may
have on the structure as built, and this depends largely on error magnitude [Nowak and
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Figure 2.4 Typical histogram of bending moments from analysis of loading.

Carr, 1985]. It has also been suggested that usually more than one gross error needs to
be committed before a structure is likely to fail [Lind, 1983].

For these reasons, and because errors may be detected, the integrated effect of the
quality of performance in several micro-tasks, of error occurrence and of error detec-
tion is of interest. The output from the performance of a ‘macro-task’ such as design
loading calculation has been studied and tends to show rather less variation than that
observed for micro-tasks. For example, Figure 2.4 shows the histograms obtained for the
calculated required moment capacity at three locations of a steel portal frame subject to
wind and live and dead load. Designers participating in the study were required to decide
on the loads acting on the various surfaces, and these were then converted to actions
[Stewart and Melchers, 1988]. It is seen that most designers tend to err on the conserva-
tive side, but that some low results were recorded. Examination of individual responses
showed that much of the variation was due to differences in assumed unit wind loads as
a result of using ‘shortcuts’ in following structural design code requirements.

The available studies are not sufficient to give definitive information about the direct
effect of human error on structural resistance [Brown et al. 2008]. It is evident, however,
that human error will usually increase the uncertainty in the resistance of structures or
structural members above that conveyed by uncertainty in material strength and geo-
metric properties alone.

2.2.8.2 Human Intervention
There is little doubt that many existing and quite adequate structures remain in ser-
vice despite (many minor) errors committed during their design and construction. One
important reason for this is that structural design is, in general, rather conservative,
producing structures, such as highway bridges, with significantly greater capacity than
predicted by theory [e.g. Frangopol and Hearn, 1996]. The other important reason is
that, apart from committing errors, humans also intervene in the processes of design,
documentation and construction [Bosshard, 1979; Knoll, 1985] and, to some extent, also
in the use and in the control of the use of a structure [Melchers, 2013]. Some forms of
intervention are institutionalized, e.g. design checking to obtain building approval, and
sanctions for violations of the law (contract, criminal or tort). Intervention may also be
informal, such as may result from the observation that ‘something is wrong’.

Safety factors or other nominal measures of safety can cater for some degree of
human variability. However, it is unlikely that merely strengthening a structure against
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Table 2.4 Human intervention strategies.

Facilitative measures Control measures

Education Self-checking
Good work environment External checking and inspection
Complexity reduction Legal (or other) sanctions
Personnel selection

well-understood hazards, as would be achieved by increasing factors of safety, will
be effective in obviating the effects of gross human error (see Table 2.2). Some form
of positive action is required; a number of strategies are shown in Table 2.4. Brief
comments about each of these follow but, as will be obvious, detailed discussion is
beyond the scope of this book.

(i) Education
Education is widely recognized as important, particularly continuing professional edu-
cation. Some of this occurs quite informally ‘on the job’, and through the technical press.
Of particular interest in this regard would be balanced accounts of failure or poor per-
formance of structures; yet it is precisely this information that has been difficult to
obtain. Proposals for data banks have been made many times and tried so far with little
longer-term success.

(ii) Work Environment
Work environment is recognized as an important factor in the effectiveness of the
people working within an organization [e.g. Luthans, 2010]. Thus an open-minded
goal-oriented environment is probably more likely to aid identification of all appropriate
uncertainties. There are many examples in the literature where organizational problems
created work environments which contributed to structural failure [Melchers, 1977].

(iii) Complexity Reduction
The simplification of complex tasks is a recognized strategy for error reduction. How-
ever, oversimplification can lead to boredom with concomitant increase in error rate.
Some design (and other) processes lend themselves to extensive computerization, and
this, together with the use of checklists and standardization, may well reduce certain
types of error [Stewart, 1991]. However, different types of error are likely to arise in
their place. A related development is that of ‘expert systems’, computer-based storage
of available expert information.

A possible problem associated with standardization is that an undetected error may
become ‘institutionalized’, with possible widespread effects, such as has occurred with
so-called ‘system built’ housing and some high-rise apartment projects.

(iv) Personnel Selection
The effectiveness of a design or construction team will depend on the skills and abil-
ities of the team members. In practice various constraints (such as seniority, lack of
experience, existing staff commitments) may exist to prevent completely appropriate
personnel selection. Conventional management theory lays considerable stress on hav-
ing appropriate personnel [e.g. Luthans, 2010].
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(v) Self-checking
Self-checking of a task appears to occur to some degree in all human actions. Together
with checking by subsequent individuals or organizations in the design and construction
processes, self-checking has been identified as an important factor in structural engi-
neering. In design, for example, a designer is reasonably likely to spot significant errors
that he has committed. This happens mainly when the member being designed is not
of the ‘right’ proportions, or the reinforcement is somehow not as expected. Obviously
not all errors will be detected since some experience is necessary to make the necessary
judgements, but it is clear that the large errors are more likely to be detected than small
errors [Stewart and Melchers, 1989a, b].

(vi) External Checking and Inspection
From the point of view of ensuring societal safety levels, external controls such as check-
ing and inspection, and legal sanctions (see below) are often held to be far more powerful
strategies to control human error than the ones described so far [CIRIA, 1977; Melchers,
1980; Brown et al., 2008]. Such procedures are well recognized in structural engineering.
According to the studies by Matousek and Schneider (1976), only about 15% of errors
would not be detected either by existing control arrangements working with greater care
or through additional control measures. This last would, according to their estimate,
have been required in about half the cases of failure they studied.

A typical model for checking effectiveness is a ‘filter’ that removes part of the error
[Rackwitz, 1977]. Thus, if xi represents the error rate in design calculations before check-
ing, the error rate after checking might be given by

xi+1 = (1 − 𝛾i)xi (2.1)

where 𝛾 i is the probability of error detection. Values of 𝛾 i for inspection of electrical
and other small components in factory production are in the range 0.3–0.9 with 0.75 for
simple visual tasks under good conditions and with trained inspectors [Drury and Fox,
1975]. Preliminary data for checking of structural designs suggest an efficiency of about
0.7–0.8.

Search theory suggests that the detection probability increases with the time t spent
on checking according to an exponential relationship [Kupfer and Rackwitz, 1980;
Nessim and Jordaan, 1983], but Stewart and Melchers (1989a) found that a ‘learning
curve’ of the form

𝛾 = 1 − exp[−𝛼(t − t0)] t > t0 (familiarization time) (2.2)

or

𝛾 = 1
1 + A exp(−Bt1∕2)

(2.3)

better fits empirical data. Here 𝛼 is a parameter that depends on the degree of detailed
examination and on the size of the task. A and B are constants with a similar function.
All constants are dependent on the person performing the checking task. The checking
time t could be replaced by the cost of checking, with appropriate new constants. In each
case the checking function is preceded by a learning function required for the checker
to familiarize himself with the material to be checked.

Some data are available to suggest that checking efficiency increases with error size
but tends to level off to about 85% for large errors [Stewart and Melchers, 1989a].@Seismicisolation@Seismicisolation
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(vii) Legal Sanctions
The doctrine that legal sanctions deter is firmly entrenched, it usually being taken
for granted that fear of sanctions acts as a motivator and inhibitor of human conduct
[Hagen, 1983]. There is evidence to suggest that sanctions may well be effective for
‘premeditated’ crime but that in general the effect is likely to be most pronounced
on those least likely to be involved. It is reasonable to suggest that few engineers
premeditate to perpetrate errors, so that the most likely result of excessive threat of
legal sanction is inefficiency, over-caution and conservatism in the execution of work.

The available research on deterrence relates mainly to cases for which the boundary
between lawful and unlawful behaviour or action, is relatively clearly defined. Except,
perhaps, for negligence and deliberate malpractice, this does not appear to be the case
for human errors.

2.2.8.3 Modelling of Human Error and Intervention
Human error may be incorporated in a reliability analysis as follows. If the human error
phenomenon can be represented by a (perhaps subjective) random variable for which
a probability density function can be postulated, it can be incorporated directly in the
analysis for pf , i.e. it becomes another basic variable (see Section 1.5.1). This is often
possible for the type V and E errors of Table 2.1. Otherwise, a point estimate of the
value of the phenomenon may be used to represent it.

Let Rm denote the structural resistance R when modified for human error E. In practice
further modification may occur as a result of the possible effect of human intervention.
The probability density function for Rm will then be further modified, in the lower tail
region, to RI , as shown in Figure 2.5. The discussion above suggests that an appropriate
form is:

fRI
(r) = K(r)fRM

(r) r ≤ rd (2.4)

with

K(r) = exp[A(r − rd)]

where rd is a so-called ‘discrimination’ level, the value of the resistance for which errors
typically are first noted, and A is a constant. The pdf must be modified also in the region
r > rd to ensure that the area under the probability density function for R remains unity.

Modification
due to human
intervention
RI

Original fR ( )

Modified fR ( ) for human
error effects: Rm = E.R.

fR (r)

rd
r

Figure 2.5 Modification of resistance probability density function for human error and human
intervention effects. @Seismicisolation@Seismicisolation
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Values of A can be estimated from data for checking and inspection effectiveness. A
reasonable first choice might be to assume that, with Rd selected at one standard devi-
ation, the reduction in the distribution at two standard deviations below the mean is,
say, 90%. This would correspond in general terms to the initial estimates of checking
effectiveness.

Example 2.2 The resistance R when modified for human error E, a random variable,
becomes ER. The error term E may involve bias (𝜇E ≠ 1.0) and will have a probability
density function f E( ) that, in the absence of contrary information, might be taken as
normal. This is in agreement with the theory of errors and the central limit theorem
(see Section A.5.8) since E is likely to be the result of a number of error processes.

An alternative formulation for modified resistance is R + E, with, 𝜇E = 0 for zero bias.
If R is N(100, 20) and E is N(0,10), the distribution of the modified R in this case is (see
A.56 and A.57) given by N(100, 𝜎), where 𝜎 = (202 + 102)1∕2.

2.2.8.4 Quality Assurance
The various approaches to the reduction of gross human error described in the previous
section should not be seen in isolation. In any engineering project they should be viewed
as complementary techniques to achieve a desired goal. Usually this is the achievement
of a safe and satisfactory project of sufficiently low cost and sufficiently high utility over
the required design life. Use of the above techniques together with (i) establishment of
appropriate managerial and organization structures, (ii) establishment of systems for
material compliance testing, etc., and (iii) the selection of appropriate nominal safety
measures may be given the umbrella title of quality assurance (QA). In the broadest
sense, this is concerned with the management, coordination and monitoring of all stages
of a project so as to achieve a desired set of objectives. International documents now
exist to convey these ideas more generally [e.g. ISO 31000, 2009].

In the particular context of a building or construction project the QA functions must
be applied to each of the various phases of conceptualization, design and analysis, doc-
umentation, construction, use and maintenance. It follows that for structural systems
formalized methods of QA must take into account the need to meet the structural
design objectives of structural safety, serviceability and durability. In common with
other (non-structural) projects, a useful approach to achieve this is the institution of
a ‘safety’ plan. This is based on a detailed ‘hazard scenario’ analysis. The safety plan is
then used to lay down the requirements to be met by the QA procedures. In the case of
structural engineering these would include [Schneider, 1981; ISO 13824, 2009]:

(1) proper definition of functions,
(2) definition of tasks, responsibilities, duties,
(3) adequate information flow,
(4) structural design brief,
(5) control plans and check lists,
(6) documentation of accepted risks and supervision plan,
(7) inspection and maintenance plan, and
(8) user instructions.

In addition it would be necessary to have adequate and systematic feedback of informa-
tion to management at all stages of the project.

@Seismicisolation@Seismicisolation
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It is known from practical experience that there is a danger that excessive formal-
ization of QA procedures will lead to unacceptable and self-defeating generation of
paperwork. An appropriate level of QA is needed, tailored to each project and prefer-
ably designed in consultation with all concerned. This probably will mean that, for minor
projects, only a very modest QA system is necessary. For major projects with complex
QA procedures, there are the threats of complacency and unthinking adherence to insti-
tuted QA procedures.

In principle it is possible to arrive at an optimal set of QA measures using cost-benefit
(-risk) analysis. The principles for this are considered in Section 2.4.2 below. In prac-
tice such an approach may be difficult, partly because of the lack of appropriate models
for human error effects, partly because of the lack of models for the effect of QA mea-
sures and partly because of the difficulty of assigning costs associated with QA measures
[Schneider, 1983].

2.2.8.5 Hazard Management
Following on from the ideas of QA, it is clear that those responsible for projects should
concentrate not only on reducing risk but also on managing the hazards (or conse-
quences) associated with significant risks. This means that reduction of consequences
should be seen as part of the management of a project. In part this will depend also
on the level of confidence to be had in the possible outcomes in the event of an acci-
dent. Moreover, with increased favourable experience with a facility, usually there is an
increased level of confidence about the ‘dependability’ of the performance of the facility,
irrespective of whether this is wholly justified or not [Comerford and Blockley, 1993].

Hazard management is particularly important in ‘low probability–high consequence’
situations. Typically these are situations where the risk is judged to be extremely low but
if the event does occur the consequences are likely to be devastating. Nuclear accidents
could be of this type. Earthquake events in intra-plate regions and other traditionally
low-risk areas are another. Moreover, even if the immediate hazards from an event
cannot be completely controlled or significantly reduced, the situation after the event
might be managed appropriately. For example, following the January 1994 Kobe (Great
Hanshin) earthquake in Japan, it has been realized that controlling the immediate conse-
quences of a rare earthquake (building collapses etc.) may not be practical, as this would
involve very high (and politically unacceptable) up-grading costs for the existing infras-
tructure. However, appropriate systems should be in place to control the subsequent
hazards, that is, those associated with rescue and emergency operations and disease
control.

It should be clear that the estimation of the probability of failure of a system is only
one part of the overall process of risk assessment and risk-based decision-making. The
next three sections deal with various aspects of this problem.

2.3 Integrated Risk Assessment

2.3.1 Calculation of the Probability of Failure

The probability estimates considered this far, and in particular in Chapter 1, rest on
the notion that the uncertainty associated with a basic variable can be represented by a
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probability density function. In Section 1.5.1 it was pointed out that this is not always
the case, and that point estimates may need to be used for likely values of basic variables.
Similarly, it may not always be possible to calculate probabilities in the manner suggested
in Chapter 1, owing to lack of information. Again, point estimates may need to be used
instead. For example, the observed failure rate per metre of high-pressure piping of given
diameter is of this type, since no information is given about the type or extent of damage.
The failure rate of electrical components (which will either fail or not fail) is another
example, as are failure probability estimates due to human error.

A comprehensive estimate of failure probability must be able to incorporate both types
of probability information. Assuming that the events described by point estimates are
independent of those described by probability density functions, the combined (sub-
jective) estimate of the structure failure probability is given by [CIRIA, 1977; Melchers,
1978] (see A.2).

pf = (1 − pE)p0 + pEp1 ≈ pfv + pfu (2.5)

where pE is the probability of human error occurrence, p0 is the (conditional) probability
of system failure without human error occurrence and p1 is the (conditional) probability
of system failure, given the occurrence of human error.

In the simplified form of expression (2.5), pfv represents the failure probability as a
function of random variables with probability distributions and pfu the failure prob-
ability as a function of events for which only point estimates of probability are avail-
able. Where the independence assumption is not valid, the more general form with (+)
replaced by the union (∪) should be used. However, there are then seldom sufficient data
to make evaluation possible.

There are considerable differences of opinion as to the validity of (2.5). Some
hold that pfv represents essentially ‘objective’ information and as such should not be
combined with the largely ‘subjective’ probability pfu on the grounds that subjective
probabilities express a ‘degree of belief’ not compatible with objective or frequentist
probabilities. There are schools of thought advocating that other methods of combining
objective and subjective information be used. Various frameworks for dealing with
such apparently disparate information types have been proposed. Probably the most
popular is ‘fuzzy set theory’. However, despite its advocacy over many years, it has not
gained practical acceptance, nor has it been shown to be able to deal, conclusively, with
problems that cannot be dealt with, satisfactorily, using (perhaps subjective) probability
theory.

In common with most fields in which risk analysis is applied, the view taken here is
that all probabilities are ‘subjective’ or ‘ Bayesian’ to some degree (see Section 2.1). With
this interpretation, the term pfv can be evaluated with the aid of the total probability
theorem (A.6):

pfv =
n∑

i=1
pfipi =

n∑
i=1

P(F |Ni)P(Ni) (2.6)

where pfi = P(F |Ni) is the probability of failure given that the ith ‘state of nature’ Ni
occurs and pi = P(Ni) is the probability of occurrence of the ith state of nature, with

n∑
i=1

pi = 1. The state of nature refers to the set of conditions, qualifications, assump-

tions and state of knowledge which is implicit in the evaluation of P(F); this may include
@Seismicisolation@Seismicisolation
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assumptions (and hence predictions) about human error, workmanship, etc., as well as,
for example, an estimate of how well the calculation pfi represents the actual failure prob-
ability [e.g. Tribus, 1969]. Expression (2.6) assumes independence of Ni; appropriate
selection of the set {Ni} may be required to achieve this.

The term pfu in expression (2.5) is simply the sum of all point estimate probabilities
of failure not otherwise accounted for. In general, the events included in the term pfu
are those for which the probability of occurrence is not well understood, so that ques-
tions of dependence or correlation are of little relevance. As understanding grows about
these events, they will be expressed more easily in probabilistic terms. Hence it would be
expected that pfu will reduce, and that pfv will increase. Conversely, poorly understood
problems would be represented mainly by pfu.

Example 2.3 It is estimated that the probability of accidental traffic overload
(event N1) for a small bridge is 0.01. When that occurs, the conditional probability
P(F |N1) of failure of the bridge, estimated using the method of Chapter 1, is 0.1. Under
normal loading conditions the probability of failure is 0.002. In addition, it is possible
for flooding to occur (event N2) independently of the traffic loads applied to the bridge;
the probability that this occurs at a magnitude sufficient to cause failure is estimated at
0.005. All probabilities are for a 50-year life. Assuming that overload and flooding are
unlikely to occur simultaneously, the predicted probability of failure is then estimated
as follows:

P(F |N1) = 0.1 P(N1) = 0.01

P(F |N2) = 0.002 P(N2) = 1 − P(N1) = 0.99

pfu = 0.005

Substituting into (2.5) and (2.6), there is obtained

pf = (0.1)(0.01) + (0.002)(0.99) + 0.005 = 0.008

2.3.2 Analysis and Prediction

The determination of the probability of failure can be carried out from two viewpoints:
(i) analysis of a given state of affairs, and (ii) prediction of failure probability for some
time period in the future.

For analysis, the probability density functions of all random variables are presumed
known for the time at which the analysis is required; these may, of course, have been
obtained from direct observation or from subjective estimates. Similarly, any point esti-
mates for random variables or events are assumed to be known or obtainable for the time
at which the analysis is required. Using such information in expression (2.5), together
with the techniques described in this book, will allow an estimate of the current proba-
bility of failure to be obtained. If it is assumed that there are no changes to be expected
with time in any of the parameters, then the calculated probability estimate may also be
used to describe the probability of failure for future times.

More generally, however, it would be expected that probability density functions for
some of or all the random variables will change with time (see Figure 1.7). The problem
of prediction of probability of failure is thus one of predicting the future probabilis-
tic descriptions of the relevant random variables. Not only may means and variances
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change with time, but the type of probability density function also may change. Similar
comments apply to variables with point estimates of probability—these may change, or
might be expected to change, with time.

For a project in the planning stage, the predicted failure probability for the completed
structure will be quite uncertain, since details of actual loadings, material strengths, etc.,
will not be well defined. Hence coefficients of variation typically are rather large. This is
relevant, for example, in structural design code calibration work (see Chapter 9). When
construction is under way, details of actual material suppliers become available and this
should, generally, allow a reduction in coefficients of variation for material strengths,
and better estimates of workmanship variability. Similarly, when the structure is put
into service, better definition of loading uncertainties should be possible.

The difference between analysis and prediction can be seen, now, to be a matter of the
amount and type of information available to the analyst. In the case of prediction, the
information may be more subjective and tentative than that available for the analysis of
an existing structural system, but the basic process is the same.

2.3.3 Comparison to Failure Data

From the above it follows directly that as better estimates of the various properties and
assumptions become available, the (subjective) probability prediction can be refined.
It would be expected that, in the limit, the probability of failure so estimated would
approach the probability of failure for similar structures; this assumes that subjective
estimates tend to approximate objective (frequentist) data as the information available
improves, which, of course, may not always be correct [Jeffrey, 2004].

With time, and with engineering research and with practical experience with actual
structures over many years, the proportion of the structural behavioural phenomena
that are unknown or poorly understood decreases [Shiraishi and Futura, 1989]. Such
changes need not always be gradual and may have major changes: for example, as a result
of structural failure. Overall the net result is that with time and practical experience the
likelihood of structural failure from unknown or poorly understood phenomena tends to
decrease. This also should decrease the probability of failure from human error, although
it is possible that the proportion of failures caused by human error will increase as tech-
nical uncertainties decrease (Figure 2.6).

Structural
Phenomena

Research, experience

Unknown and poorly understood
structural phenomena

Technical failures

Human error failures

Known structural behaviours

Engineering capability

Time

Figure 2.6 Schematic representation of the development of understanding of structural phenomena
with time and research and the reduction of probability of failure from related technical failure, and
the possible increase in the proportion of failures from human error.
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Further, it might be expected that with the inclusion of all relevant variables and with
perfect probabilistic modelling of all the variables and the appropriate limit states, the
estimated failure probability would approach the failure rate that might be observed for
sufficient large samples of nominally identical structures. While this is true in princi-
ple, in practice this is unlikely to be closely achieved. Apart from severe problems with
historical records and observed rates of failure (see Section 2.4), the failure probabil-
ity estimate for a particular structure is based on past experience with, at best, simi-
lar structures and with probability distributions for materials, sizes and loadings (etc.)
subjectively selected. Although frequentist data for these may be available from his-
torical records for other structures, the validity of their application to the structure
being considered still requires (subjective) judgement. In particular, fundamental prob-
ability theory dictates that probability distributions must be derived from data drawn
from homogeneous populations. Also, for model development, the accuracy of design,
the standard of workmanship and the effectiveness of inspection and control must be
estimated.

It follows that the quality of a structural reliability estimate is very much a function of
the data and modelling used to derive it but that it may not agree closely with observed
rates of failure for real structures (assuming that such rates can actually be observed).

Comparison of estimated probabilities of failure for a given structure to observations
about failure rates in practice (and between estimates for different structures) requires
the utmost care. As noted in Section 2.2, there are few failure statistics of sufficient rich-
ness and depth to make useful comparisons for practical structural configurations, type,
method of construction, and, most importantly, the design code used for the structural
design [Rüsch and Rackwitz, 1972]. This latter point is illustrated in failure statistics
for building damage and collapse as a result of the January 1994 Kobe (Great Hanshin)
earthquake [Fujino, 1996]. Figure 2.7 shows clearly that the level of damage for build-
ings could be related to the period of original construction. In turn this could be related
directly to the design code in force during that period. It was concluded that structural
damage for buildings designed to the most recent design code was significantly less
than for earlier, less stringent, codes. Evidently, such changes in design requirements
will affect ‘observed’ rates of failure and hence complicate comparisons to computed
estimates. Similar observations have been made elsewhere.
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Collapse or severe damage
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Minor damage
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Figure 2.7 Damage level for buildings in Kobe, Japan, as a function of year of construction [based on
data reported by Fujino, 1996].
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2.3.4 Validation—a Philosophical Issue

At first sight the above situation may appear to be rather unsatisfactory. It implies that
different analysts can obtain different estimates of the probability of structural failure,
depending on the models they care to use. Moreover, it renders the notion of a prob-
ability estimate as unscientific in the sense that the outcome is not open to the test of
falsification [Popper, 1959]. For example, consider the statement that ‘a given level of
seismic activity has a return period of 500 years’. To test whether this statement is sci-
entifically reliable, it must first be established that it is ‘scientific’. Unfortunately, it fails
on this score as there is no practical way that it could be shown to be false. To do so
would require observation over a period much longer than 500 years [Grandori, 1991].
It is clear that the statement cannot be verified either.

In structural engineering in particular, the situation is even more difficult, since there
is no population of identical structures that can be observed under identical conditions.
Moreover, practicalities dictate that structures are not allowed to simply wear out and
fail. They are, usually, maintained and repaired as required. This means that the notion of
a ‘design life’ remains largely a theoretical one, seldom reached for the original structure.
It also means that even if it was reached, the information obtained would be worth-
less as being much too old for use with theory for the design of new structures [Lind,
1996].

Since ‘scientific’ validity cannot be ensured for the outcomes predicted by reliabil-
ity analyses, it is more useful to focus on the reliability of the procedures themselves
[Ditlevsen, 1983a, 1997; Grandori, 1991]. This may require specification of formalized
procedures to use for risk assessments, as is common in the nuclear industry and as
advocated also for codified structural design (see Chapter 9). Alternatively, reliability
estimation procedures can be tested for validity against artificially generated data sets, a
subset of which is used as input for them [Lind, 1996]. Such approaches for development
of models have extensive application in other areas, for example in the development of
models for stream flow and in weather prediction.

In summary, methods to estimate structural failure probability cannot have scien-
tific status. The justification and the acceptance of these methods do not stem from
them being able, necessarily, to provide correct descriptions of reality. On the contrary,
it stems from the fact that they can give reliable, consistent and satisfactory solutions
for practical problems [Matheron, 1989]. In this sense they are engineering rather than
scientific tools.

2.3.5 The Tail Sensitivity ‘Problem’

The tail sensitivity ‘problem’ has some history in structural reliability analysis but arises
simply from the observation that the probability distribution assigned to any one basic
variable can have a marked influence on the calculated failure probability. This can be
seen, for example, in Figure 1.14, by comparing curves with similar coefficients of vari-
ation VR and VS for different probability functions. The reason for the difference lies,
of course, in the shape and extent of the overlap of the probability density functions
shown in Figure 1.10. This dependency of pf on the assumptions made for the probabil-
ity density functions is sometimes considered to be an obstacle in providing meaningful
estimates of pf . However, in view of the discussion in the previous section, it is evi-
dent that the tail sensitivity problem is merely a reflection of the various uncertainties
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that arise in quantifying the probability density functions for the variables in a reliability
analysis. Further, if pf is seen only as a ‘nominal’ or ‘formal’ measure of structural failure
probability as will be discussed in Section 2.5, it will have as its purpose only compar-
ison between probability estimates for structures, rather than as an absolute value. In
this comparative sense the tail sensitivity problem becomes essentially inconsequential,
as no absolute frequentist meaning is now directly attached to such a measure.

Of course, the tail sensitivity problem is of major importance if the aim of the struc-
tural reliability analysis is to estimate realistic probabilities. In this case considerable
attention must be paid to using the best available probabilistic models, in particular
those that best model the relevant extremes (‘tails’) of the probability density functions.
Generally this means that the ‘tails’ of the models must be good fits for the higher values
of the loads and for the lower values of the resistances (cf . Figure 1.10).

2.4 Criteria for Risk Acceptability

When a reliability assessment has been performed, it must be decided whether the prob-
ability of limit state violation (i.e. the probability of structural system failure) assessed by
(2.5) is acceptable. There is no easy answer to such a question, even if the assessed failure
probability represented a ‘perfect’ estimate. But as has been discussed above, the esti-
mated failure probability associated with a project is very much a function of the under-
standing of the issues, modelling and data—it follows that any comparison to acceptance
criteria must take at least some account of the context within which the estimate of the
probability of failure is made. This also has important implications in the context of
setting probabilistically consistent requirements in design codes (see Chapter 9).

In general, acceptance criteria have been formulated mainly as ‘risk acceptance’ cri-
teria (or, sometimes, as ‘risk tolerance’ criteria). Moreover, they have been framed both
using ‘risk’ in the context of probability of occurrence of limit state(s) violation and in
the context of probability of occurrence of associated consequences.

Two criteria for making decisions about risk acceptance will be outlined below. More
complete discussions are available [e.g. Royal Society Study Group, 1991; Stewart and
Melchers, 1997; CIRIA, 2014; EMSA, 2015].

2.4.1 Acceptable Risk Criterion

2.4.1.1 Risks in Society
One criterion is to compare the calculated probability of structural failure with other
risks in society and from these to infer ‘acceptable’ or ‘tolerable’ risks for structures [e.g.
Stewart and Melchers, 1997; CIRIA 2014]. Table 2.5 shows a summary of selected risks
in society, based largely on historical data but unlikely to have changed much with time.
It is seen that there is a difference of about one order of magnitude between the so-called
‘voluntary’ risks and the ‘involuntary’ (or background) risks, and that the risks depend
on the degree of exposure to a hazard (i.e. on the potential consequences). Generally,
people are confident in their use of engineered structures, in the expectation that they
will not fail. Hence the probability of structural failure may be related to involuntary
risk. However, opinion about this varies. Some broad indicators of tolerable risk levels
have been suggested also (Table 2.6).
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Table 2.5 Selected risks in society (indicative).

Activity

Approximate death ratea

(× 10−9 deaths/h
exposure)

Typical
exposureb

(h/year)

Typical risk of death
(× 10−6∕year)
(rounded)

Alpine climbing 30 000–40 000 50 1500–2000
Boating 1500 80 120
Swimming 3500 50 170
Cigarette smoking 2500 400 1000
Air travel 1200 20 24
Car travel 700 300 200
Train travel 80 200 15
Coal mining (UK) 210 1500 300
Construction work 70–200 2200 150–440
Manufacturing 20 2000 40
Building firesc 1–3 8000 8–24
Structural failuresc 0.02 6000 0.1

a) Adapted from Allen (1968) and CIRIA (1977).
b) For those involved in each activity (estimated values).
c) Exposure for average person (estimated).

Table 2.6 Broad indicators of tolerable risks [based on Otway et al. 1970].

Risk of death
per person
per year. Characteristic response

10−3 uncommon accidents; immediate action is taken to reduce the hazard
10−4 people spend money, especially public money to control the hazard (e.g. traffic

signs, police, laws);
10−5 mothers warn their children of the hazard (e.g. fire, drowning, firearms, poisons),

also air travel avoidance
10−6 not of great concern to average person; aware of hazard, but not of personal

nature; act of God.

Typical failure rates for building structures and for bridges based on historical data are
given in Tables 2.7 and 2.8 respectively. For comparison purposes, the rates have been
adjusted, where necessary, in an attempt to extract the limit state of ‘collapse’, this being
the closest to that likely to lead to fatalities and hence to allow a degree of comparison
to Table 2.5.

For a number of reasons the rates given in the tables must be viewed with caution.
There is some evidence and much qualitative conceptual support that ‘collapse’ failures
account for only about 10–20% of all cases of failure. Many failures of lesser magni-
tude involve serviceability limit state violation [Melchers et al., 1983]. Further, many of
the ‘collapse’ failure cases occurred during construction. It is not always clear whether
the structure failed under ‘normal’ loading or whether temporary works failed. Also, the
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Table 2.7 Typical ‘collapse’ failure rates for building structures.

Structure type Data cover

Number of
structures
(estimated)

Average life
(years)

Estimated
lifetime pf

Apartment floors Denmark 5 × 106 30 3 × 10−7

Mixed housing The Netherlands
(1967–1968)

2.5 × 106 - 5 × 10−4

Controlled domestic
housing

Australia (New
South Wales)

145 500 - 10−5

Mixed housing Canada 5 × 106 50 10−3

Engineered structures Canada - - 10−4

Sources: Allen, 1981a; Ingles, 1979; Melchers, 1979.

Table 2.8 Typical ‘collapse’ failure rates for bridges.

Bridge type Data cover

Number of
structures
(estimated)

Average life
(years)

Estimated
lifetime pf

Steel railway USA (< 1900) - 40 10−3

Large suspension World (1900-1960) 55 40 3 × 10−3

Cantilever and
suspended span

USA - - 1.5 × 10−3

Bridges USA - - 10−3

Bridges Australia - - 10−2

Sources: Pugsley, 1962; Ingles, 1979.

probability of failure during construction may not always be considered in a reliability
assessment. It would be quite erroneous to compare failure statistics including construc-
tion with predictions excluding construction.

A further matter to be taken into account is subjectivity in deciding whether a struc-
ture has ‘failed’. This may very well depend on the consequences, with large consequence
failure gaining much publicity and being subject to major inquiries, etc. However, a fail-
ure with little consequence may never be recorded. It is likely that the rather higher rates
of failure for bridges in Table 2.8 are due to this effect. It may also be due to phenomeno-
logical uncertainty (see Section 2.2.2) associated with novel forms of construction.

2.4.1.2 Acceptable or Tolerable Risk Levels
From the risks that are encountered in society, various bodies, including regulators of
hazardous industries, such as nuclear facilities, chemical plants etc. have developed
‘acceptable’ or ‘tolerable’ risk levels. Generally these are related to consequences, most
typically death of ‘passers-by’ and operatives [e.g. Henley and Kumamoto, 1981; Royal
Society Study Group, 1991; Stewart and Melchers, 1997; NSW DEP, 2011; EMSA, 2015].
Although not yet applied to structural engineering, they provide a broad indication of
the risk levels that might need to be met also for engineered structures.
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It may not be possible, always, to comply completely or closely with regulatory risk
criteria (however defined). One approach developed in other areas dealing with risk sit-
uations is the concept of ‘As Low As Reasonably Practical (or Achievable)’, the ALARP
(or ALARA) principle [HSE, 1992]. It considers that (i) there is an upper limit to the
risk, that is, greater risk cannot be tolerated in any circumstances and (ii) a lower limit
below which risk is of no practical interest. Between these two limits lies the region
in which the risks must be reduced to a level which is as low as ‘reasonably practical’,
such as through spending money to reduce the risk imposed by the facility. Although
this approach has a certain intuitive and practical appeal, there are considerable associ-
ated theoretical and philosophical difficulties. These include the question of definition of
terms and their interpretation, openness of decision processes, comparability between
facilities and serious questions about morality of actions of individuals, companies and
governments acting on behalf (usually) of its citizens [Royal Society Study Group, 1991;
Melchers, 2001; Jonkman, et al., 2003]. Instead of risk criteria (e.g. Tables 2.7 and 2.8)
costs, direct and indirect may be more appropriate to derive ALARP criteria, particularly
for high-cost construction such as offshore structures [Aven and Vinnem, 2005].

2.4.2 Socio-economic Criterion

If failure consequences are to be taken into account, a more general criterion for assess-
ing acceptability of structural failure probability is cost-benefit (-risk) analysis given by
the net present value criterion as:

max(B − CT ) = max(B − CI − CQA − CC − CINS − CM − pf CF ) (2.7)

where B is the total benefit of project, CT is the total cost of project, CI(𝜆) is the initial

cost of project, CQA(e) =
n∑

i=1
CQAi(e) is the cost of n quality assurance (QA) measures,

Cc(e) is the cost of corrective actions in response to QA measures, CINS(𝜆, e) is the cost
of insurance, CM(e) is the cost of maintenance, pf (𝜆, e) is the probability of failure of the
project, CF is the cost associated with failure, 𝜆 is the nominal factor of safety and e is
the vector of QA efforts (such as expenditure on QA). All costs and the benefit B must
be discounted to allow for the effect of time as in standard cost-benefit analysis [e.g. de
Neufville and Stafford, 1971]. Formulation (2.7) also can be rewritten as a minimization
problem in costs, since the benefit B generally is neither a function of the degree e of
QA nor of the nominal safety factor 𝜆.

Both pf and CF depend on the mode(s) of failure being considered. The value of CF
is uncertain. It depends on how much damage is likely to be caused, how many lives
lost, etc. Hence CF might be modelled as a random variable, although appropriate data
are scarce. In addition, the long-term effects of project failure should be included in CF .
The evaluation of CF may well vary for different parties involved in the ownership, use
and responsibility for the structural project, at various stages during its life, so that (2.7)
is strictly a multi-objective optimization problem with CF varying for different interest
groups.

Before the maximization of (2.7) can be carried out, relationships between pf (𝜆, e)
and e and between the costs CQA(e), Cc(e), CINS(e) and CM(e) and e must be established.
Models such as these outlined in Section 2.2.8 may be of some help here, particularly
for CQA( ). The cost of insurance should, in theory, vary inversely with the amount of
QA, although this does not appear to be the case in practice [CIRIA, 1977] except in a
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special sense in the French decennial form of insurance and building control [Cibula,
1971]. Maintenance costs would be expected to decrease with e.

In principle it is possible to use expression (2.7) to derive the optimal probability of
failure for a structure, given a certain level of quality assurance. Assuming a constant
benefit B and minimizing the total cost, the variation of the various costs is shown in
Figure 2.8. Evidently, a minimum dCT ∕dpf = 0 exists, and it is clear that this minimum
is highly sensitive to changes in the slopes of the cost curves. Nevertheless, it has been
estimated that the optimal probability of failure for buildings is about 10−4 per year,
and 10−3 per year for bridges [Rüsch and Rackwitz, 1972]. These estimates appear to
have been determined under the (questionable) assumption that the cost CF of failure
is negligible and that human error effects may be ignored. For this reason these values
probably are better regarded as nominal failure probabilities rather than more realistic
ones (see Section 2.5 below).

Appropriate levels of QA efforts can be determined similarly. The result depends
strongly on the effectiveness and unit costs of each QA measure, as well as on the
ratio CF /CI . Typical values for the latter are 30–75 for beam elements and 350–700
for columns supporting one floor to 90–1800 for columns supporting ten floors
[CIRIA, 1977]. Unless CF /CI is very high (which is not normally the case), optimal total
cost is only achieved with high QA effectiveness; otherwise CQA(e) > pf CF . The full
implications of this for practical quality control schemes are not always fully realized.

Finally, it must be noted that increased investment in structural safety, whether in
terms of CQA or CI may not be as effective in terms of benefit gained, as additional

Discounted
costs

CI + CQA + CC

CINS

Pf CF

CM

Pf = PfN + PfG

CT

CT

Pf

(a)

(b)

Figure 2.8 (a) Component costs and (b) total costs as a function of pf .
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expenditure in, say, road safety or medical research. The allocation of resources between
competing sectors of the economy is essentially a socio-political matter. An appropriate
framework for structural engineering decisions may well be to assume that CT is fixed
and that any optimization must be a matter of allocating available resources within this
constraint.

A more general decision framework than risk-benefit analysis is utility theory. How-
ever, formulation of appropriate utility functions is often difficult. Some initial studies in
this area have been reported [Augusti et al., 1984]. Even more generally, there has been
interest in relating structural risks and consequences to ‘quality of life’ in a more general
sense, exemplified by a (rather arbitrarily defined and society-dependent) Life Quality
Index [Rackwitz, 2002; Pandey and Nathwani, 2004; Ditlevsen and Friis-Hansen, 2005].

2.5 Nominal Probability of Failure

2.5.1 General

The discussions in Sections 2.2 and 2.3 indicated the importance of accurate modelling,
and in particular the inclusion of human error and human intervention effects in deter-
mining a good estimate of structural failure probability. When these matters are ignored,
and also sometimes when approximations have been made in the calculations, the corre-
sponding failure probability becomes a nominal one, pfN (cf . Section 2.1). It is pertinent
to question whether such a probability measure has any useful meaning. This question is
relevant since pfN has been used in a comparative sense, with a lower value preferred to
a higher one. A particular application is in code calibration work (see Chapter 9). More
generally, the possibility of the use of pfN as a surrogate for pf in decision-making usu-
ally is discussed with the proviso that it should not be interpreted as a relative frequency,
but rather as a ‘formal’ failure probability measure, interpreted as a ‘degree of belief’ [e.g.
Ditlevsen, 1983a; 1997].

As noted in Section 2.1, the interpretation of probability as a degree of belief is an
acceptable one, consistent with Bayesian statistics. However, whether pfN can be used
to make valid comparisons of structural safety needs to be examined. For pfN to be used
as a surrogate for pf and hence to be used validly to compare two alternatives, 1 and 2,
it is required that:

pf 1

pf 2
≈

pfN1

pfN2
(2.8)

The validity of this statement can be examined on at least two (somewhat interrelated)
grounds:

(1) axiomatic definition,
(2) influence of gross and other errors on design.

2.5.2 Axiomatic Definition

In Expression (2.8) the pfi (i = 1,2)may be replaced by the sum pfNi of the nominal failure
probabilities and a term pfGi expressing the contribution of uncertainties not absorbed
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by pfNi. The latter are mainly due to (gross) human error, while pfNi includes mainly phys-
ical and statistical uncertainties. Then,

pf 1

pf 2
≈

pfN1 + pfG1

pfN2 + pfG2
(2.9)

which reduces to (2.8) only if pfGi = kpfNi, i = 1,2 and k is a constant.
In view of the discussion in Section 2.2.8, this condition is unlikely to be true in general.

A special case arises when the components being compared are essentially similar and
therefore perhaps also subject to similar human and other errors. This may well be true
for certain types of structural components, particularly in building structures. In this
case pfN1∕pfN1 = pf 1∕pf 2 = 1 (impartiality).

2.5.3 Influence of Gross and Other Errors

One argument to suggest that pfN is an adequate measure of structural safety is to show
that the choice of design (e.g. its safety factors, or pfN ) is unaffected by the knowledge
that (gross) human and other errors might occur (i.e. by the knowledge of pfG). This
question has been addressed in the literature using a rather more rigorous approach
than that given here [e.g. Baker and Wyatt, 1979; Ditlevsen, 1983a].

Consider the total cost CT (in present value) as in (2.7) and let the failure probability
pf be represented, as before, by pfN + pfG with pfG > pfN (see Section 2.3.8.1). Then (2.7)
can be written in simplified form as

CT = CI(pfN ) + (pfN + pfG)CF (2.10)

where the initial cost CI (in present value) depends, reasonably, only on the nominal
probability pfN of failure.

For a very low likelihood of failure, the initial cost would be expected to be very high,
reducing progressively less as pfN increases, as shown in Figure 2.9.

The cost of CF failure would usually contain a term representing reconstruction costs,
assumed here for convenience equal to the initial cost CI(pfN ) plus a term CS represent-
ing other or consequential costs. Two extreme cases may be considered: CF = CS( ) and
CF = CI . These are shown in Figures 2.9(b) and 2.9(c) respectively.

In the first case it is seen that changing the value of pfG has no effect on the optimal
value pfN (at A) since this merely moves the line LL’ parallel to itself, provided that pfG is
independent of pfN , a reasonable first approximation. In the second case, changing the
value of pfG has only a small effect on the optimal value of pfN (at B).

The true cost of failure will lie somewhere between the two extremes shown
in Figures 2.9(b) and 2.9(c); note also that the actual values of pfN CS and pfN CI
respectively, do not change the conclusion.

In reality pfG is likely to be positively correlated to pfN . One example is in the design
against earthquakes, where an increase in ductility capacity would reduce pfN for the
structure and also its sensitivity to (gross) human error [Rosenblueth, 1985a]. It is easily
verified that this makes little difference to the conclusion.

Although pfN is insensitive to pfG, clearly CT and pf = pfN + pfG are not. This is
important in comparing alternatives. Consider two members with the same CI(pfN )
curve and the same CF . It follows that pfN will be the same for each (see Figure 2.9),
but the costs CT and the failure probabilities pf will depend on the relative pfG values.
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CI

CT

CT

CT = CI (pfN) + (pfN + pfG) CS

CT = CI(pfN) + (pfN + pfG) CI

CT = CI (pfN) + (pfN) CS

CT = 2 CI(pfN)

(pfN + pfG) CI

pfNCI

CI(pfN)

L

L′

0

0

0
pfN

(pfN + pfG) CS

pfN CS

pfNA

B pfN

(a)

(b)

(c)

Figure 2.9 (a) Initial Cost curve; (b) optimal pfN for CF = CS = constant: (c) optimal pfN for CF = CI .

Clearly the members with the lowest cost CT (and hence also lowest pf ) will be
preferred. The value of pfN is non-informative for this choice, unless the values of pfG are
identical for each member. This corresponds to the conclusion reached in the previous
section.

2.5.4 Practical Implications

It is clear that the use of pfN as a surrogate for pf strictly is only acceptable in a com-
parative sense if the failure probability component, due to the influence of human error
and other effects not included in pfN , affect each of the alternatives in a manner roughly
proportional to pfN .

For practical purposes, however, pfN can be accepted as a measure of a more accurately
determined probability of failure if it is interpreted in the same sense that factors of

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

Structural Reliability Assessment 59

safety and load factors traditionally have been used, as a purely nominal measure. This
is then an axiomatic definition. Note that the conventional factor of safety and the partial
factors also do not consider human error and related effects.

When pfN is not used in a comparative manner between components but as a measure
of the safety of a structure (however defined) against more general societal risk criteria,
the argument of Section 2.5.3 shows that knowledge of gross and other error effects may
well have a significant influence on total cost, particularly if action is taken to control
risks through QA measures. Importantly, however, such influences do not change the
most appropriate value for the nominal measure pfN very much, if at all. For this reason
it is rational to use nominal safety measures (such as pfN ) for design and risk assessment
and in design codes to obtain structural sizes.

2.5.5 Target Values for Nominal Failure Probability

Just as in traditional design codes, a factor of safety having a value of about 1.7–2.0
appears to be appropriate, depending on the structure, materials, consequences, etc.,
the nominal probability of failure might be expected similarly to have a ‘target’ value. As
will be seen in Chapter 9, for structural design-code-writing purposes it is often con-
venient and appropriate to back-calculate this target value from existing practice, and
to use a similar value for a modified or new code. However, proposals for determining
target values of pfN have been given on purely empirical grounds and these will now be
reviewed briefly.

One proposal is to have a nominal failure probability given by [CIRIA, 1977]:

p∗
fN = 10−4𝜇tLn−1 (2.11)

where tL is the structural design life in years), n is the average number of people within or
near the structure during the period of use and 𝜇 is a social criteria factor (see Table 2.9).

A somewhat different proposal is (Allen, 1981a):

p∗
fN = 10−5AW−1tLn−1∕2 (2.12)

where tL and n have the same meaning as in (2.11) and where A and W are ‘activity’ and
‘warning’ factors respectively (Table 2.10). Of course, they are selected as plausible but
entirely arbitrary numbers. The use of n−1∕2 in (2.11) rather than n−1 clearly suggests the
influence of utility theory notions in which the rate of risk aversion decreases with the
number of fatalities [de Neufville and Stafford, 1971; Rowe, 1977].

Table 2.9 Social criteria factor.

Nature of structure 𝝁

Places of public assembly, dams 0.005
Domestic, office, trade, industry 0.05
Bridges 0.5
Towers, masts, off-shore structures 5

Source: CIRIA, 1977.
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Table 2.10 Activity and warning factors.

Activity factor A Warning factor W

Post-disaster activity 0.3 Fail-safe condition 0.01
Normal activities:
buildings
bridges

1.0
3.0

Gradual failure with some
warning likely

0.1

High exposure structures
(construction, offshore)

10.0 Gradual failure hidden from
view

0.3

Sudden failure without
previous warning

1.0

Source: Allen, 1981a.

Comparison of these two approaches without specific information is not possible.
Both lack accounting for injuries and other economic costs of failure. These and n are
extremely difficult to predict, so that both (2.11) and (2.12) must be considered to be
indicative only, perhaps to be used with expert guidance.

In general it is difficult to give useful, abstract, values for p∗
fN without reference to the

context of the reliability estimation calculations (i.e. the various assumptions for mod-
elling, statistical distributions, etc.). As noted above, it is more usual to back-calculate
p∗

fN from existing, acceptable structural systems (see Chapter 9). Such calculations often
indicate that p∗

fN can be defined by 𝛽∗ values in the range 3.0–3.5 (i.e. p∗
fN in the range

10−3 − 10−4) over the lifetime of the structure for failure under extreme loading con-
ditions (but not human error, etc.). How to deal with acceptance criteria for existing
structures is discussed in Chapter 10.

2.6 Hierarchy of Structural Reliability Measures

The discussion in Chapter 1 and in this chapter may be summarized conveniently in
terms of various ‘levels’ at which safety (or more generally limit state violation) can be
defined (Table 2.11).

The lowest, and simplest level, Level 1, corresponds to the partial factor approach of
Section 1.2.3. It is a non-probabilistic generalized version of the traditional safety factor
and load factor formats. It is the format most commonly used for limit state design codes
and thus for applied engineering design work at the present time. How this format relates
to Level 2 procedures was sketched in Section 1.4.4 and will be discussed in more detail
in Chapter 9.

Level 2 procedures deal with nominal probabilities based on the use of the normal
distribution and some simple mathematical forms for the limit state function. These are
described in more detail in Chapter 4.

Level 3 procedures attempt to obtain the best estimate of the probability of failure,
using accurate probability models as well as the use of human error and intervention data
if available. Structural system effects, and the influence of time may be of importance.
Various parts of Chapters 3, 4, 5 and 6 deal with these aspects.
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Table 2.11 Hierarchy of structural reliability measures.

Level
Calculation
methods

Probability
distributions

Limit state
functions

Uncertainty
data Result

1:
code level
methods

(Calibration to
existing code
rules using
level 2 or 3)

Not used Linear
functions
(usually)

Arbitrary
factors

Partial factors

2:
‘Second
moment
methods’

Second
moment
algebra

Normal
distributions
only

Linear, or
approximated
as linear

May be
included as
second
moment data

‘Nominal’
failure
probability pfN

3:
‘exact
methods’

Trans-
formation

Related to
equivalent
Normal
distributions

Linear, or
approximated
as linear

May be
included as
random
variables

Failure
probability pf

Numerical
integration
and simulation

Fully used Any form

4:
decision
methods

Any of the above, plus economic data Minimum
cost, or
maximum
benefit

2.7 Conclusion

The combined and interrelated effects of human error (gross and otherwise) and human
intervention have been shown to be major considerations in the estimation of the prob-
ability of structural failure. Better understanding of these factors, coupled with appro-
priate data from similar structures and design and construction practices, should allow
better predictions of failure probability to be made; as noted repeatedly, all such esti-
mates must be seen as subjective or nominal to at least some degree.

For any particular structure the applicability of probability models for basic variables
and the conditions under which the evaluation is valid can be judged only subjectively.
Measures of failure probability do not, therefore, have an absolute objective relative
frequency interpretation. However, when high-quality models of the structural system,
load models and resistance models (including human error effects) are used, estimates of
structural failure probability may approach estimates of frequency of structural failure
obtained from properly analysed and carefully dissected data.

Nominal measures of failure probability can be used as surrogates for more accurately
determined measures if the effects of human error in particular are assumed to be similar
for similar situations or structural components. Such nominal measures are particularly
useful for design-code-writing purposes.

Finally, as might be expected intuitively, careful examination of the basis for the theory
of structural reliability reinforces the notion that QA measures must be used to control
both the total probability of failure (including the effects of gross errors) and the total
discounted cost of a structural engineering project.
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3

Integration and Simulation Methods

3.1 Introduction

The previous chapters have given an overview of the basic principles of structural reli-
ability theory. This and the next chapter will discuss in more detail the computational
aspects of the problem. As was noted in Section 1.5.3 there are essentially three ways in
which the multi-dimensional integration required in (1.31):

pf = P [G(X) ≤ 0] = ∫…∫G(X)≤0 fX(x) dx (1.31)

might be performed:

(i) direct integration (possible only in some special cases);
(ii) numerical integration, such as through using the Monte Carlo technique; and

(iii) obviating the integration through transforming the integrand to a multi-normal
joint probability density function for which some special results are available imme-
diately (cf. section 1.4.3).

In this chapter the first two of these approaches to solving (1.31) will be explored.
Chapter 4 deals with the third type of approach.

3.2 Direct and Numerical Integration

Analytical integration of the convolution integral (1.18) or of the integral from (1.31) is
possible only for some special cases of limited practical interest. A numerical solution
of the convolution integral (1.18) is obtained easily through the use of the trapezoidal
rule (see Section 1.4.5). This approach has been found to give satisfactory results, mainly
because any underestimation of the exact integrand around the mean is compensated
by slight but extensive overestimation elsewhere [Dahlquist and Björck, 1974]. However,
more refined methods, such as Simpson’s rule, or the methods based on polynomials,
such as Laguerre-Gauss or Gauss-Hermite quadrature formulae may be more appropri-
ate [e.g. Davis and Rabinowitz, 1975]. Standard routines for such numerical integration
are available on most computer systems.

Structural Reliability Analysis and Prediction, Third Edition. Robert E. Melchers and André T. Beck.
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When the load effect S and the resistance R in the convolution integral (1.18) are not
independent, or there are more than two variables, the probability of failure must be
obtained from the general formulation (1.31). Again, the computation of this integral
in all but very special cases cannot be achieved in closed form. In addition, numerical
integration is not always feasible owing to the growth of round-off errors and excessive
computation times. Moreover, computational demands increase rapidly with dimen-
sion n of the integration space. Typically, the practical limit for numerical integration
is considered to be around n ≤ 5. Even then, the integration region is confined to one
of the following simpler regions: hypercube, n-dimensional solid sphere, or the surface
thereof, n-dimensional simplex (generalization of triangle and tetrahedron) and the
semi-infinite half-space [Davis and Rabinowitz, 1975; Stroud, 1971; Johnson and Kotz,
1972]. These references might be consulted for more details and for algorithms.

In the special case when the limit state function is a linear function

G(x) = Z = a1x1 + a2x2 +…+ anxn (3.1)

with ai known constants and with any number n of random variables xi (i = 1,… , n),
it is possible to reduce the multiple integral (1.31) to a series of single integrals [Steven-
son and Moses, 1970]. However, the evaluation still requires extensive numerical work
or rather drastic simplifications. In a similar vein, it has been suggested that it may be
possible to invoke the divergence theorems of Stokes and Gauss to convert two- and
three-dimensional integrals to one- and two-dimensional contour and surface integrals,
respectively [Shinozuka, 1983].

As noted already in Section 1.4.3, when the load effect S and the resistance R are each
described by normal distributions, the safety margin Z = R − S also is normal. In this
case the (two-dimensional) integration of the probability integral (1.31) can be achieved
essentially through the special property of the normal distribution Φ( ) (see A 5.7).

More generally, when the random variables xi (i = 1,… , n) in the linear function (3.1)
are all normally distributed random variables, the function G(x) itself will be normally
distributed with mean 𝜇Z and variance 𝜎Z (as given by (A 160) and (A 162) respectively).
If the function is now recognized as the limit state function G(x) = 0 for a structural
reliability problem, it follows that the integration of (1.31) can be by-passed, in a manner
directly analogous to that given in Section 1.4.3. Also, dependence between the random
variables Xi presents no difficulties as follows from (A 162). This special case forms the
starting point for the discussion in Chapter 4.

In practice, limit state functions usually are of more general form than linear func-
tions. Similarly, the random variables xi (i = 1,… , n) are unlikely all to be normally
distributed random variables. Hence methods must be available to deal with these
requirements. Integration methods would be suitable, at least in principle. However,
because of the rapidly increasing computational demands as the number of dimensions
increases, numerical integration of the classic variety has not found great favour in
reliability computations. Instead, resort has had to be made to methods developed for
other large integrations problems (e.g. Kahn, 1956) and described already in texts (e.g.
Stroud, 1971) dealing with numerical integration. These methods are the simulation
or Monte Carlo methods. They form a class of approximate numerical solutions to the
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probability integral (1.31) applicable to problems for which the limit state function
G(x) = 0 may have any form, and for which the probabilistic description of the random
variables Xi is unrestricted. The present chapter is devoted to these methods.

3.3 Monte Carlo Simulation

3.3.1 Introduction

As the name implies, Monte Carlo simulation techniques involve ‘sampling’ at ‘random’
to simulate artificially a large number of experiments and to observe the result. In the
case of analysis for structural reliability, this means, in the simplest approach, sampling
each random variable Xi randomly to give a sample value x̂i. The limit state function
G(x) = 0 is then checked using the sample set of values x̂i. If the limit state function is
violated (i.e. G(x̂) ≤ 0), the structure or structural element has ‘failed’. The experiment
is repeated many times, each time with a randomly chosen vector x̂ of x̂i values. If N
trials are conducted, the probability of failure is given approximately by

pf ≈
n
(
G(x̂i) ≤ 0

)
N

(3.2)

where n(G(x̂i) ≤ 0) is the number of trials n for which (G(x̂i) ≤ 0). Obviously the number
N of trials required is related to the desired accuracy for pf .

It is clear that in the Monte Carlo method a game of chance is constructed from known
probabilistic properties in order to solve the problem many times over, and from that to
deduce the required result (i.e. the failure probability).

In principle, Monte Carlo methods are only worth exploiting when the number of
trials or simulations is less than the number of integration points required in numerical
integration. This is achieved for higher dimensions by replacing the systematic selection
of points by ‘random’ selection, under the assumption that the points so selected will be
in some way unbiased in their representation of the function being integrated.

To apply Monte Carlo techniques to structural reliability problems it is necessary:

(a) to develop systematic methods for numerical ‘sampling’ of the basic variables X;
(b) to select an appropriate economical and reliable simulation technique or ‘sampling

strategy’;
(c) to consider the effect of the complexity of calculating G(x̂i) and the number of basic

variables on the simulation technique used;
(d) for a given simulation technique to be able to determine the amount of ‘sampling’

required to obtain a reasonable estimate of pf .

It may be necessary also to deal with dependence between all or some of the basic
variables. All these matters will be considered in the sections to follow.

3.3.2 Generation of Uniformly Distributed Random Numbers

In a physical experiment it might be possible to select a sample value of each basic vari-
able by means of some arbitrary random selection process, such as putting a sequence
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of numbers in a lot and selecting one. Provided that the lot size is large and the interval
between numbers small, the probability distribution for these numbers would be the
‘uniform’ or ‘rectangular’ distribution ((A.73) or (A.74)), given by

FR(r) = P(R ≤ r) = r for 0 ≤ r ≤ 1
fR(r) = 1 (3.3)

= 0 elsewhere

It is possible to generate uniformly distributed random numbers through automated
roulettes or the noise properties of electronic circuits. These generators tend to be slow
and non-reproducible, so that an ‘experiment’ can never be checked. Tables of random
numbers [e.g. Rand Corporation, 1955] (see Appendix E) can be stored in computer
systems, but their recovery for use is also very slow.

The most common practical approach is to employ a ‘pseudo’ random number gen-
erator (PRNG) such as is available on virtually all computer systems. They are termed
‘pseudo’ since they use a formula to generate a sequence of numbers. Although this
sequence is reproducible and repeats after (normally) a long cycle interval, for most
practical purposes, it is indistinguishable from a sequence of strictly true random num-
bers [Rubinstein, 1981]. The production of a reproducible sequence has an advantage in
certain problems and in research work (since it permits checking of any computational
sequence). If required, reproducibility can be destroyed simply by changing (randomly)
the ‘seed number’ required as input for most PRNGs. A simple device is to use the local
time as a seed value.

There are some mathematical reservations about the terminology ‘random sampling’.
As soon as a table of ‘random numbers’ or a PRNG is used, the sequence of numbers is
determined, and so no longer is truly random. It follows that ‘tests of randomness’ are
therefore strictly misnomers; these tests usually are applied only for a one-dimensional
sequence, and may not guarantee ‘randomness’ in more dimensions [e.g. Deák, 1980].
To avoid the philosophical difficulties, it has been suggested that Monte Carlo methods
using PRNGs be dubbed ‘quasi Monte Carlo’ methods and that the only justification for
the use of sequences of pseudo-random numbers is the equi-distribution (or uniform
distribution) property implied by their use. In essence, the numbers so selected give a
reasonable guarantee of accuracy in the computations [Zaremba, 1968].

Example 3.1 A simple random number generator can be made as follows. Take a die
and let the "six" denote an invalid sample. Also take a coin and let ‘heads’ be 5 and ‘tails’
be 0. Then tossing the die and the coin repeatedly will produce (apart from invalid sam-
ples) a series of digits between 1 and 10, which should be random (if the die and coin
are unbiased). ‘Lotto’ results can also be used as random number generators.

3.3.3 Generation of Random Variates

Basic variables only seldom have a uniform distribution. A sample value for a basic
variable with a given (nonuniform) distribution is called a ‘random variate’ and can be
obtained by a number of mathematical techniques. The most general of these is the
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Sample from uniformly
distributed random numbers

Uniform
distribution

Cumulative distribution
function for random variable x

Realization or artificial sample

FX(x)

1.0

fR(r) 0
x1

x1^

Figure 3.1 Inverse transform method for generation of random variates.

‘inverse transform’ method. Consider the basic variable Xi for which the cumulative
distribution function FXi

(xi) must, by definition, lie in the range (0,1), shown in
Figure 3.1. The inverse transform technique is to generate a uniformly distributed
random number ri (0 ≤ ri ≤ 1) and equate this to as FXi

(xi):

FXi
(xi) = ri or xi = F−1

Xi
(ri) (3.4)

This uniquely fixes the sample value xi = x̂i, provided that an analytic expression for the
inverse F−1

xi
(ri) exists (as it does for the Weibull, exponential, Gumbell and rectangular

distributions among others). In these cases the inverse transform method is likely to be
the most efficient technique. The technique can also be applied to basic variables whose
cumulative distribution function has been obtained from direct observation.

Specialized techniques for generating random variates from specific distributions
often are computationally more efficient than the inverse transform method. Most
computer systems have standard subroutines available. One such procedure is due to
Box and Muller (1958). It produces a pair of ‘exact’ independent standardized normal
variates, u1 and u2, given by

u1 =
(
−2 ln r1

) 1
2 sin 2 𝜋r2 (3.5a)

u2 =
(
−2 ln r1

) 1
2 cos 2 𝜋r2 (3.5b)

where r1, r2 are realizations of uniformly distributed independent random variables R in
the interval (0,1). Lognormal distributed random variables vi may be obtained directly
from expressions (3.19) since, for V lognormal distributed, vi = ln ui.

Example 3.2 Generate a vector of standard Normal random variates u drawn from a
standard Normal distribution (i.e. N(0,1)). Use Eqn. (3.5) to generate them from a vector
of random numbers r. For this example let these be the first 10 random numbers in each
of the two columns in Appendix E. Show that even for this small number the mean of
standard Normal random variates u is about zero, and the standard deviation is about
unity. This working can be done most easily using the following Table. Columns 1 and 3
show the random variables from Appendix E.
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(1) (2) (3) (4) (5) (6) (7)

r1 − ln (r1) r2 sin 2𝜋 r2 cos 2𝜋 r2 u1 u2

0.9311 0.0714 0.4537 0.2868 −0.9580 0.1084 −0.3620
0.7163 0.3336 0.1827 0.9119 0.4104 0.7449 0.3352
0.4626 0.7709 0.2765 0.9861 −0.1657 1.218 −0.2057
0.7895 0.2364 0.6939 −0.9385 −0.3452 −0.6453 −0.2374
0.8184 0.2004 0.8189 −0.9077 0.4195 −0.6185 0.2859
0.3008 1.2013 0.9415 −0.3593 0.9332 −0.5569 1.4464
0.3989 0.9190 0.4967 0.0207 −0.9998 0.0281 −1.3554
0.0563 2.8771 0.2097 0.9681 0.2505 2.3223 0.6009
0.1470 1.9173 0.4575 0.2638 −0.9646 0.5166 −1.8888
0.2036 1.5916 0.4950 0.0314 −0.9995 0.0707 −2.2497

Columns (6) and (7) are obtained from Eqn. (3.5):
{

u1
u2

}
=

(
−2lnr1

)1∕2
{

sin 2𝜋r2
cos 2𝜋r2

}
.

Note the sin() and cos() terms are in radians. The mean of just these 20 values of ui (i =
1, … , 20) is −0.02207 and the standard deviation is 1.0798. This is close to the theoret-
ical requirement of (0,1).

3.3.4 Direct Sampling (‘Crude’ Monte Carlo)

The technique sketched in Section 3.3.1 is the simplest Monte Carlo approach for relia-
bility problems but not the most efficient. The basis for its application is as follows. The
probability of limit state violation (1.31) may be expressed as:

pf = J = ∫…∫I [G(x) ≤ 0] fX(x)dx (3.6)

where I[ ] is an ‘indicator function’ which equals 1 if [ ] is ‘true’ and 0 if [ ] is ‘false’. Thus
the indicator function identifies the integration domain. Comparison with (A.10) shows
that (3.20) represents the expected value of I[ ]. If xj represents the jth vector of random
observations from f X( ), it follows directly from sample statistics that

pf ≈ J1 = 1
N

N∑
j=1

I
[
G(x̂j) ≤ 0

]
(3.7)

is an unbiased estimator of J . Thus expression (3.7) provides a direct estimate of pf .
In exploiting this procedure, three matters are of interest: how to extract most

information from the simulation points, how many simulation points are needed for a
given accuracy, or conversely, how to improve the sampling technique to obtain greater
accuracy for the same or fewer sample points. These matters will be considered below.

Before proceeding, however, it is noted that one way the results of the above sam-
pling technique may be represented is as a cumulative distribution function FG(g)
(see Figure 3.2). Obviously, much of the range of FG(g) is of little interest, since the
structure or member is (usually) amply safe. To estimate the failure probability the
region for which G( ) ≤ 0, which represents ‘failure’, is clearly of most interest.
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FG(g)

1.0

pf

0 G(x)

Failure Safe

G(x) < 0
Fitted cumulative
distribution function

Figure 3.2 Use of fitted cumulative distribution function to estimate pf .

The estimate of pf in equation (3.7) may be improved by fitting an appropriate
distribution function through the points for which G( ) ≤ 0, i.e. the left-hand tail
in Figure 3.6. However, the choice of an appropriate distribution function may be
difficult. Distributions that could be of use for this purpose are the Johnson and Pearson
distribution systems [Elderton and Johnson, 1969]. However, it is possible that the
parameters of the distribution function are rather sensitive to extreme results in the
region G( ) ≤ 0. In that case, the choice of distribution function parameters may not
stabilize until N is quite large [Moses and Kinser, 1967]. Rather than fitting a single
distribution to the sample points, it is possible to fit a sequence of distributions and to
optimize the parameters to give a ‘best fit’ to the sample points [Grigoriu, 1983].

3.3.5 Number of Samples Required

An estimate of the number of simulations required for a given confidence level may be
made as follows. Since G(X) is a random variable in X, the indicator function I[G(X)
≤ 0] is also a random variable, albeit with only two possible outcomes. It follows from
the central limit theorem that the distribution of J1 given by the sum of independent
sample functions (3.7) approaches a normal distribution as N → ∞. The mean of this
distribution is (cf. A.160):

E(J1) =
N∑

i=1

1
N

E[I(G ≤ 0)] = E[I(G ≤ 0)] (3.8)

which is equal to J (see 3.7), while the variance is given by (cf. A.161):

𝜎2
J1
=

N∑
i=1

1
N2 var [I(G ≤ 0)] =

𝜎2
I(G≤0)

N
(3.9)

This shows that the standard deviation of J1 and hence of the Monte Carlo estimate
(3.7) varies directly with the standard deviation of I( ) and inversely with N1/2. These
observations are important in determining the number of simulations required for a
particular level of confidence. To actually calculate confidence levels, an estimate of 𝜎I( )
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is required. Using (A.11), the variance is given by;

var[I( )] = ∫…∫[I(G ≤ 0]2 dx − J2 (3.10)

so that the sample variance is given by:

S2
I(G≤0) =

1
N − 1

⎛⎜⎜⎝
{ N∑

j=1
I2 [G (

x̂j
)
≤ 0

]}
− N

{
1
N

N∑
j=1

I
[
G
(
x̂j
)
≤ 0

]}2⎞⎟⎟⎠ (3.11)

where the last {} term is simply the mean (3.8) or, by (3.7) the estimate J1 for pf .
On the basis that the central limit theorem applies, the following confidence statement

can be given for the number (J1) of trails in which ‘failure’ occurs:

P
(
−k𝜎 < J1 − 𝜇 < +k𝜎

)
= C (3.12)

where 𝜇 is the expected value of J1 given by (3.8) and 𝜎 is given by (3.9). For confidence
interval C = 95%, k = 1.96, as can be verified from standard normal tables (see
Appendix C). As 𝜎 is not known, it may be estimated from (3.24b). However, this is not
very helpful at the beginning of a Monte Carlo study.

Shooman (1968) has suggested that 𝜎 and 𝜇 in (3.25) can be approximated by the
binomial parameters 𝜎 = (Nqp)1∕2 and 𝜇 = Np μ, with q = 1 − p, (cf. (A.20) and (A.21))
provided that Np ≥ 5 when p ≤ 0.5. If these are substituted in (3.25), there is obtained:

P
[
−k(Nqp)1∕2 < J1 − np < +k(Nqp)1∕2] = C (3.13)

If the error between the actual value of J1 and the observed is denoted by 𝜀 = (J1 −
Np)∕Np and this is substituted into (3.13), it follows easily that 𝜀 = k[(1 − p)∕Np]1∕2.
Thus, if N = 100 000 samples, and p = pf = 10−3 (expected), the error in (J1) and hence
pf will be less than 20% with 95% confidence (as then k = 1.96).

Broding et al. (1964) suggested that a first estimate of the number N of simulations
for a given confidence level C in the failure probability pf can be obtained from:

N >
− ln(1 − C)

pf
(3.14)

Thus, for a 95% confidence level and pf = 10−3, the required number of simulations is
more than 3000. The actual number of variates to be calculated is, of course, N times
the number of independent basic variables. Others have suggested that the number of
simulations may need to be of the order of 10 000 to 20 000 for approximately 95%
confidence limit, depending on the function being evaluated [Mann et al., 1974].

The above ‘rules’, while often useful, do not tell the analyst much about the accuracy
being achieved in any particular Monte Carlo analysis. A useful tool for this purpose is
to plot (or print-out) progressive results of the estimate of pf and its estimated variance
as obtained from (3.7) and (3.11) respectively. Typically such plots (see Figure 3.3) will
show that these measures are reduced as the number of samples is increased and that
a degree of stability is reached at a sufficiently high number of samples. However, the
rate of convergence and its stability depend to some extent on the quality of the random
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Estimated
Failure Probability

Estimated
standard deviation

Number of samples N

pf

Figure 3.3 Typical convergence of probability estimate with increasing sample size (schematic).

number generator being used. Hence it is possible for apparent stability to be attained
under some (unfavourable) circumstances.

Example 3.3 The stress resultant S acting on a member in tension has statistical prop-
erties estimated to be N(10.0, 1.25). The resistance R is estimated to be N(13.0, 1.5).
What probability of failure is estimated using the ‘crude’ Monte Carlo method, if R and
S are independent?

Using integral (1.16), both R and S need to be simulated. For convenience, only ten
random sample variates r̂ and another ten random sample variates ŝ are given below, but
generally more samples will be required. For a sample for R, say, select a random number,
say, û1 = 0.9311 from a table of random numbers (e.g. Appendix E). Then following (3.4)
and Figure 3.1, x̂1 = Φ−1(û1) = +1.49 from standardized Normal tables such as given in
Appendix D. The sample value r̂ then follows directly (cf. Section A.5.7):

x̂1 = 1.49 =
r̂1 − 𝜇R

𝜎R
=

r̂1 − 10
1.25

or r̂1 = 15.24 (3.15)

Similar calculations for another nine r̂i (i = 2,… , 10) values and for ten ŝ can be made
using the next 19 values in Appendix E. The ŝ values follow from x̂ = (ŝ − 𝜇S)∕𝜎S. In
particular, using the eleventh random number in Appendix E, ŝ1 can be found to be
10.53. Thus r̂1 > ŝ1.

It will be left to the reader to show that, in this case, only one of the sample pairs
(r̂i, ŝi) led to a failure (i.e. r̂1 ≤ ŝ1) so that pf ≈ 0.1. Obviously more sampling is required.
Since both R and S are Normally distributed, the exact result is directly obtainable from
expression (1.22):

pf = Φ
[

−(13 − 10)
(1.52 + 1.252)1∕2

]
= Φ(−1.54) = 0.0618 (3.16)
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Example 3.4 If the single integral form (1.18) is to be used in a Monte Carlo analysis,
it may be seen from comparison to (3.6) that, in essence, I[ ] is replaced by FR(x). This
means that the value for FR( ) averaged over all samples, is to be estimated. The samples
x̂i themselves are drawn from the probability distribution given by f S( ). This is done
using the inverse transform technique (3.4) to give x̂i = F−1

S (ûi) where ûi is a random
number.

With data as in Example 3.3, the calculation procedure is as follows. Select a random
number from Appendix E, û1 = 0.9311, say. Then the sample value x̂1 is obtained
from x̂1 = F−1

S (û1). In the present case, since S = N( , ), this relationship becomes x̂1 =
Φ−1(û1) = Φ−1(0.9311) = +1.49 where x̂1 is a standardized Normal sample variate. Since
x̂1 = (ŝ1 − 𝜇S)∕𝜎S it follows that ŝ1 = 11.86. With this sample value, FR(ŝ1) is evaluated,
first by calculating the reduced variate, v̂1, say, with v̂1 = (ŝ1 − 𝜇R)∕𝜎R = −0.76, and
then determining FR(ŝ1) = Φ(v̂1) = 0.2237. Similar results can be obtained for nine
more samples, using the next nine random numbers in Appendix E, say. These will
be found to be (0.0631, 0.0188, 0.0918, 0.1075, 0.0075, 0.0136, 0.0005, 0.0021, 0.0036).
The sum of the ten FR(ŝi) samples is 0.532, so that pf ≈ (1∕10) × 0.532 = 0.0532. This is
14% in error compared with the correct result of 0.0618, a reasonable result considering
that only ten samples were used. Clearly the size of the error will depend on the
selection of random numbers, and the number of samples.

3.3.6 Variance Reduction

From expression (3.9) it is seen that the variance 𝜎2
I directly affects the variance of J1

and that the number of samples N inversely affects the variance of J1. This means that
the standard deviation of Ĵ and hence of the Monte Carlo estimate (3.21) decreases
in proportion to N−1∕2. By comparison, for one-dimensional integration, the error in
standard deviation reduces as N−2 for the trapezoidal rule and N−4 for Simpson’s rule
[Dahlquist and Bjorck, 1974]. Obviously the slow convergence of the ‘crude’ Monte
Carlo method is a significant disadvantage for its practical application. It also was
one of the reasons for efforts to develop simplified methods such as those outlined in
Chapter 4. The other approach is to try to find ways to reduce the variance 𝜎2

I for the
estimate of the probability of failure J (3.9). These are the so-called ‘variance reduction’
techniques [Rubinstein, 1981].

Apart from increasing the number of samples, variance reduction can be achieved
only by using additional (a priori) information about the problem to be solved. For
example, from Figure 1.10 it is evident that only sampling in the region of overlap
between f R( ) and f S( ) is likely to prove more interesting than sampling elsewhere.
This observation, generalized, forms the basis for ‘importance sampling’, a powerful
technique that is considered further in Section 3.4 below.

A number of other variance reduction techniques with roughly similar strategies exist.
In each case information about the problem is used to limit the simulation to particular
regions, ideally to regions of significant interest for their contributions to the estimate
of J (3.8), but often rather arbitrarily chosen regions. A good overview of the various
strategies for variance reduction in general Monte Carlo work is given by Rubinstein
(1981) and by Warner and Kabaila (1968) in relation to some techniques for structural
reliability calculations.
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3.3.7 Stratified and Latin Hypercube Sampling

Stratified and Latin Hypercube sampling use the common idea that the sampling space
be divided into strata (or hypercubes) and that only a few of the many possible samples
be selected in each strata (or hypercube) for inclusion in the estimation of the integral J .
The samples used from within each strata (or hypercube) can be randomly selected from
those that would otherwise be used, or, for example, the mean or central point might
be used as the one representative value. The evaluation of J then uses these selected
values, weighted by their probability of occurrence. Latin hypercube sampling considers
all the random variables, whereas stratified sampling might be done in only one (say)
dimension [Rubinstein, 1981; Olsson et al., 2003].

For convenience, consider the special case in which all the random variables
xi (i = 1,… , n) are each divided into the same number of strata, say N . It is convenient
also to make the divisions such that the probability of xi falling in each stratum is 1/N .
Now, select a representative value for each stratum and for each random variable.
In principle more values could be selected, but this also can be achieved by using
a greater number of strata. To now estimate J the procedure is to use just one of
the (N) representative values for each random variable xi (that is, selected from one
of the strata) in a combination with a selected representative value from each of
the other random variables. This collection of representative values forms a sample
set. The process is repeated, selecting from the remaining representative values,
thereby forming another sample set, and so on. In the end there will be N sample
sets. These can be interpreted directly as the number N of sample vectors selected
in Monte Carlo sampling and thus can be used directly in (3.2), with evaluations
of the limit state function using the present sample sets, to estimate J (and thus
pf ). Latin hypercube sampling can be combined also with other variance reduction
techniques, such as importance sampling [Olsson et al., 2003], although it is generally
considered to be most suitable for small-scale simulation problems [Huntington and
Lyrintzis, 1998].

3.4 Importance Sampling

3.4.1 Theory of Importance Sampling

The multiple integral (1.31) can be written as in (3.6) using the indicator function I[ ],
or, equivalently, as:

J = ∫…∫I[G(x) ≤ 0]
fX(x)
hV(x)

hV(x)dx (3.17)

where hV(v) is termed the ‘importance-sampling’ probability density function. Its defi-
nition is considered in detail below. Again by comparison with (A.10), expression (3.17)
can be written as an expected value:

J = E
{

I[G(v) ≤ 0]
fX(v)
hV(v)

}
= E

(
If
h

)
, say (3.18)
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where V is any random vector with probability density function hV(v). Obviously it is
required that hV(v) exists for all valid v and that fX(v) ≠ 0. Comparison with Section 3.3.4
shows that I[ ] there is here replaced by I[ ] f /h.

An unbiased estimate of J is given by (cf. 3.21):

pf ≈ J2 = 1
N

N∑
j=1

{
I[G

(
v̂j
)
≤ 0]

fx
(

v̂j
)

hV
(

v̂j
)} (3.19)

where v̂j is a vector of sample values taken from the importance sampling function
hV( ).

It should be clear that hV( ) describes what might be termed the ‘topographic’
distribution of sample values of V in x space. How this distribution should be chosen is
quite important. By direct analogy with (3.9) and (3.10), the variance of J2 is given by:

var(J2) = var
(

If
h

)/
N (3.20)

where

var
(

If
h

)
= ∫…∫

{
I[ ]

fX(x)
hV(x)

}2

hV(x)dx − J2 (3.21)

Clearly (3.21) should be minimized so as to minimize var (J2). If the function hV( ) is
selected as

hV(v) =
||I[ ] fX(v)||

∫…∫ ||I[ ] fX(v)|| dv
(3.22)

then upon substitution into (3.21) it is easily found that

var
(

If
h

)
=

(
∫…∫ ||I[ ] fX(v)|| dv

)2
− J2 (3.23)

If the integrand I[ ] f X(v) does not change sign, the multiple integral is identical with
J and var(I.f ∕h) = 0. In this case the optimal function hV( ) is obtained from (3.22) as:

hV(v) =
I[G(v) ≤ 0] fX(x)

J
(3.24)

At first sight this expression is not very helpful since the very integral to be determined,
J , is needed. However, progress can be made even if only an approximate value can be
estimated for. Then the variance can be reduced using (3.21) or (3.23). Evidently, it is
desirable that hV( ) should have the form of the integrand of (3.6), divided by the estimate
for J. It should be clear that the variance is reduced if hV(v)∕I[ ] fX(v) ≈ constant < 1
[Shreider, 1966].

If the integrand does change sign, then the addition of a sufficiently large constant may
adapt it to the above form. A weaker result when the integrand does change sign also
can be given [Kahn, 1956; Rubinstein, 1981].
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From (3.23) it follows that a good choice of hV( ) can actually produce zero variance
in the estimate for J for the special case of non-negative integrand. This may seem to be
a surprising result. However, it demonstrates that the more effort is put into obtaining
a close initial estimate of J in equation (3.24), the better the Monte Carlo result will be.
Conversely, and importantly, the variance is likely to be increased by using a very poor
choice of hV( ) [Kahn, 1956].

3.4.2 Importance Sampling Functions

While in general the derivation of optimal hV( ) functions is difficult, appropriate
functions often may be selected on a priori grounds. Thus, in the n-dimensional
reliability problem, the region of most interest is the hyperzone G(x) ≤ 0 and, more
particularly, the region of greatest probability density within that zone. This is the
region just to the right of the point x∗ shown for a two-variable problem in Figure 3.4.
In general the region cannot be identified easily as there are no simple criteria with
which to work. However, a surrogate for identifying the region of interest is to identify
the point x∗. In this case the point x∗ is the point having the largest ordinate f X(x) on
the limit state function. This point is known also as the point of ‘maximum likelihood’.
For most probability density functions f X(x), the point x∗ may be found by the direct
application of numerical maximization techniques. In some cases, such as when f X(x)
has a rectangular distribution, no unique maximum point x∗ may exist. This is not as
critical as it may seem at first, since pf is usually quite small, and therefore the region
of f X(x) satisfying G(X) < 0 also is small. In consequence, the choices for location of an
appropriate point x∗ are limited and may be made rather arbitrarily within G(X) < 0,
although a point close to the maximum mass location of f X(x) is likely to be preferable.

Once x∗ is identified, one approach for choosing hV( ) is simply to use the distribution
f X(x) shifted so that its mean is at x∗ [Harbitz, 1983]. However, a more appropriate
distribution for hV( ) is considered to be hV( ) = Φn(v,CV ), where CV is a strictly diag-
onal matrix of 𝜎2

i and with the mean of V placed at x∗. Such a distribution will produce

Safe region

x1

x2
G(x) = 0

Contours of hV( )

Unsafe
(failure region)

0

x*O

Contours of fX( )

Figure 3.4 Importance sampling function hv( ) in x space.
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sample points unbiased with respect to each variable. It also will give greater sampling
density in the neighbourhood of the region where it is of most significance. The choice
of x∗ as the locating point for hV( ) has the obvious advantage that it gives a systematic
procedure for its selection. As can be seen from Figure 3.4 for two-variable problems,
the shape or format of the limit state function G(X) = 0 is of little importance, since
with hV( ) centred at x∗, a wide region is included in the sample space. This means that
problems with non-linear regions are handled as easily as those with linear limit state
functions. Similarly, the format of f X(x) is of little significance, and dependence between
the Xi, such as indicated schematically in Figure 3.4, does not affect the procedure.

It is also seen that, unless G(X) = 0 is a very non-linear function, the ‘success’ rate
for sample points selected from hV( ) is about 50%, i.e. there is an approximately equal
likelihood of any sample point falling in either the safe or the unsafe region. It follows
directly that for a given level of confidence, far fewer sample points are required using
hV( ) as shown, than using the ‘crude’ Monte Carlo method with f X(x) as sampling
distribution [Melchers, 1984; Enguland and Rackwitz, 1993].

An approximate measure of the relative efficiencies of the two methods can be
obtained by considering the number of sample points required to obtain a given
number of points (say 100) in the ‘failure’ region. Assuming a ‘success’ rate of 50%,
for a linear limit state function with hV( ) centred on the ‘design’ point x∗, on average
some 200 points need to be generated with importance sampling. By contrast, if p is
the probability of a sample point based on f X(x) falling in the ‘failure’ region, then
100/p sample points, on average, need to be generated. Hence, if p is of the order of
10−3 − 10−5, as may be typical, 105 − 107 sample points are required for the ‘crude’
Monte Carlo method. Similar results can be obtained for confidence levels, for example,
using (3.12) with p = 0.5 being the ‘success rate’. An important observation is that, since
hV( ) can be selected by the analyst, it can have independent components V. Unlike the
‘crude’ Monte Carlo technique, for which the generation of correlated or dependent
random variables X may be required (since f X(x) is the sampling function!), no such
requirement exists for importance sampling. Because of the complexity of obtaining
dependent random variables (see Appendix B), this is sufficient reason in itself to use
importance sampling instead of ‘crude’ Monte Carlo.

Example 3.5 Example 3.4 will now be repeated using importance sampling. With
R being N(13, 1.5) and S being N(10, 1.25), a reasonable choice for the importance
sampling function is N(11.5, 1.3). Hence, the random numbers ûi(identical with those
used in the earlier examples, to enable comparison) are transformed to sample values x̂i
through the inverse Normal transformation. The first four lines of calculation are shown
in Table 3.1. The sampling function is then evaluated as 𝜙(ŷi) where ŷi = (x̂i − 𝜇V )∕𝜎V .
The function FRf S/hV takes the place of I[ ] f X/hV in equation (3.17). For ten samples,
it will be found that pf ≈ (1∕10) × 0.478 = 0.0478.

Experimentation with sample size and lV( ) will show that sensible selection of hV( ) is
required if rapid convergence is to be achieved. As a general rule, the standard deviation
𝜎Vi

for variable Xi should increase the further x∗
i lies from 𝜇Xi

[Melchers, 1984].

3.4.3 Observations About Importance Sampling Functions

The importance sampling function suggested in the previous section has been shown to
be very effective and robust when applied to a range of possible shapes of the limit state
function [Engelund and Rackwitz, 1993; Melchers and Li, 1994]. Nevertheless, there are
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Table 3.1 Example 3.5: Importance sampling.

ûi
x̂i = F−1

i (ûi)
= 𝚽−1(ûi)

v̂i =
1.3x̂i + 11.5

hV (v̂i)
= 𝝓(ŷi)

FR(v̂i) fS(v̂i)
FR(v̂i)fS(v̂i)

hV (v̂i)
r̂i =

v̂i − 13

1.5

FR(v̂i) =
𝚽(r̂i)

ŝi =
v̂i − 10

1.25

fS(v̂i) =
1
𝝈S
𝝓(ŝi)

a)

0.9311 +1.49 13.44 0.1315 0.29 0.6141 2.75 0.0073 0.0340
0.7163 +0.57 12.24 0.3391 −0.51 0.3050 1.79 0.6432 0.0578
0.4626 −0.09 11.38 0.3973 −1.08 0.1401 1.10 0.1743 0.0614
0.7895 +0.80 12.54 0.2897 −0.31 0.3783 2.03 0.0406 0.0530

a) Obtained from 𝜙(s) = [1∕(2𝜋)]1∕2 exp
(
− 1

2 s2) or from a table of standard normal probability
distribution functions.

x2

x2*

x1* x1

X*

Contours of hV( )

Limit state function G( ) = 0

Contours of fX( )

Figure 3.5 Highly concave limit state function in two dimensions showing obvious inefficiency of the
importance sampling density.

some matters which must be considered as possible limitations. These are [Melchers,
1991]:

(1) hV( ) may not be well-chosen, such as being too ‘flat’ or being skewed;
(2) extremely concave limit state functions may lead to low sampling efficiency (see

Figure 3.5);
(3) a unique point of maximum likelihood x∗ may not be identifiable (e.g. Figure 3.6):

(a) when f X( ) has a ‘flat’ contour region;
(b) when the limit state function G( ) = 0 coincides with a contour of f X( ) in a region

of interest; or
(c) when the limit state function G( ) = 0 is non-smooth (e.g. ripple-like) and has a

number of candidate locations for x∗;
(4) there may be more than one point of local maximum likelihood such as when f X( )

is not uni-modal.
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x2

x1

Safe domain

Failure domain

Limit state function G ( ) = 0

Contours of fX ( )

Figure 3.6 Situations in which X∗ is not unique.

x2

x1*

x*

x2*

Contours of fX( )
x1

G2( ) = 0 Failure domain

Safe domain

Limit state function G1( ) = 0

Contours of hV( )

Figure 3.7 Poor choice of hv( ) for case with two candidate points of maximum likelihood.

Examples of these matters can be found in the literature. For example, Figure 3.7 shows
a case where hV( ) was centred at a point midway between the two points of maximum
likelihood. This case would be better treated with a multi-modal hV( ) as discussed in
Chapter 5 for structural systems with multiple limit state functions [Melchers, 1991].
It is important to note that not all the above issues are confined only to importance
sampling. Thus points (2), (3) and (4) also produce difficulties for the FOSM methods
considered in Chapter 4.

Generally, the hV( ) should attempt to mirror as closely as possible the shape of the
failure domain. Thus when the limit state function forms a surface which is close to
spherical, or partly so, an appropriate hV( ) could be obtained by using a multi-normal
probability density function centred at or near the origin of the ‘spherical’ limit state
system and censoring all samples which would lie in the safe domain. In two dimensions
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the resulting hV( ) is then like a doughnut with a hole in the middle. However, this rather
special problem is better handled by directional simulation (see Section 3.5 below).

The above examples reinforce the comment [Kahn, 1956] that the choice of hV( )
involves a certain amount of intuition or ‘art’. This is not particularly satisfactory for
problems in high-dimensional spaces and which therefore cannot be visualized. Various
suggestions have been made to develop procedures to obtain an ‘optimal’ hV( ) for a
given problem without the need for visualization. The more important and realistic of
these are considered in the next section.

3.4.4 Improved Sampling Functions

As noted in Section 3.4.1 the importance sampling process becomes more efficient as
the sampling function hV( ) becomes more closely proportional to f X( ) in the failure
region. Various suggestions have been made to attempt to optimize hV( ) in some way.

One simple observation is that it may be possible to ‘censor’ part of the region included
by hV( ), that is, sampling is prevented in a region for which it is clear there will be no
contribution to the estimate of the failure probability. In Figure 3.8, the region fX( ) >
fX(x∗) can be censored for samples taken from hV( ) centred at x∗ as points in this region
cannot make a contribution [Melchers, 1989]. An exactly parallel case [Harbitz, 1986]
exists in the standardized Normal space y with the censored region described by the
circle having radius 𝛽, the safety index – see Chapter 4.

Another possibility for improving the importance sampling function is to select a
trial hV( ) and to perform some initial sampling. From this information, hV( ) could
be modified in some way in an attempt to improve the rate of convergence to the
probability estimate. One proposal is to let hV( ) be a composite of k elementary
pre-selected sampling densities hVj( ):

hV(x) =
k∑

j=1
wjhVj(x) (3.25)

x2

x1

fX( ) < fX(x*)

fX( ) > fX(x*)

Failure domain D

Contours of fX( )

x*

Limit state function
 G( ) = 0

Figure 3.8 Censored region fX( ) > fX(x∗) for importance sampling about x∗.
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where wj, j = 1,… , k are weights whose values are selected to let hV( ) approach as
closely as possible the shape of f X( ) within the failure region. If the hVj( ) are selected
as components of f X( ) but with smaller standard deviation, and each centred at some
initial sample point x̂∗

j , the weights wj can be chosen as (Karamchandani et al., 1989):

wj =
fX

(
x̂j
)

k∑
r=1

fX
(

x̂r
) (3.26)

where x̂j is a sample vector. This means that the weights wj are proportional to the
contribution the sample vector x̂j makes to the (current) estimate of the probability.
Once the weights are established from preliminary sampling, further sampling can
be done and the process repeated to establish new weightings and a better estimate
of the failure probability. To prevent clustering of newly obtained sampling densities
hVj( ) around previously obtained densities, sampling points located closer than some
distance d0 from the centre of the current sampling densities hVj( ) might be ignored.

A slightly different approach is to modify hV( ) by changing the weights wj in (3.25) so
as to minimize the variance in the estimate of the failure probability pf [Ang et al., 1989;
1991]. This can be done with a limited amount of Monte Carlo sampling to estimate pf
for setting the weights (or ‘kernels’). With an a priori choice for the form of each hVj( ),
sampling from the constructed sampling density function hV( ) obtained from (3.25)
will allow refinement of the estimate for pf .

In both techniques the location of the initial hVj( ) is based on the samples x̂j obtained
from an initial sampling scheme (either Monte Carlo or some importance sampling).
This means that the effectiveness of further sampling in developing an improved
sampling density function depends very much on the initial samples and therefore on
the sampling distribution from which they were drawn. Moreover, it has been assumed
that convergence is assured. In addition, assumptions need to be made a priori about
appropriate initial or component sampling densities. More ambitious schemes, in
which the sampling densities are modified as more information becomes available with
additional sampling have been proposed to address these matters.

It has been proposed also that the form of hV( ) can be based on asymptotic notions
(see Section 4.5.3) about the shape and gradient of f X( ) in the region of interest [Maes
et al., 1993]. This approach is useful for very low probability situations and with explicit
limit state functions.

3.4.5 Search or Adaptive Techniques

It has been suggested above that for any one limit state function the ‘best’ location for
the importance sampling probability density is the point of maximum likelihood (or the
design point). Usually, this point is not known and will require a prior analysis to locate
it, particularly for problems of high dimensionality. An alternative approach is to seek
out the point using a search algorithm with the constraint that the point must lie along
the limit state. This would then fix the desired location of hV( ). It is possible also to
modify hV( ), depending on the information being obtained during the search process.

The process commences with the selection of the initial location (described by a mean
vector) and the form (described by a covariance matrix) of hV( ). A limited amount of
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sampling is then carried out. The samples which fall into the failure domain are used
to estimate the conditional mean vector 𝜇X and the covariance matrix CX. These are
then used to update the original mean vector and covariance matrix and hence used
to relocate hV( ) and to change its form [Bucher, 1988]. Alternatively, for those sample
points in the failure domain, the sample point which has the largest value of f X( ) can be
chosen as the best point to which to relocate hV( ) [Melchers, 1989].

One approach for selecting the starting location is to select any point in a region
in which the failure probability is likely to be large [Karamchandani et al. 1989]. This
selection can be refined by evaluating G( ) at the selected point and also at a (any other)
selected point in the safe domain. A better estimate for the point is then obtained by
linear interpolation between the two points, to estimate the point at which G( ) = 0
[Melchers, 1989]. As with all search techniques, there is the possibility that the search
will converge to a sub-optimal point (i.e. there may be several points of local maximum
likelihood – see Figure 3.6).

Whether sub-optimal points should be considered depends on the contribution the
associated probability is likely to make to the overall probability estimate. If the contri-
bution is likely to be small, convergence to sub-optimal points can be guarded against
to some extent [e.g. Der Kiureghian and Dakessian, 1998]. In general, to do so requires
good physical understanding of the problem being solved so as to allow selection of
appropriate starting points. It is also a good strategy to use different starting points.

Where the contribution of local points of maximum likelihood is not necessarily small,
as may arise in structural systems when there are several limit state functions to be
considered, a multimodal sampling function is appropriate. This is discussed further
in Chapter 5.

If all the sample points available at any time are used for estimating the failure
probability, (3.17) becomes [Melchers, 1990a]:

pf = J3 =
N1∑
j=1

{
I
[

1v̂j
]

fX
(

1v̂j
)

N1hV
(

1v̂j
) }

+
N2∑

j=N1+1

{
I
[

2v̂j
]

fX
(

2v̂j
)

N2hV
(

2v̂j
) }

+… etc. (3.27)

where 1hV( ) is the initial importance sampling function from which are drawn N1
samples, 2hV( ) is the modified sampling function from which are drawn the next
set of samples (N2 − N1), etc. and I[khV] is shorthand for I

[
∪m

k=1

{
Gi

(
k v̂j

)
≤ 0

}]
which applies for m limit state functions. If there are n importance sampling distri-
butions used in a search sampling sequence, the total number of samples is given
by N = Nn.

Evidently, the variance of I[ ] f X/khV for each term in (3.27) directly affects the variance
of J3. While the individual sampling densities clearly are not independent, it is intuitively
obvious that convergence will occur and that minimizing the variance for each term will
minimize the overall variance in the limit as N → ∞.

3.4.6 Sensitivity

If the effect of changing one (or more) variables on the failure probability is required to
be evaluated, running two Monte Carlo assessments, with and without the change and
comparing them, is unlikely to be very helpful. This is because the change is obtained
by subtracting the outputs, while the variance for the change is obtained by adding
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the two variances, so that the result sought might have a very large uncertainty. The
problem can be circumvented by employing the same set of random numbers for both
probability estimates. The total variance is then significantly less than for independent
calculations, since the probability estimates are now (highly) correlated. This type of
sampling is sometimes known as ‘correlated’ sampling [Rubinstein, 1981].

If the limit state function is analytic, the differentials 𝜕G∕𝜕Xi will give the sensitivity
of G(X) to a (unit) change in Xi, but values so obtained will not be comparable unless
the variances of the Xi are closely similar and the Xi are independent random variables.
For independent variables, an approximate comparable measure of the sensitivity of
G(X) to a change in Xi is given by ci ≈ (𝜎−1

Xi
) 𝜕G( )∕𝜕Xi. This might be compared

with the sensitivity coefficients 𝛼i to be discussed in Section 4.3.3 for the First Order
Second Moment (FOSM) method. This comparison also provides a way of estimating
sensitivities in Monte Carlo analysis by finding an equivalent FOSM problem and then
using its simple approach for sensitivity estimation to estimate the sensitivities for the
original Monte Carlo problem [Ahammed and Melchers, 2006].

In importance sampling the sensitivity of pf to changes in the random variables
can be estimated as follows. The unchanged pf would be obtained from (3.6), and the
probability estimate for the modified problem (with random variable xi, say, changed)
would be given by:

pf + Δpi = ∫D fX+ΔXi
(x)dx = ∫XI[x]

fX+ΔXi
(x)

hX(x)
hX(x)dx (3.28)

≈ 1
N

N∑
j=1

I[x̂j]
fX+ΔXi

(x̂j)
hX(x̂j)

(3.29)

where the same sample set x̂j is used for evaluating (3.29). The computational effort to
obtain results for (3.29) is rather small since the I[x̂j] terms would have been obtained
already as part of the process of estimating pf using (3.7). This assumes that the sample
space is essentially unchanged by the change to X + ΔXi. The same approach holds
for a change of a parameter 𝜃i from the original parameter set 𝜽 [Melchers, 1991]. The
sensitivity is now given by:

Si = [(pf + Δpi) − pf ]∕Δxi (3.30)

and similarly for 𝜃i.
It is also possible to obtain the sensitivity Si to a parameter 𝜃i (in X or f X or both) by

writing [Karamchandani and Cornell, 1991a]:

Si =
𝜕pf

𝜕𝜃i
= 𝜕

𝜕𝜃i
∫I[x] fX(x)dx (3.31)

3.5 Directional Simulation*

3.5.1 Basic Notions

So far in this book the problem of estimating the probability of failure has been
formulated exclusively in the Cartesian coordinate system. The idea of using a polar
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coordinate system arose from the specialized work of Deák (1980) in evaluating the
multi-variate standard Normal distribution function. This led to simulation in the polar
coordinate standard Normal (y) space and was given the name ‘directional simulation’
[Ditlevsen et al., 1987].

It will be convenient for the present to restrict discussion to the special case of the
standard Normal space, denoted the (y) space here. The basic notion of directional
simulation will be outlined in this section. The next section describes the application of
importance sampling. In Section 3.5.3 discussion reverts to simulation in the original
(x) space.

In the y space let the n-dimensional Gaussian vector Y be expressed as Y = RA (R ≥ 0),
where A is an independent random vector of direction cosines. It represents directions
in the y-space. In the simplest case A is uniformly distributed f A( ) on the n-dimensional
unit (hyper-)sphere Ωn. It follows from elementary probability theory [Benjamin and
Cornell, 1970] that the radial distance R is such that R2 is chi-square distributed with
n degrees of freedom. If R is independent of A, then, by conditioning on A = a the
probability integral (1.31) can be re-written as [Bjerager, 1988]:

pf = ∫aP
[
g(RA) ≤ 0|A = a

]
. fA(a)da (3.32)

where f A( ) is the (constant) density of A on the unit (hyper-)sphere and g( ) = 0 is
the limit state function in y-space. Simulation using (3.32) now proceeds by generating
randomly a standard Normal unit vector âj and moving along the outward direction of
this vector until the limit state function is encountered at R = r (see Figure 3.9), i.e. until
g(r âj) = 0. From this expression r may be determined. Often this must be done by trial
and error. For a particular ‘radius’ r the associated estimate of the failure probability
is the probability content beyond the (n-dimensional) hypersphere of radius r. It is
given by:

pj = P[g(r âj) ≤ 0] = 1 − 𝜒2
n (r) (3.33)

y2

y1

Failure domain

Realization of
limit state

Safe domain
0

α

r = R

r

Implicit spherical
limit state function

Figure 3.9 A radial sample in direction A = a and its intersection with the limit state at r = R, showing
also the implicit spherical limit state function.
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where 𝜒2
n ( ) denotes the chi-squared distribution function with n degrees of freedom

(see Section A.5.6). Repeating this for N samples drawn from A allows the unbiased
estimator of the failure probability to be written as

pf ≈ E
(
p̂f
)
= 1

N

N∑
j=1

p̂j (3.34)

and the estimate of the standard deviation as

D
[
pf
]2 ≈ 1

N(N − 1)

N∑
j=1

(
p̂j − E

[
p̂f
])2 (3.35)

The chief advantage of the above formulation is that 𝜒2
n ( ) can be evaluated analyti-

cally or by looking up standard tables, thus effectively reducing the order of integration
by one dimension. Moreover, the directional simulation approach is particularly useful
for limit state surfaces which are nearly spherical (in standard Normal space y) as in this
case all or most directional samples âj will contribute to (3.34). For this type of problem
the amount of sampling required may be reduced considerably compared to importance
sampling in Cartesian coordinates – one such case of practical importance is discussed
in Section 3.5.4. Further, for the (very) special case of a single (hyper-)spherical limit
state surface in standard Normal space, only one directional sample is required (to fix
the radius) and (3.33) would give the ‘exact’ result immediately. (The parallel situation
to importance sampling should be evident – compare with Section 3.4.1). However,
the technique is not very efficient for one or few planar limit states [Engelund and
Rackwitz, 1993].

Some practical points are:
(1) a sample outcome âj of A can be obtained by generating a sample ûj of U and then

using âj = ûj∕‖ûj‖ where ‖ûj‖ is the norm and ûj is a sample vector with each
component drawn from the uniform distribution (Ditlevsen, et al. 1988);

(2) sampling efficiency can be improved through the use of anti-thetic variables for
samples âj (and −âj) (Rubenstein, 1981);

(3) the solution to g(r âj) = 0 may be multi-valued, as sketched in Figure 3.10 (Bjerager,
1988; Engelund and Rackwitz, 1993), so that care is required in specifying the limit
state function; and

(4) the limit state function need not be known explicitly to solve for g(r âj) = 0.
However, if an explicit form is required, use can be made of response surfaces
(see Chapter 5).

3.5.2 Directional Simulation with Importance Sampling

Still operating in the y space, importance sampling can be applied with direction simu-
lation to modify the uniform density on the unit sphere f A( ) if particularly interesting
directions A can be identified. Following the same principle as in (3.17), expression
(3.32) is modified to

pf = ∫bP
[
g(RB) ≤ 0 |B = b

] fA(b)
hB(b)

hB(b)db (3.36)
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y1

y2
Contours of fX( )

C
r2

r3
r1

Limit state function
g( ) = 0

Failure domain D

α

Figure 3.10 Multi-valued solutions for g(r âj) = 0 in standard normal space.

where hB(b) is the importance sampling probability density function on the unit sphere.
For any sample b̂j generated from hB(b), the corresponding sample value of the failure
probability is

pj = P
[
g(R b̂j) ≤ 0

] fA(b̂j)

hB(b̂j)
(3.37)

which may be used in (3.33), (3.34) and (3.35) above. Evidently, hB(b) must be non-zero.
As before, in principle the ideal sampling density function would predict pf imme-

diately. In practice some knowledge of the characteristics of the problem may help
to obtain a suitable choice for hB(b). Some assistance can be derived in the standard
Normal space y from identification of the design points (see Figure 3.4 and Chapter 4).
Ideal sampling densities are available for only some idealized cases, including a plane
in n-dimensional space [Bjerager, 1988]. More generally, a composite sampling density
may be defined as

hc
B(b) = (1 − q). fA(b) + q. fB(b) 0 ≤ q ≤ 1 (3.38)

An example is given in Figure 3.11 for the two-dimensional standard Normal space.
The value selected for q is arbitrary. However, the extreme values q = 0 and q = 1 corre-
spond to one or other of the component sampling densities having no influence, and this
should provide considerable information about the form of the limit state surface. The
technique has been applied to the reliability analysis of ideal plastic frames [Ditlevsen
and Bjerager, 1989].

3.5.3 Generalized Directional Simulation

Directional simulation can be formulated also in the original (x) space, although the
advantage of being able to apply the chi-squared distribution is lost.

Consider now an x space and a corresponding polar coordinate system so selected
that both are centred at a convenient location such as the point c = 𝜇X(original) where
𝜇X(original) represents the vector of the means of the random variables Xi in x space. It will
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y2

y* = β α

y1
Safe domain

Failure domain g(y) < 0

Limit state function g(y) = 0

0

qfB( )

(1-q)fA( )

α

β

Figure 3.11 Composite sampling function hc
B(b).

be advantageous also to consider re-scaling the various random variables Xi such that
their units of measurement are approximately consistent – this will assist with obtaining
reasonable sampling functions [Ditlevsen et al., 1990].

The probability integral (3.17) can now be written in polar coordinates as

pf = ∫…∫A∫R I[ ] fX(ra) r(n−1)dr da (3.39)

where A is the random directional unit vector (i.e. the direction cosines), R ≥ 0 is the
radius, a random variable with n degrees of freedom and defined such that X = R.A and
A = X∕‖X‖,R = ‖X‖. As for directional simulation in the standard Normal space, R is
not necessarily independent of A. With Ej defined as the expectation operator over j,
(3.39) may be written in a form directly suitable for sampling over A and R:

pf = EA ER
{

I[ ] r(n−1)} (3.40)

or, for sampling only over A and integration along R:

pf = SAEA

{
∫R I[ ] fX|A(ra|a)r(n−1)dr

}
(3.41)

where SA is the surface area of the n-dimensional unit hypersphere and fX|A( ) is the
probability density function in X, conditioned on A = a in the radial direction. Com-
paring (3.41) with (3.33) and (3.34) shows that the chi-squared component has been
replaced by the integral {} in (3.41).

Importance sampling may be added to the above. Thus if

hZ (r.a) = hA (a) .hR|A (r |a) (3.42)

is an importance sampling density function such that Z = R.A and if hR|A( ) is the
sampling density function for the radial direction and hA( ) is the sampling density
function on the unit sphere, as before, then expressions (3.40) and (3.41) become,
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respectively [Melchers, 1990b]:

pf = SAEA ER

{
I[ ]hA(a)

fX(r a) r(n−1)

hR|A(r|a)
}

(3.43)

with radial integration by simulation and

pf = SAEA

{
∫R I[ ]

fX|A(r a|a) r(n−1)dr
hA(a)

}
(3.44)

with explicit analytical radial integration.
Note that each of the importance sampling function hA( ) and hR|A( ) can be given

appropriate properties, depending on the understanding the analyst has of the problem.
The special case for a uniform (i.e. constant) probability density over the unit sphere
corresponds simply to hA = 1∕SA where SA is the ‘surface area’ of the n-dimensional
unit sphere [Melchers, 1990b]. Also, in considering the importance sampling function
hR|A( ) in the radial direction it might be noted that the limit state function usually is
some considerable distance from the mean or from the point c = 𝜇X(original). This suggests
that hR|A( ) could have a form which is rather low in value within the safe region and
increasing with the probability of encountering a limit state as r increases.

A comparison of directional simulation in the standardized Normal space y (as
in Section 3.5.1) (after transformation of the problem from the original space, see
Chapter 4 and Appendix B) with directional simulation directly in the original space x
shows that, for a simple problem, the results are comparable in accuracy and efficiency
[Ditlevsen et al., 1990].

3.5.4 Directional Simulation in the Load Space

Rather than formulating the problem in the polar coordinate space for all the random
variables and processes, it is possible for many problems to separate the loads from
the resistances and to use the load (process) space for directional simulation. This
way of using directional simulation has been applied mainly to structural systems
(see Chapter 5) and for situations where the loads must be represented as processes
(see Chapter 6). In the following the basic concept is described, together with the man-
ner in which the structural strength of the structure can be developed. Applications to
systems and to load processes are considered in Chapters 5 and 6.

3.5.4.1 Basic Concept
Consider the m-dimensional space of load processes Q(t) and let this be the space in
which directional simulation will be performed. Typically it will be of low order, since
there are usually only a few loads acting on a structure. In the case of only one load, there
will be only one axis and the following discussion degenerates to the formulation (1.18)
and to Figure 1.9 as discussed in Chapter 1.

Let the structural resistance in the load space be described by R = R(X) where each
component of R corresponds directly with one component of Q. The joint probability
density function of R is given by f R( ). The n-dimensional vector X contains random
material strengths, dimensions, etc. and also could contain any uncertainties in the
specification of the load processes. It then follows that the conventional limit state
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q2

q1

Mode 1
Mode 2

Realizations of limit states

Mode 3S

α

fS|a( )

Figure 3.12 Two-dimensional load space showing a typical directional simulation and the
probabilistic description of limit states and some realizations.

function G(x) = 0 is represented as a probabilistic ‘boundary’ in the load process space
(see Figure 3.12).

It follows from (1.18) and (3.32) that the probability of failure now can be expressed
as [Corotis and Nafday, 1989]:

pf = ∫unit sphere fA(a)∫
∞

0 FR|a(s |a) fs|a(s |a)ds da (3.45)

where fS|A( ) is the conditional probability density function for the m-dimensional load
(process) vector Q(t) and FR|A( ) is the conditional cumulative probability distribution
function for the structural resistance R = R(X), both for a given radial direction A = a.
Also R = S.A + c where c is the point selected as the origin for directional simulation
(see previous section) and S is a (scalar) radial distance representing the (conditional)
structural strength in the radial direction, with conditional pdf fS|A( ). As before, it is
possible to apply importance sampling notions to make A have preferred orientations.

Since FR|A(s |a) = P[R < s] |A=a = pf (s |a) a more direct expression is [Melchers, 1992]:

pf = ∫unit sphere fA(a)
[
∫S pf (s |a) . fS|A (s |a)ds

]
da (3.46)

where now pf (s |a) is a conditional failure probability. This term can be evaluated for
each radial direction using any of the methods for evaluating the basic probability
integral (1.18), including (i) direct integration (see Section 1.4.5 and the early part of
the present Chapter), (ii) simulation methods (as in Sections 3.3 and 3.4) and first order
second moment (FOSM) and first order reliability (FOR) methods (as described in
detail in Chapter 4).

Expression (3.46) forms the basis for directional simulation in the load space, with
either one or both integrals replaced by an expectation operator, as was done in the
previous section [Ditlevsen et al., 1990; Melchers, 1992]. To make (3.46) operational, the
two terms in the second integrand must be available: the conditional failure probability
pf (s |a) and the variation of structural strength fS|A( ), both a function of the distance s
along the radial sampling direction.
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The conditional failure probability pf (s |a) is the probability that the structure will
fail for a given value S(X) = s of the structural strength along the direction A = a. This
is now a one-dimensional problem. Hence the result can be obtained readily from the
convolution integral (1.18) with fixed strength. The necessary loading probability den-
sity function fQ|A( ) can be obtained from the complete loading probability description
f Q(t)(q) by taking the conditional function for the sample direction A = a.

As was noted in Section 1.4.1 (and as discussed in more detail in Chapter 6) this way
of handling the problem applies strictly only for one load system applied only once. It is
therefore useful as an estimator of structure failure probability when the structure is first
loaded or under extreme loading (with an appropriate choice of load pdf – see Section
1.4.1). Multiple loadings, unless they are fully dependent, require consideration as load
processes (see Chapter 6).

3.5.4.2 Variation of Strength with Radial Direction
Both expressions (3.45) and (3.46) require the evaluation of fS|A( ) [or FS|A( )], the
variation of structural strength with distance along the radial direction (Figure 3.13).

If the limit state expression G(x) = 0 is known explicitly, fS|A( ) can be evaluated by
multiple integration along the radial direction S, that is, for a given A = a [Melchers,
1992]. Alternatively, the first two moments of S can be estimated from the first two
moments of the random variables X which contribute to it. The relationships which
are needed are R = R(X) and R = S.A + c from which it follows that S = S(X) |A = a.
Hence:

𝝁S = E[S] ≈ S(𝝁X) |A=a (3.47)

var (S) ≈
n∑
i

n∑
j

cicj cov(Xi,Xj) |A=a (3.48)

where ci ≡
𝜕S(x)
𝜕Xi

|𝜇X,a and cov (Xi,Xi) = var (Xi) and cov (Xi,Xj) = 0 (i ≠ j) if Xi and Xj are
independent. Then fS|A ( ) and FS|A ( ) can be determined immediately. The situation
becomes more complex if there are several limit state functions (see Chapter 5).

cdf of G( )|α

fS|A( ), FS|A( )

pdf of G( )|α

q2

q2 = r2

q1 = r1 q1

1

α s

Realization of strength
limit state

Figure 3.13 Schematic directional simulation in the load space showing variation of structural
strength along a sample radial direction.
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For some problems, such as those involving a finite element routine for the structural
analysis, the limit state functions are not known explicitly. In this case so-called response
surfaces may be used as surrogates for the actual limit state function(s) (see Chapter 5).
Then, for directional simulation, FS|A ( ) can be obtained for any A = a and any S = s by
considering the structure subject to a deterministic loading q = r(x) at various points
along the radial sample direction S and noting that pf (s)|a = Pr (S < s)|a = FS|a(s) for any
A = a. From this, FS|A ( ) may be constructed through evaluation at different points s
along the radial direction A = a. By differentiation (numerically perhaps) fS|A ( ) can be
obtained.

Finally, a third possibility is to use simulation along A = a to estimate fS|A ( ) and
fR|A ( ) directly [Melchers, 1992]. However, this is computationally expensive, and is
essentially equivalent to finding a solution by ‘crude’ Monte Carlo simulation. This
possibility should therefore be avoided if possible.

As already noted, an important assumption underlying the above technique of
directional simulation in the load space is that the limit state is independent of the
realizations of the load (processes). In other words, the limit state function is assumed
to be ‘load-path independent’. This is an important assumption, particularly for
structural systems since for these the ultimate limit state function(s) may be dependent
on violations of other limit states. In other words, they are functionally dependent on
previous realizations. More detailed comments and discussion are given in Chapter 5.

3.5.4.3 Line Sampling
A variation of the above is so-called ‘line’ sampling. It seeks to find the direction 𝜶 of
a radial line from the origin in the space of the random variables x that points to the
region that contributes the most to the failure probability [Koutsourelakis et al., 2004].
In 2-dimensional space (Figure 3.9) the point x̂ on the limit state function could be
considered as the point to represent such a region. Other possibilities are the region
with the highest rate of change (gradient) in the 𝜶 direction or (less accurately) the
centre of mass of much of the failure region [Pradlwarter et al., 2005]. Once such a
line is identified, the approach is to generate a series of points, randomly, within the
identified failure domain and use these in conventional Monte Carlo to estimate the
failure probability, allowing, as in importance sampling, for the bias in those points. To
generate those points, Markov Chain Monte Carlo simulation based on a user-supplied
probability density function has been proposed [Pradlwarter et al., 2005]. This increases
the computational effort. A further possibility is to transform the problem to the
standard Normal space and then use some of the approximate techniques described
in Chapter 4. An application of line sampling to a fracture mechanics problem has
been described by Pedroni and Zio (2009) and to several bench-mark problems by
Pradlwarter et al. (2007).

3.6 Practical Aspects of Monte Carlo Simulation

3.6.1 Conditional Expectation

In cases where at least one of the random variables in X in (1.31) is an independent
random variable, the Monte Carlo process can be made more efficient by reducing the
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order of integration. To illustrate this approach for one random variable, select the inde-
pendent random variable with the largest uncertainty (variance). Let this be X1 for the
discussion to follow. Expression (1.31) can then be rewritten as:

pf = ∫G(x)≤0∫n fX(x)dx = ∫G(x′)≤0∫n−1FX1
(u) fX′ (u)du (3.49)

where X′ represents the reduced vector of random variables. This form may be used as
a basis for a Monte Carlo technique known as ‘conditional expectation’. The unbiased
estimator for (3.49) is given by

pf ≈
1
N

N∑
j=1

FX1
(x̂1j) (3.50)

where, for the jth trial, x̂1j is the jth value of X′
, obtained from the limit state equation

G(X) = 0 when it is solved for x1 with all other random variables Xi, (i = 1, … , n − 1)
represented by the vector of generated sample values x̂j. Hence, the simulation
procedure generates a sample x̂j, which satisfies the limit state equation. This is then
used to determine an estimate p̂fj

= FX1
(x̂1j) of the failure probability. By repeating this

process N times an estimate of pf is obtained through (3.50). Expression (3.50) can be
shown to have a smaller variance than the equivalent ‘crude’ formulation [Ayyab and
Haldar, 1984; Ayyub and Chia, 1991; Karamchandani and Cornell, 1991b].

It is possible to continue the conditional expectation process by sequentially con-
ditioning on more of the variables [Au and Beck, 2001]. This has been termed ‘subset’
simulation. One potential issue is that it entails the non-insignificant task of sampling
from conditional probability densities. While successive Markov Chain Monte Carlo
simulations have been proposed as a way of dealing with this (Au and Beck, 2003), it is
clear that the computational requirements are much increased. See also Au et al. (2007).

Several other techniques have been proposed to deal with very large systems. Asymp-
totic Sampling [Bucher, 2009; Sichani et al., 2011a, 2011b] is based on the asymptotic
behavior of failure probabilities as the standard deviation of the random variables tends
to zero. Enhanced Sampling [Naess et al., 2009, 2012] uses the asymptotic behaviour of
failure probabilities as the limit states are moved further and further away from the mean
of random vector X. These techniques have been explored and compared by Santos and
Beck (2015).

Some additional variance reduction may be achieved through ‘anti-thetic’ variates in
which variates in sample sequences are given negative correlation. This variance reduc-
tion technique, as are several others, is discussed in the literature [Rubinstein, 1981].

3.6.2 Generalized Limit State Function – Response Surfaces

Considerable computational problems may arise if G(X) is at all complex to calculate.
This might occur, for example, with a finite element analysis or for iterative calculation
of non-linear material or structural behaviour. If the number of basic variables is
relatively small, some typical calculations for G(X) might be performed so as to cover
the range of values of X likely to be obtained by simulation. These values may then be
used as interpolation points for G(X) each time that a sample vector x̂ is generated.
This procedure is only feasible if G(X) is reasonably regular. It is sometimes referred to
as the ‘response surface’ technique. This is discussed in Chapter 5.
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3.6.3 Systematic Selection of Random Variables

It is important to note that random sampling is not always required for every variable.
If, as would be usual for structural reliability, the samples can be taken sequentially, say
x̂1, x̂2, x̂3, etc., for G(x), then the sampling for X1, say, could be done systematically, rather
than randomly. For example, the interval over which the sampling would be done for X1
could be divided into n equal intervals. For each interval represented by the point i,
(which might be taken as the centre of the interval), the probability density function
would be simply fX1

(xi). In a conventional random sampling of X1, using N samples,
it would be expected that N/n values of X1 would occur in the i-th interval. Hence
N/n values, each equal to fX1

(xi) could be employed. The results are not biased if the
first N/n values for X1 are systematically set at fX1

(x1), the next N/n at fX1
(x2), etc., with

x1 < x2 < x3, etc. [Kahn, 1956].

3.6.4 Applications

A common criticism of the Monte Carlo method is that it is a crude and time-consuming
method of solution. Unfortunately for some practical applications where Monte Carlo
techniques have been used in the past these criticisms are well founded, but this
need not be the case in general, and it is increasingly less so, largely as a result in the
dramatic reductions in computation times, even for desk-top computers. Numerous
applications also show that time-saving refinements such as importance sampling
are widely used. The only real remaining challenges lie in probability estimation for
very complex problems with very large numbers of random variables or complex limit
state functions, described, for example, by finite element routines. The other area in
which there are still constraints is where complete time-dependent simulation of load
processes is required – see Chapter 6).

Applications of the Monte Carlo technique to a large variety of problems have
been described, for example, in the classical works of Kahn (1956), Hammersley and
Handscomb (1964) and Rubinstein (1981). Some typical early structural engineering
applications were described by Moses and Kinser (1967), and Knappe et al. (1975).
Warner and Kabaila (1968) reported on various ways of applying the Monte Carlo
technique (but not importance sampling) to an idealized reinforced concrete member.
These are still educational sources of information. Application of some other variance
reduction techniques, such as Latin hypercube sampling, have been described now by
many authors [e.g. Ayyub and Lai, 1990; Zio, 2011].

The effectiveness and efficiency of the techniques is always an issue. There have been
few detailed investigations, but a useful comparison of some of the simulation methods
for a range of single limit state applications has been given by Engelund and Rackwitz
(1993). Their conclusions suggest that for single limit state problems the most robust
and efficient approach is importance sampling (Section 3.4). This is supported by some
simpler comparisons that also showed the effectiveness of directional simulation and
the much lower effectiveness of conditional expectation and Latin Hypercube sampling
(Huntington and Lyrintzis, 1998; Lemaire, 2009).
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3.7 Conclusion

Much of this chapter has been devoted to the use of the Monte Carlo technique to
enable integration of the convolution integral. The ‘crude’, the ‘importance sampling’
and ‘directional’ simulation methods were considered in some detail. Other possibilities
as well as some practical matters were noted.
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4

Second-Moment and Transformation Methods

4.1 Introduction

Rather than use approximate (and numerical) methods to perform the integration
required in the reliability integral (1.31) to check or to analyse or to assess the safety of
a structure, in this chapter the probability density function f X( ) in the integrand will
be simplified. The first part of this chapter will consider the special case of reliability
estimation (checking) in which each variable is represented only by its first two
moments i.e. by its mean and standard deviation. This is known as the ‘second-moment’
level of representation. Higher moments, which might describe skew and flatness
of the distribution, are ignored. As noted earlier, a convenient way in which the
second-moment representation might be interpreted is that each random variable is
represented by the Normal (or Gaussian) distribution. (This continuous probability
distribution is described completely by its first two moments – see Section A.5.7). As
was seen in Section 1.4.3 when both R and S are Normal distributed, integration of
(1.18) is completely obviated; further, as already suggested in Section 3.2, the multiple
integral (1.31) may also be tractable when f X( ) is multi-Normal.

Because of their inherent simplicity, the so-called ‘second-moment’ methods have
become very popular. Early works by Mayer (1926), Freudenthal (1956), Rzhanitzyn
(1957) and Basler (1961) contained second-moment concepts. Not until the late 1960s,
however, was the time ripe for the ideas to gain a measure of acceptance, prompted by
the work of Cornell (1969a).

From the original second-moment ideas have grown a number of extensions and
refinements. Of these, the most important is that it is now possible, with iterative
techniques, to approximate the actual probability distributions in f X( ) with Normal
probability distributions and still to obtain good estimates of the failure probability.
These matters are considered later in this chapter.

4.2 Second-Moment Concepts

In Section 1.4.3 it was shown that when resistance R and load effect S are each
second-moment random variables (i.e. such as having Normal distributions), the limit
state equation is the ‘safety margin’ Z = R − S and the probability of failure pf is

pf = Φ (−𝛽) 𝛽 =
𝜇Z

𝜎Z
(4.1)

Structural Reliability Analysis and Prediction, Third Edition. Robert E. Melchers and André T. Beck.
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where 𝛽 is the ‘safety index’ and Φ( ) the standard Normal distribution function. The
function Φ( ) is tabulated in Appendix D, and approximate expressions are given in
Section A.5.7.

Evidently, Eq. (4.1) yields the exact probability of failure pf when both R and S are
Normal distributed. However, pf defined in this way is only a ‘nominal’ failure probability
when R and S have distributions other than Normal. Conceptually it is probably better
in this case not to refer to probabilities at all, but simply to 𝛽, the ‘safety index’. It also is
known as the ‘reliability index’.

As shown in Figure 1.11, 𝛽 is a measure (in standard deviation 𝜎Z units) of the dis-
tance that the mean, 𝜎Z is away from the origin Z = 0. This point marks the bound-
ary of the ‘failure’ region. Hence 𝛽 is a direct (if imprecise) measure of the safety of
the structural element and greater 𝛽 represents greater safety, or lower nominal failure
probability pfN .

For convenience, and for clarity, in what follows the notation pfN is used to refer to
the nominal probability estimate, i.e. that calculated using second-moment (and other)
approximations.

The above ideas are readily extended in the case where the limit state function is a
random function consisting of more than two basic random variables:

G (X) = Z (X) = ao + a1X1 + a2X2 +…+ anXn (4.2)

then G (X) = Z (X) is Normal distributed and (A.160) and (A.161) provide 𝜇Z and 𝜎Z
from which 𝛽 and pfN again can be evaluated using (4.1).

In general, however, the limit state function G (x) = 0 is not linear. In this case, the
first two moments of G(X) are not readily obtainable. The most suitable approach is to
linearize G (x) = 0. This can be done by using expressions (A.178) and (A.179) which
then give approximate moments by expanding G (x) = 0 as a first-order Taylor series
expansion about some point x∗. Approximations that linearize G (x) = 0 will be denoted
‘first-order’ methods.

The first-order Taylor series expansion which linearizes G (x) = 0 at x∗ might be
denoted GL (x) = 0 (Figure 4.1). Expansion about the mean, 𝜇Z is common in probabil-
ity theory, but there is no rationale for doing so in general; it will be shown later that
there is indeed a better choice for the present problem. In anticipation, it can be said
that this better choice x∗ is the point of maximum likelihood (or most probable point
MPP) on the limit state function. At this stage, it is sufficient to note that the choice of
expansion point directly affects the estimate of 𝛽. This is demonstrated in the following
example.

Example 4.1 The first two moments of Z linearized about x∗ rather than 𝜇X are given
by [cf. (A.178) and (A.179)] 𝜇Z ≈ G (x∗) and 𝜎2

Z ≈ Σ
(
𝜕G∕𝜕Xi

)2|||x∗
𝜎2

xi
respectively.

Now, if G(X) is defined as G (X) = X1X2 − X3 with the random variables Xi
being independent and with 𝜎X1

= 𝜎X2
= 𝜎X3

= 𝜎X , then 𝜕G∕𝜕X1 = X2, 𝜕G∕𝜕X2 =
X1 and 𝜕G∕𝜕X3 = −1. Then (A.178) and (A.179) evaluated at the means 𝜇Xi

become

𝜇Z
||𝜇X

≈ 𝜇X1
𝜇X2

− 𝜇X3

𝜎2
Z
||𝜇X

≈ 𝜇2
X2
𝜎2

X1
+ 𝜇2

X1
𝜎2

X2
+ 𝜎2

X3
= 𝜎2

X

(
𝜇2

X1
+ 𝜇2

X2
+ 1

)
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Contours of
fRS = fx(x)

Safe
region

G(x) = 0

GL(x) = 0

Failure
region

x*

s = x2

μx2

μx1

r = x1

Figure 4.1 Limit state surface G (x) = 0 and its linearized version GL (x) = 0 in the (2-D) space of the
basic variables. Here the linearization is at point x∗. (It is known also as the ‘checking point’ and is
clearly the most probable point – MPP).

However, if the expansion point was taken as x∗
1 = 𝜇X1

∕2, x∗
2 = 𝜇X2

, x∗
3 = 𝜇X3

then the
corresponding terms become

𝜇Z
||𝜇X

≈
𝜇X1

2
𝜇X2

− 𝜇X3

and

𝜎2
Z |𝜇X

≈ 𝜇2
X2
𝜎2

X1
+
(
𝜇X1

2

)2

𝜎2
X2
+ 𝜎2

X3
= 𝜎2

X

(
𝜇2

X1

4
+ 𝜇2

X2
+ 1

)
It follows readily using (4.1) that:

𝛽|𝜇X
=

𝜇X1
𝜇X2

− 𝜇X3

𝜎X

(
𝜇2

X1
+ 𝜇2

X2
+ 1

)1∕2

and

𝛽|x∗ =

1
2
𝜇X1

𝜇X2
− 𝜇X3

𝜎X

(1
4
𝜇2

X1
+ 𝜇2

X2
+ 1

)1∕2

These are clearly not equivalent, thus demonstrating the dependence of 𝛽 on the selec-
tion of the expansion point. Fundamentally, this is not a desirable situation.

4.3 First-Order Second-Moment (FOSM) Theory

4.3.1 The Hasofer–Lind Transformation

The desirability of a safety measure being invariant was noted in Chapter 1. How
this can be achieved for the reliability index 𝛽 will be discussed below. A useful
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(but not essential) first step is to transform all variables to their standardized form
N(0, 1) (Normal distribution with zero mean and unit variance) using the well-known
transformation:

Yi =
Xi − 𝜇Xi

𝜎Xi

(4.3)

where Y i has 𝜇Yi
= 0 and 𝜎Yi

= 1. As a result of applying this transformation to each
basic variable Xi, the unit of measurement in any direction in the y space will be 𝜎Yi

= 1
in any direction. In this space, the joint probability density function f Y(y) is the stan-
dardized multi-variate Normal (see Section A.5.7); thus many well-known properties
of this distribution can be applied [Hasofer and Lind, 1974]. Of course, the limit state
function also must be transformed and is given by g (y) = 0.

The transformation (4.3) can be performed without complication if the Normal ran-
dom variables Xi are all uncorrelated (i.e. linearly independent) random variables. If
this is not the case, an intermediate step is required to find a random variable set X′

that is uncorrelated, and this new set can then be transformed according to (4.3). The
procedure for finding the uncorrelated set X′ (including means and variances) from the
correlated set X is essentially that of finding the eigenvalues and eigenvectors (charac-
teristic values and vectors). Details are given in Appendix B. As an approximation, weak
correlation (e.g. 𝜌 < 0.2) usually can be ignored and the variables treated as independent,
whereas strong correlations (e.g. 𝜌 > 0.8) usually can be treated as fully dependent, with
one of the two correlated variables replaced by the other.

4.3.2 Linear Limit State Function

For simplicity of illustration consider now the important special case in which the limit
state function is linear, i.e. G (X) = X1 − X2, shown as GL (x) = 0 in Figure 4.1. The trans-
formation (4.3) changes the joint probability density function f X(x) shown in Figure 4.1
to f Y(y) shown in Figure 4.2 in the transformed y =

(
y1, y2

)
space. The joint probability

Unit
normal

g(y) = 0 (linear)

g(y) = 0 (non linear)

Safe region g(y) > 0
Contours of fY(y):
y2

1 
+ y2

2 
constant

y1

y2

Failure
region 
g(y) < 0

Direction
cosine

y*

y*1

y*2

v

0

P

μY1 
= μY2 

= 0

σY1 
= σY2 

= 1

α2

α1

β

Figure 4.2 Probability density function contours and original (non-linear) and linearized limit state
surfaces in the standard Normal space. The linearized version of g (y) is shown linearized at y∗.
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Marginal distribution

g(y) = 0

β

pfN

0 v

Figure 4.3 Marginal distribution in the space of the standardized Normal variables.

function f Y(y) is now a bivariate Normal distribution Φ2(y), symmetrical about the ori-
gin. As noted in Section 1.4.2, the probability of failure is given by the integral of Φ2(y)
over the transformed failure region g (Y) < 0, shown part shaded. This can be obtained
from the results for the standardized bivariate Normal given in Appendices A and C. It
is given more directly, however, by integrating in the direction v (−∞ < v < +∞), shown
in Figure 4.2, to obtain the marginal distribution (Figure 4.3).

By well-known properties of the bivariate Normal distribution the marginal distri-
bution is also Normal, and hence the shaded area in Figure 4.3 represents the failure
probability pf = Φ (−𝛽), where 𝛽 is as shown (note that 𝜎 = 1 in the 𝛽 direction since
the normalized y space is being used). The direct correspondence between Figure 4.3
and Figure 1.11 should be noted.

The distance 𝛽 shown in Figure 4.2 is perpendicular to the v axis and hence is perpen-
dicular to g (y) = 0. It clearly corresponds to the shortest distance from the origin in the
y space to the limit state surface g (y) = 0.

More generally, there will be many basic random variables X = {Xi}, i = 1,… , n,
describing a structural reliability problem. In the case of complex structures, n could
be very large indeed. Evidently this will create a problem for integration methods (see
Chapter 3). However, this ‘curse of dimensionality’ is not so critical for the First-Order
Second-Moment method since the concepts described above carry over directly to an
n-dimensional standardized Normal space y with a (hyper-)plane limit state. In this case
the shortest distance and hence the safety index is given by:

𝛽 = min

( n∑
i=1

y2
i

)1∕2

= min
(

yT ⋅ y
)1∕2

subject to g (y) = 0 (4.4)

where the yi represent the coordinates of any point on the limit state surface.
The particular point for which (4.4) is satisfied, i.e. the point on the limit state surface

perpendicular to 𝛽, in n-dimensional space, is variously called the ‘checking’ or ‘design’
point y∗. Evidently this point is the projection of the origin on the limit state surface.
It should be obvious from Figures 4.2 and 4.3 that the greatest contribution to the total
probability content in the failure region is that made by the probability content in the
zone close to y∗. Further, as earlier foreshadowed, y∗ represents the point of greatest
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probability density or the point of ‘maximum likelihood’ on the very edge of the failure
domain. This observation was used already in Chapter 3 and is particularly important
for the various discussions to follow in the present chapter and in Chapters 5 and 11.

Note that y∗ also is known as the ‘most probable point’ MPP. In addition, strictly speak-
ing, y∗ should be referred to as a ‘checking’ point since what is being performed here is
essentially a safety checking analysis. There is no design involved, and thus the nomen-
clature ‘design point’ is misleading.

A direct relationship between the checking point y∗ and 𝛽 can be established as fol-
lows. From the geometry of surfaces [e.g. Sokolnikoff and Redheffer, 1958] the outward
normal vector to a hyperplane given by g (y) = 0, has components given by

ci = 𝜆
𝜕g
𝜕yi

(4.5a)

where 𝜆 is an arbitrary constant. The total length of the outward normal is

l =

(∑
i

c2
i

)1∕2

(4.5b)

and the direction cosines 𝛼i of the unit outward normal are then

𝛼i =
ci

l
(4.5c)

With 𝛼i, known, it follows that the coordinates of the checking point are

y∗i = yi = −𝛼i 𝛽 (4.6)

where the negative sign arises because the 𝛼i are components of the outward normal
as defined in conventional mathematical notation [i.e. positive with increasing g( )].
Figure 4.2 shows the geometry for the two-dimensional case y =

(
y1, y2

)
.

For a linear limit state function (i.e. a hyperplane in y space) the direction cosines
𝛼i do not change with position along the limit state function, so that it is easy to find
a set of co-ordinates y∗ satisfying both equation (4.4) and equation (4.6). This will be
demonstrated in Example 4.3.

The equation for the hyperplane g (y) = 0 can be written as

g (y) = 𝛽 +
n∑

i=1
𝛼iyi = 0 (4.7)

The validity of (4.7) can be verified by applying (4.5); it can be deduced also directly from
Figure 4.2 for the two-dimensional case.

The linear function in X space corresponding to (4.7) is obtained by applying (4.3)

G (x) = 𝛽 −
n∑

i=1

𝛼i

𝜎Xi

𝜇Xi
+

n∑
i=1

𝛼i

𝜎Xi

xi (4.8a)

or

G (x) = b0 +
n∑

i=1
bixi (4.8b)
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which is again a linear function. Also, 𝛽 can be determined directly from the coordinates
of the checking point y∗ using (4.7):

𝛽 = −
n∑

i=1
y∗i 𝛼i = −y∗T𝛼 (4.9)

Example 4.2 For a linear limit state function, Z (X) = G (X), such as given by (4.8b),
𝛽 may be estimated in x space using (4.1) and (4.8a):

𝜇G = b0 +
n∑

i=1
bi𝜇Xi

= 𝛽

and

𝜎G =

( n∑
i=1

b2
i 𝜎

2
Xi

)1∕2

=
⎛⎜⎜⎝

n∑
i=1

(
𝛼i

𝜎Xi

)2

𝜎2
Xi

⎞⎟⎟⎠
1∕2

= 1

so that 𝛽X = 𝜇G∕𝜎G = 𝛽. Using (4.7) it follows easily that 𝜇g = 𝜇G = 𝛽 and 𝜎g = 𝜎G = 1.
Hence 𝛽 does not depend on the space used. This independence is true if (and only if )
G(X) is a linear function. The safety index 𝛽 derived in this manner is sometimes referred
to as the ‘geometric’ safety index, for obvious reasons.

4.3.3 Sensitivity Factors and Gradient Projection

The direction cosines 𝛼i given by (4.5c) represent the sensitivity of the standardized limit
state function g(y) at y∗ to changes in y [Hohenbichler and Rackwitz, 1986a; Bjerager and
Krenk, 1989]. This sensitivity has an important practical implication. Thus if the sensi-
tivity 𝛼i to yi, say, is low there is little need to be very accurate about the determination
of yi. Also it would signal that, if necessary, yi might well be treated as a deterministic
rather than a random variable. This reduces the dimensionality of the space of random
variables.

The corresponding expressions in the original x space, for X independent, are obtained
by using (4.3) in (4.5a):

ci = 𝜆𝜎i
𝜕G
𝜕xi

(4.10)

with (4.5b) and (4.5c) as before. For those Xi that are not independent, the direction
cosines 𝛼i have no direct physical meaning. This is because of the transformation to
independent standardized y space, even if the X are (partly) dependent.

Expression (4.10) shows that the ci are components of what can be considered to be the
‘gradient’ of the function G at the limit state surface G = 0. For this reason, the minimiza-
tion in (4.10) is sometimes referred to as the ‘gradient projection method’ for finding the
checking point y∗ and hence the minimum distance 𝛽 in standard Normal space.

The idea of sensitivity factors can be extended also to so-called ‘omission sensi-
tivity’, that is, the effect on 𝛽 when a random variable is replaced by a deterministic
number [Madsen, 1988; Madsen and Egeland, 1989] and to the converse, when a
deterministic number is replaced by a random variable, so-called ‘ignorance sensitivity’
[Der Kiureghian et al., 1994; Maes, 1996].
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Figure 4.4 Linear limit state function in two-dimensional y space.

Example 4.3 Consider a limit state function g(y) in two-dimensional Normal space
y =

(
y1, y2

)
given by g (y) = y1 − 2y2 + 10 = 0. This meets the requirement that g (y) > 0

for the safe state and g (y) < 0 for the failure state. The limit state is shown in Figure 4.4.
Evidently, the checking point is point P∗, which is the projection of the origin onto
g (y) = 0, with perpendicular OP∗. It follows from (4.5) that:

c1 = 𝜆
𝜕g
𝜕y1

= 𝜆 (1) = 𝜆

c2 = 𝜆 (−2) = −2𝜆

l =
[
𝜆2 + (−2𝜆)2]1∕2 =

√
5 𝜆

so that 𝛼1 = 1∕
√

5 and 𝛼2 = −2∕
√

5. These direction cosines (sensitivity factors) are
valid anywhere along the linear limit state function (see Figure 4.4). They represent the
normal to the limit state function surface. Note again that the direction of the normal is
governed by the definition of g (y) = 0 and the mathematics of planar surfaces.

The checking point y* is now given by (4.6) as y∗ =
(
−𝛽∕

√
5, 2𝛽∕

√
5
)

. Also y∗ must
satisfy g (y∗) = 0, so that

− 𝛽√
5
− 2

(
2𝛽√

5

)
+ 10 = 0

from which 𝛽 = 2
√

5, as is easily verified on Figure 4.4. Also, it is clear from Figure 4.4,
expression (4.6) and (𝛼1, 𝛼2) that changes to y2 have greater impact on 𝛽 than do changes
to y1. For this special linear problem, of course, it would have been just as correct simply
to put 𝛽 = 𝜇g∕𝜎g = [(0) − (2) (0) + 10] ∕

[
12 + (2)2(1)2]1∕2 = 10∕

√
5 = 2

√
5.

4.3.4 Non-Linear Limit State Function—General Case

As was noted in Section 4.2, when the limit state function is non-linear, the first two
moments of G(X) in x space, and therefore the first two moments of g(Y) in y space, can
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no longer be obtained exactly. This is because non-linear combination of the implicit
(standardized) Normal distributions does not lead to a Normal distribution for G(X)
or g(Y) (see Appendix A). The approach suggested in Section 4.2 was to linearize G(X)
using (A.178) and (A.179) even though 𝛽 then depends on the choice of the linearization
or expansion point used in the Taylor series expansion, as was shown in Example 4.1.

It was noted in Section 4.3.2 that the ‘checking point’ in y space (e.g. point y∗ in
Figure 4.2) represents the point of greatest probability density or maximum likelihood
(i.e. the most probable point MPP) and that it makes the most significant contribution
to the nominal failure probability pfN [= Φ (−𝛽)]. It is, therefore, an intuitively appealing
linearization point. Indeed this was shown already in Figure 4.2.

The concepts and method used for the case of a linear limit state equation can be used
also when g(Y) is non-linear. Again the shortest distance 𝛽 from the origin to y∗ must be
found, subject to g (y∗) = 0. How well a linear limit state function g (y) = 0 approximates
a non-linear function g(Y) in terms of the nominal probability pfN of failure depends
on the shape of g (y) = 0; if it is concave towards the origin, pfN is underestimated by
the hyperplane approximation. Similarly, a convex function implies overestimation, as
evident in Figure 4.2.

In most cases the point y∗ is not known a priori and must be determined to estimate
𝛽. It should be clear from the above that the problem of finding 𝛽 is equivalent to finding
the shortest distance from the origin to y∗ in y space, subject to g (y) = 0 and that this is
strictly a minimization problem [Flint et al., 1981; Shinozuka, 1983]. There are several
ways in which a solution may be found; the classical calculus of variations method will
be considered in this section. Its application reveals some useful properties.

The minimization problem (4.4) is subject to the constraint g (y) = 0. Introducing a
Lagrangian multiplier 𝜆, the problem becomes:

min (Δ) =
(

yT ⋅ y
)1∕2 + 𝜆g (y) (4.11)

For a stationary point, 𝜕Δ∕𝜕yi = 0 for all i, and 𝜕Δ∕𝜕𝜆 = 0:

𝜕Δ
𝜕y1

= y1
(

yT ⋅ y
)−1∕2 + 𝜆

𝜕g
𝜕y1

= 0

𝜕Δ
𝜕y2

= y2
(

yT ⋅ y
)−1∕2 + 𝜆

𝜕g
𝜕y2

= 0, (4.12)

and 𝜕Δ
𝜕𝜆

= g (y) = 0

which may be written compactly as:

0 = 𝛿−1y + 𝜆gY (4.13a)
0 = g (y) (4.13b)

where gY =
(
𝜕g∕𝜕y1, 𝜕g∕𝜕y2,…

)
and the distance 𝛿[cf. (4.4)] is given by 𝛿 =

(
yT ⋅ y

)1∕2.
Expression (4.13b) is satisfied by definition, and (4.13a) immediately produces the coor-
dinates for the stationary point yS as [Horne and Price, 1977]:

yS = −𝜆 gY𝛿 (4.l4)
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Whether the point represents a minimum, maximum or a ‘saddle point’ depends on
the nature of g (y) = 0. No general statement can be made, although for a given function
g (y) = 0 standard tests can be applied [e.g. Ditlevsen, 1981a, b]. If g (y) = 0 is linear,
or regular and convex towards the origin, the stationary point is clearly a minimum
point [Lind, 1979]. Since many limit state functions depart only slightly from linearity,
it is assumed in what follows in this section that the vector yS does indeed locate the
minimum point.

Let the minimum distance 𝛿 corresponding to yS be 𝛿S. Substituting (4.14) into (4.4)
with yS replacing y and 𝛿S replacing 𝛽, it is easily shown that 𝜆 = ±

(
gT

Y ⋅ gY
)−1∕2 and

hence, from (4.14), that

𝛿S =
−
(

yS)T
⋅ gy(

gT
Y ⋅ gY

)1∕2 =
−

n∑
i=1

yS
i
(
𝜕g∕𝜕yi

)
[ n∑

i=1

(
𝜕g∕𝜕yi

)2
]1∕2 (4.15)

It will now be shown that 𝛿S is equal to 𝛽 and that 𝛽 is therefore the minimum distance
from the origin to the limit state function g (y) = 0, provided that 𝛽 is measured to the
checking point yS = y∗ and that g (y) = 0 is linearized at y∗. Let the limit state function
g (y) = 0 be linearized at y∗ by means of a Taylor series expansion (i.e. in first-order terms
only). This approximation provides a tangent (hyper-)plane gL (y) = 0 to the function
g (y) = 0 at y∗:

gL (y) ≈ g (y∗) +
n∑

i=1

(
yi − y∗i

) 𝜕g
𝜕yi

= 0 (4.16)

Since y∗ is on the limit state, the term g (y∗) = 0. Further, using rules (A.160) and
(A.161) for addition of first- and second-moment functions and remembering that
𝜇Yi

= 0, 𝜎Yi
= 1 it follows that

𝜇gL
(y) = −

n∑
i=1

y∗i
𝜕g
𝜕yi

= −y∗T ⋅ gY (4.17)

and

𝜎2
gL
(y) =

n∑
i=1

(
𝜕g
𝜕yi

)2

= gT
Y ⋅ gY (4.18)

Since 𝛽 = 𝜇GL
∕𝜎GL

(see 4.1) it follows that:

𝛽 =
𝜇gL

𝜎gL

=
−

n∑
i=1

y∗i
(
𝜕g∕𝜕yi

)
[ n∑

i=1

(
𝜕g∕𝜕yi

)2
]1∕2 =

−y∗T ⋅ gY(
gT

Y ⋅ gY
)1∕2 = −y∗T 𝛼 (4.19)

which, noting (4.5), is identical to (4.9), as might be expected. It should be evident also
that expression (4.19) is equivalent to 𝛿S, given by expression (4.15), if y∗ = yS. Hence@Seismicisolation@Seismicisolation
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y∗ is the point that minimizes the distance from the origin to the non-linear limit state
function g (y) = 0, and is also its expansion (linearization) point.

It follows immediately that once the point y∗ has been located, the nonlinear limit
state function may be replaced by its linearized equivalent and the method of Section
4.3.2 applied.

Finally, since 𝛽 is the minimum distance from the origin of the rotationally symmetric
standardized Normal probability density function f Y ( ) in y space, it is easily verified
that y∗ represents the point of maximum likelihood. This might be compared with the
choice x∗ in Section 3.4.2.

Example 4.4 For the two-dimensional problem of Figure 4.5, let the limit state
function be

g (y) = − 4
25
(
y1 − 1

)2 − y2 + 4 = 0

The distance to be minimized is then 𝛿 =
(
y2

1 + y2
2
)1∕2 subject to g (y) = 0. With 𝜆 denot-

ing the Lagrangian multiplier, the modified function Δ is then [cf. (4.11)]

min (Δ) =
(
y2

1 + y2
2
)1∕2 + 𝜆

[
− 4

25
(
y1 − 1

)2 − y2 + 4
]

for which
𝜕Δ
𝜕y1

= y1
(
y2

1 + y2
2
)−1∕2 − 𝜆

8
25

(
y1 − 1

)
= 0 (4.20a)

𝜕Δ
𝜕y2

= y2
(
y2

1 + y2
2
)−1∕2 − 𝜆 = 0 (4.20b)

𝜕Δ
𝜕𝜆

= − 4
25
(
y1 − 1

)2 − y2 + 4 = 0 (4.20c)

–2.0 0
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2.5

g(y) < 0 
failure
region g(y) > 0 

safe
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α2

α1

1
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y2 = 3.84

g(y) = –4(y1 – 1)2 – y2 + 4 = 0 
25

–4.0

Figure 4.5 Non-linear limit state function in two-dimensional basic variable space [note point P(1)
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Eliminating 𝜆 from (4.20a) and (4.20b) gives

y2 =
25y1

8
(
y1 − 1

) (4.20d)

which together with (4.20c) leaves, upon eliminating y2,

− 4
25
(
y1 − 1

)2 + 4 =
25y1

8
(
y1 − 1

) (4.20e)

This equation is cubic in y1. A trial and error solution shows that y1 = 2.36 satis-
fies (4.20e) and that y2 = +2.19 from (4.20d). The safety index is then estimated
as 𝛽 =

(
y2

1 + y2
2
)1∕2 = 3.22, and the coordinates of the checking point are given by

y∗ = (−2.36, 2.19)T . It is readily verified that the checking (stationary) point does
indeed give a minimum value of 𝛽.

For problems with a greater number of basic variables the solution of the system of
simultaneous equations requires numerical evaluation. A more formal verification that
the calculated 𝛽 is a minimum is then desired.

4.3.5 Non-Linear Limit State Function—Numerical Solution

For some situations, principally those with a large number of basic variables or hav-
ing complex limit state equations, a numerical approach may be preferred. When the
constraint is linear, the problem of finding 𝛽, given by (4.4), is essentially a quadratic
programming problem, for which efficient computer algorithms exist.

If the constraint g (y) = 0 is not a linear function and a vector y(1) can be found which
satisfies g

(
y(1)) = 0, then there are some efficient algorithms available. In principle

Lagrangian multipliers could be used to convert the problem into an unconstrained
optimization problem as was done in the previous section and then solved by one of the
many efficient algorithms available for this purpose. If a vector y(1) to satisfy g

(
y(1)) = 0

cannot be found, the solution of (4.4) requires minimization under non-linear inequal-
ity constraints. Again, a range of algorithms is available for solution [e.g. Beveridge and
Schechter, 1970; Schittkowski, 1980]. Alternatively, an iterative solution scheme can be
considered, as described below. For obvious reasons it is also known sometimes as the
‘modified’ gradient projection method or the Hasofer-Lind-Rackwitz-Fiessler (HLRF)
algorithm (cf. Section 4.3.3).

4.3.6 Non-Linear Limit State Function—HLRF Algorithm

The HLRF algorithm is an iterative solution scheme. First, a trial checking point y(1) is
chosen and equation (4.4) and the limit state expression checked. If y(1) is poorly chosen,
the condition of perpendicularity between the tangent (hyper-)plane at y(1) and the 𝛽

direction will not be satisfied. How a new trial checking point y(1) should be chosen to
converge eventually to the correct solution of (4.4) is now of interest.

Let y(m) be the mth approximation to the vector representing the local perpendicular
to g (y) = 0 from the origin. A better approximation y(m+1) is sought. The relationship
between y(m+1) and y(m) can be obtained from a first-order Taylor series expansion of
g
(

y(m+1)) = 0 about y(m) (i.e. a linear approximation) [Hasofer and Lind, 1974]. Using
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index notation,

gL
(
y1

(m+1),… , yn
(m+1)) ≈ g

(
y1

(m),… , y(m)
n

)
+

n∑
i=1

(
yi

(m+1) − y(m)
i

) 𝜕g
(

y(m)
1 ,… , y(m)

n

)
𝜕yi

= 0 (4.21)

or, in matrix notation (cf. 4.16),

gL
(

y(m+1)) ≈ g
(

y(m)) + (
y(m+1) − y(m))T

⋅ gY = 0 (4.22)

This expression represents a hyperplane gL (y) = 0 approximating the hypersurface
g (y) = 0 in y space, for which, at point m + 1, the linearized limit state function must
be satisfied, i.e. gL

(
y(m+1)) = 0. However, for the earlier trial point y(m) the direction

cosines are 𝛼(m) which together with the trial value of 𝛽(m) are given by (4.6):

y(m) = −𝛼(m)𝛽(m) (4.23)

in which, from (4.5)

𝛼(m) =
g(m)

Y

l
(4.5c)

and

l =
(

g(m)T
Y ⋅ g(m)

Y

)1∕2
(4.5b)

Substituting (4.23) for y(m) in (4.22), using (4.5) and rearranging produces the following
recurrence relationship:

y(m+1) = −𝛼(m)

[
𝛽(m) +

g
(

y(m))
l

]
(4.24)

In practice the iteration proceeds by assuming a starting point y(1), evaluating the

gradients gYi
= 𝜕g

(
y(m)

)
∕𝜕yi and also evaluating 𝛽(m) =

[ n∑
i=1

(
y(m)

i

)2
]1∕2

and then sub-

stituting into (4.24) to obtain a new trial checking point and 𝛽 estimate. This is continued
until convergence on y(m)

i or 𝛽 is reached.
Comparison of (4.24) and (4.6) shows the essential similarity between the procedures.

It also shows that the term in the square brackets of (4.24) is essentially a correction term
to allow for the fact that g(y) is not zero.

In parallel to the discussion in Section 4.3, there is no guarantee that the repeated
use of (4.24) does indeed converge to a minimum value of 𝛽; again either an appeal to
intuition or a more formal check is required.

The above may be formalized to the following algorithm:

(a) Standardize basic random variables X to the independent standardized normal vari-
ables Y, using (4.3) and Appendix B if necessary.
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(b) Transform G (x) = 0 to g (y) = 0.
(c) Select initial checking point (x(1), y(1)).
(d) Compute 𝛽(1) =

[
y(1)T

⋅ y(1)
]1∕2

; let m = 1.
(e) Compute direction cosines 𝛼(m) using (4.5).
(f ) Compute g(y(m)).
(g) Compute y(m+1) using (4.24).
(h) Compute 𝛽(m+1) =

(
y(m+1)T ⋅ y(m+1))1∕2.

(i) Check whether y(m+1) and/or 𝛽(m+1) have stabilized; if not go to (e) and increase m
by unity.

This (the HLRF) algorithm has been programmed, sometimes using slightly different
logic [Fiessler et al., 1976; Fiessler, 1979; Ellingwood et al., 1980].

It is possible to transform the recurrence relationship (4.24) into the space of the origi-
nal variables X; this has the advantage that transformation to the y space is not required.
Substituting xi = yi𝜎Xi

− 𝜇Xi
into equation (4.24) yields [Parkinson, 1980]

X(m+1) − 𝜇X = −CG(m)
X

(
X(m) − 𝜇X

)T
⋅ G(m)

X

G(m)T
X CG(m)

X

(4.25)

where G(m)
X =

(
𝜕G
𝜕x1

,
𝜕G
𝜕x2

, … ,
𝜕G
𝜕xn

)T ||||x=𝜇(m)
X

, X is the vector of random variables in the orig-

inal x space, 𝜇X is the vector of means and C is the covariance matrix for X. (If the Xi
are independent, cii = 𝜎2

i , cij = 0 for i ≠ j; see Section A.11.1.)

Example 4.5 Example 4.4 will now be reworked, this time using the above algorithm.
The geometry of the problem is shown in Figure 4.5.

Let the trial solution for the checking point be P(1) given by y(1) = (−2.0, 2.5)T which
does not quite satisfy g (y) = 0 (this would require y(1)2 = 2.56, as is easily verified). Then

𝜕g
𝜕y1

= −4
25

2
(
y1 − 1

)
= 24

25
= +0.96

𝜕g
𝜕y2

= −1 and 𝛼i =
𝜕g
𝜕y1

/
l

where

l =
[
(0.96)2 + (−1)2]1∕2 = 1.386

𝛽 =
(
y2

1 + y2
2
)1∕2 =

(
22 + 2.52)1∕2 = 3.20

g (y) = −4
25

(−2 − 1)2 − (2.5) + 4 = +0.06

so that[
y1
y2

](2)
= −1

1.386

[
+0.96
−1

] (
3.20 + +0.06

1.386

)
=
[
−2.22
2.309

]
which, with two iterations, will converge closely to the results given in Example 4.4.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

Second-Moment and Transformation Methods 109
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1/2

[      ]
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Figure 4.6 One cycle of iterative solution scheme.

4.3.7 Geometric Interpretation of Iterative Solution Scheme

The iteration scheme has its limitations. Expression (4.24) can be written as

y(m+1) = −𝛼(m)𝛽(m+1) (4.26)

where 𝛽(m+1) denotes the term [ ] in (4.24) and consists of 𝛽(m) plus a correction term,
and 𝛼(m) is a vector.

Consider now the two-dimensional space y =
(
y1, y2

)
shown in Figure 4.6 [after

Fiessler, 1979], with the limit state surface as shown, together with a contour g (y) = c in
the safe domain. Assume that the initial trial y(1) values are given by point P(1), for which
𝛽 = 𝛽(1). The linear approximation to g(y) at P(1) is given by line AA. The direction
cosines 𝛼i evaluated at P(1) give the direction of the vector (P(1), T) normal to AA; the
gradient 𝜕g∕𝜕y gives the slope in the direction of the vector, as shown by section BB.
The true slope of the vector (P(1), T) is given by

S =

[ n∑
i=1

(
𝜕g
𝜕yi

)2
]1∕2

and hence the horizontal projection in section BB is given by c/S, which is the second
(i.e. the correction) term in [ ] in equation (4.24). This term then gives the vector length
𝛽(1) + P(1)T and multiplication by 𝛼(1)

i fixes the new trial y(2) as OU parallel to (P(1), T) in
Figure 4.6.

The iteration procedure of the HLRF algorithm can fail in certain circumstances. One
case is illustrated in Figure 4.7. For a highly non-linear limit state function it is possible
to alternate between successive approximation points i and i + 1 [Fiessler, 1979]. Thus,
starting at P(1), the local gradient perpendicular to the tangent AA at g

(
y(1)) = c2 leads

to point T (given by g (y) = 0). The new checking point U is then defined by the parallel
TU to AA and the perpendicular 𝛽(2) from O. This is point P(2) ≡ U. However, for the
situation shown, starting at P(2) for the next iteration, the new point P(3) is found to
be at P(1). Obviously a breakdown situation exists because of the non-linear nature of
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β(2)

U = P(2) 

Aʹ
g(y) = c2 > c1

g(y) = c1 

Figure 4.7 Breakdown of iteration through oscillation.

g (y) = 0. The difficulty is easily overcome. Rather than selecting P(2) on TU at U, some
lesser correction, such as point D, might be chosen for 𝛽(2).

A second breakdown case is when the trial checking point lies close to a stationary
point which is not a minimum. As noted in Section 4.3.6, the iteration procedure can
only search for local stationary points and cannot distinguish between maxima, minima
or saddle points [Ditlevsen and Madsen, 1980]. The problem can only be overcome by
selecting different starting points and common sense appraisal of results.

The HLRF algorithm iteration procedure above can also break down when the trans-
formation to standardized Normal space is strongly non-linear, and/or when the failure
domain vanishes. Examples of this, also involving bounded uniform variables, and com-
parison to other algorithms for finding the checking point, are available [Beck and Silva
Jr., 2016].

4.3.8 Interpretation of First-Order Second-Moment (FOSM) Theory

When the limit state function is non-linear the theory discussed so far is ‘first-order’ in
the sense that a linear approximation for the limit state function is used to estimate the
failure probability. This involved using the probability content of the failure region near
the (single) ‘checking’ point as the best estimate. This approach is sometimes referred to
as a ‘single-check-point’ method.

Unfortunately, an ambiguity of interpretation of the probability represented by the
safety index 𝛽 can arise when the limit state function is nonlinear (see Figure 4.8).
For the linear limit state bb, containing Pl as checking point, the failure probability
for normal variables is given exactly by pf = Φ (−𝛽). However, the point P1 is also
the checking point for the non-linear limit state functions aa and cc. In terms of
first-order theory, each of these limit states has an identical value of 𝛽, and hence an
identical nominal failure probability PfN = Φ (−𝛽); yet it is quite clear from Figure 4.8
that the actual probability contents of the respective failure regions are not identical.
Similarly, the limit state dd represents what is probably a lower failure probability
still; yet its safety index 𝛽1 is less than 𝛽. Evidently 𝛽 as defined so far lacks a sense
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Figure 4.8 Inconsistency between 𝛽 and pfN for different forms of limit state functions.

of ‘comparativeness’ or an ‘ordering property’ with respect to the implied probability
content for non-linear limit states [Ditlevsen, 1979a].

A further point is that no limitation has been placed on the direction of 𝛽 in y space so
that, for some other checking point P2, the probability content for the linear limit state
ee should be identical with that implied for the linear limit state bb when both limit
states are at the same distance 𝛽 from the origin.

A measure of comparativeness can be introduced by defining a formal probability den-
sity function f Y (y) in the reduced variable space. The probability content associated with
each limit state can then be calculated formally and compared. It is not difficult to see
that such a formal density function must give greater reliability (i.e. lower probability of
failure) with greater values of 𝛽. This means that it must allow for the shape of the limit
state function. It also means that it must be rotationally symmetric, i.e. independent of 𝜃.
It appears that the only function that can satisfy all requirements is the n-dimensional
standardized Normal density function with independent variables:

𝜙n (y) =
n∏

i=1

[
1

(2𝜋)1∕2 exp
(
−1

2
y2

i

)]
(4.27)

The safety index 𝛽 associated with a given limit state (hyper-)surface with safe domain
Dk , say, is then obtained by integrating 𝜙n(y) over the domain Dk to give the 𝛽 value for
the safe state as:

Φ
[
𝛽 (k)

]
= ∫Dk

𝜙n (y) dy (4.28)

where Φ( ) is the standardized Normal distribution function. It follows that

𝛽 (k) = Φ−1∫Dk
𝜙n (y) dy (4.29)

is a more general definition of the safety index, now a function of the shape of the limit
state function for safe domain Dk . As known from Chapter 3, the calculation of the
integral (4.29) generally is not straightforward, owing to the nature of the shape of the
domain Dk of integration. Some specific cases are considered below.
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4.3.9 General Limit State Functions—Probability Bounds

So far attention has been focussed on a single limit state function – one that is a linear
function or one that does not depart significantly from linearity, at least in the origi-
nal X space. While such limit state functions are common in many practical problems,
it is appropriate to consider what will happen once the limit state function becomes
highly non-linear or becomes a piecewise function or (equivalently) there are a number
of (linear) limit states governing the problem. It is appropriate to do this by focussing,
conceptually mainly at this time, on bounds to the probability estimate.

To allow the development of bounds on pf consider the 𝜙n in expression (4.29). It is
the n-dimensional standardized Normal density function. Then, pf will be a function of
𝛽(k) for a given non-linear limit state function k: g (y) = 0.

If the limit state function g (y) = 0 is linear, and y is n-dimensional standard Normal,
it follows directly from Section 4.3.2 that pf = Φ (−𝛽). If g (y) = 0 is convex to the origin
this result is a lower bound on pf . If g (y) = 0 is concave to the origin it is an upper bound
on pf . This last case can be illustrated as follows.

Recall that 𝛽 in the standardized Normal variable space y of FOSM theory measures
the distance to the point on the limit state function closest to the origin. Then an upper
bound on pf is given by the probability content outside a (hyper-)spherical limit state
function with radius 𝛽, centred at the origin of y space:

g (y) = 𝛽2 −
n∑

i=1
y2

i = 0 (4.30)

Since the Y i are Normal distributed and independent,
∑n

i=1 y2
i has a chi-squared distri-

bution 𝜒n with n degrees of freedom (see Section A.5.6) [Benjamin and Cornell, 1970].
The probability of failure is then pf = 1 − 𝜒n

(
𝛽2), which is shown in Figure 4.9 as a func-

tion of n [Lind, 1977]. When n = 1 the probability content is twice that given by a single
linear limit state surface, as is readily verified.

A number of more complex approximations for general limit state functions have
been proposed; these include the use of piecewise spherical sectors [Veneziano, 1974],
the use of quadratic expressions centred about the checking point [Fiessler et al., 1979;
Horne and Price, 1977] and the use of (linear) tangents at various predefined locations
on g (y) = 0 (the so-called ‘polyhedral approximation’) [Ditlevsen, 1997b]. For obvious
reasons, these methods are also known as ‘multiple-check-point methods’. Piecewise
linear limit state functions may be evaluated using the system bounds and other meth-
ods to be discussed in Chapter 5.

4.4 The First-Order Reliability (FOR) Method

4.4.1 Simple Transformations

In the discussion so far, only the first two moments of each random variable have
been considered in the calculation of the failure probability. However, if information
about probability distributions is available for some or all of the basic variables it would
be sensible to incorporate it in the reliability analysis if possible. One way of doing
this is to transform non-Normal distributions into equivalent Normal distributions
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Figure 4.9 Safety index 𝛽 and pfN for hyperspherical limit state surface.

[Paloheimo and Hannus, 1974]. For example, if the random variable X has a Lognormal
distribution with mean 𝜇X and variance 𝜎2

X , the transformation to an equivalent
variable U is given by U = ln X, with 𝜇U ≈ ln𝜇X and 𝜎2

U ≈ V 2
X for VX < 0.3 where V X

is the coefficient of variation (see A 5.9). If U is then converted to the standardized
Normal random variable Y , then Y =

(
U − 𝜇U

)
∕𝜎U . This may be approximated by

Y =
[
ln
(
X∕𝜇X

)]
∕VX . It follows that the original variable X can be represented in

terms of the standard Normal variable Y and the first two moments 𝜇x and 𝜎x = 𝜇xVx
as X ≈ 𝜇X exp

(
Y VX

)
. This can be done for other non-Normal random variables

as well.
Evidently, if the random variables are transformed, the limit state function G (X) = 0

also must be transformed to the y space. Usually the transformation yields a non-linear
g (y) = 0 function.

In general the transformation from non-Normal distributed variables to equivalent
standardized Normal variables is not as elementary as suggested so far. However, once it
has been done the resulting Normal equivalents can be used directly in second-moment
calculation procedures.

In the next section a general approach for transforming independent non-Normal
basic variables to equivalent Normal variables will be described. It will be seen that
the transformation is best made about the ‘checking point’ already introduced in
FOSM theory. Additional requirements for dealing with dependent variables will then
be described. The algorithm for the transformation method is outlined also and an
example is given.
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Historically the transformation approach was developed as an extension of the
FOSM method, and is therefore still sometimes called the ‘advanced’ or ‘extended’
FOSM method. It is better to adopt the term First Order Reliability (FOR) method (or
sometimes called FORM), since limit state functions are still linearized (hence of ‘first
order’), but probability distributions are no longer approximated only by their first and
second moments.

Exercise Show that if X has an extreme type I distribution, it can be given in terms of
the standardized Normal random variable Y as

x =
− ln

{
− ln

[
Φ
(
y
)]}

− 0.5772
1.2825

𝜎x + 𝜇x

4.4.2 The Normal Tail Transformation

The transformation of an independent basic random variable X of non-Normal distri-
bution to an equivalent standardized Normal distributed random variable Y is shown
schematically in Figure 4.10 and mathematically can be expressed as

p = FX (x) = Φ
(
y
)

or y = Φ−1 [FX (x)
]

(4.31)

where p is some probability content associated with X = x, and hence with Y = y; FX( )
is the marginal cumulative distribution function of X and Φ( ) is the cumulative distri-
bution function for the standardized Normal random variable Y . The transformation is
shown by the lines abcde in Figure 4.11.

As in the previous section, an equivalent Normal variable U with cumulative distri-
bution function FU ( ) might be introduced to represent X; (see Figure 4.11). Evidently,
many choices for U can be made, depending on the selection of 𝜇U and 𝜎U . What consti-
tutes an appropriate choice will now be discussed. Consider the first-order Taylor series
expansion of (4.31) about some point xe:

y ≈ Φ−1 [FX (xe)
]
+ 𝜕

𝜕x
{
Φ−1 [FX (x)

]}|||xe
(x − xe) (4.32)

By letting Φ−1 [FX (x)
]
= T it can be shown that the term (𝜕∕𝜕x) {} in (4.32) is

given by

𝜕

𝜕x
{ } = 𝜕T

𝜕x
=

fX (x)
𝜙 (T)

=
fX (x)

𝜙
{
Φ−1

[
FX (x)

]} (4.33)

Original distribution (X)

Transformed distribution (U)
= Normal

μu

fx = fu 1-Fx = p* = 1-Fu

x* = u* x, u

Figure 4.10 Original and transformed probability density functions.
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C.D.F. of 'equivalent'
normal distribution FU

FY(  ), FX(  ), FU(  )

1.0

d c b

ae
pe

ye
xe = uey

Φ(y) = p = Fx(x)

y μy = 0
0

x x,uμx μu

Figure 4.11 Relationships between original non-Normal X, standardized Normal Y and equivalent
Normal U cumulative distribution functions.

Upon substituting (4.33) into (4.31) and rearranging, it follows that

y ≈
x −

{
xe − Φ−1 [FX (xe)

]
𝜙
{
Φ−1 [FX (xe)

]}
∕ fX (xe)

}
𝜙
{
Φ−1

[
FX (xe)

]}
∕ fX (xe)

(4.34)

which may be written as

y =
u − 𝜇U

𝜎U
(4.35)

if

u = x (4.36)

with

𝜇U = xe − ye𝜎U (4.37)

𝜎U =
𝜙
(
ye)

fX (xe)
(4.38)

and

ye = Φ−1 [FX (xe)
]

(4.39)

This shows that it is possible to express the transformation (4.31) in terms of a new
random variable U , Normal distributed, with mean 𝜇U and standard deviation 𝜎U given
by (4.37) and (4.38) above. Using (4.31), (4.35) and (4.36) it follows easily that FX (xe) =
FU (xe) and using (4.38) with (4.35), (4.36) and (A.146) that fX (xe) = fU (xe). Thus the
probability density and the cumulative distribution function (i.e. the tail probability)
for the equivalent Normal random variable U should both be set equal to those of the
original non-Normal random variable X. This is shown in Figures 4.10 and 4.11. It is the
so-called ‘Normal tail approximation’ [Ditlevsen, 1981a]. It may be carried out for each
random variable Xi separately, provided that the expansion point xe is known.
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The fact that the expansion point xe is identical with the checking point x∗ is shown
as follows. Since 𝛽 = min

(
yT ⋅ y

)1∕2 from (4.4) and since each component of y is given
by (4.31), it follows that 𝛽 is a function of the location of the expansion point xe. For 𝛽
to be stationary, it is necessary that

0 = 𝜕𝛽

𝜕xe
i
= 𝜕

𝜕xe
i

{ n∑
i=1

[
yi
(
xe

i
)]2

}1∕2

for all i (4.40)

Noting that the Y i are independent, it is convenient to drop the subscript from yi, xi and
xe

i . Hence (4.40) becomes

0 = 1
𝛽

y (xe)
𝜕y (xe)
𝜕xe

from which 𝜕y (xe) 𝜕xe = 0 since, in general, y (xe) ≠ 0. Using y obtained from expres-
sion (4.32) and differentiating by parts,

0 =
𝜕y ( )
𝜕xe = 𝜕

𝜕xe

{
Φ−1 [FX (xe)

]}
+ 𝜕2

𝜕(xe)2

{
Φ−1 [FX (x)

]}
(x − xe)

− 𝜕

𝜕xe

{
Φ−1 [FX (x)

]}
(4.41)

Since generally neither the first nor the second derivative terms are zero, it follows
that, for 𝛽 to be a stationary value, it is necessary that x = xe. It was shown in Section
4.3.4 that a stationary value of 𝛽 is achieved if x = x∗ (the ‘checking point’) so that
the expansion point considered thus far is identical with the checking point; xe = x∗

[cf. Lind, 1977].
Because each non-Normal random variable is individually approximated by a Normal

distribution at the checking point, the latter may not correspond exactly to the point of
maximum joint probability density [Horne and Price, 1977]. Any resulting error in 𝛽 or
pf , is thought to be small.

Refinements to the above approach, and which appear to improve computational effi-
ciency, have been suggested [e.g. Chen and Lind, 1983; Tichy, 1994]. One approach is to
relax the relationships (4.37) and (4.38) and introduce the additional requirement that
the slopes of the probability density functions at the design point must be the same.
It is evident that, provided that the approximating distributions are valid probability
distributions, there is scope for a variety of Normal tail approximations.

The above considerations immediately suggest an iterative procedure for finding the
checking point x∗ and hence the safety index 𝛽 [Rackwitz and Fiessler, 1978]. In practical
problems the basic variables may not be independent, as assumed so far. Attention will
be given in the next section to transformations from dependent to independent ran-
dom variables. Once this has been done the iterative procedure will be considered in
detail.

4.4.3 Transformations to Independent Normal Basic Variables

The simple ‘Normal tail’ approximation described above is a useful introduction to more
general transformations. If the joint probability density function f X(x) is completely
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described, the notion of the Normal tail approximation can be extended to more than
one dimension, and hence to obtain a set of independent Normal random variables that
may then be used with FOSM reliability estimation methods. This approach is discussed
in the context of the Rosenblatt transformation (see Appendix B) in Section 4.4.3.1
below.

In practice, the necessary data to allow f X(x) to be described completely may not be
available. If only marginal probability distributions and correlation data are available,
even for non-Normal random variables, the Nataf transformation may be applied to
give a set of independent Normal random variables for use with FOSM methods. Unlike
the Rosenblatt transformation, the Nataf transformation is approximate. It is discussed
in Section 4.4.3.2.

4.4.3.1 Rosenblatt Transformation
Consider a vector of uniformly distributed random variables, denoted R. Let these be
the intermediaries between the random variables in the original space, represented by
the vector X, and the standardized Normal variables, represented by the vector Y. Pro-
vided the necessary data for the joint probability distribution function FX(x) and its
conditional distributions Fi(xi|x1,… , xi−1) is available, the Rosenblatt transformation
(see Appendix B) in n-dimensional space becomes:

Φ
(
y1
)
= r1 = F1

(
x1
)

Φ
(
y2
)
= r2 = F2

(
x2
|| x1

)
⋮

Φ
(
yn
)
= rn = Fn

(
xn
|| x1,… , xn−1

) (4.42)

where Φ( ) is the standard Normal cumulative distribution function for Y and
Fi
(

xi
|| x1,… , xi−1

)
the conditional cumulative distribution function for the random

variable Xi as given by (B.4). The component random variables yi can be obtained from
(4.42) by successive inversion:

y1 = Φ−1 [F1
(
x1
)]

y2 = Φ−1 [F2
(

x2
|| x1

)]
⋮

yn = Φ−1 [Fn
(

xn
|| x1,… , xn−1

)] (4.43)

In general the valuation will need to be done numerically. Similarly, the inverse trans-
formation is obtained from

x1 = F−1
1
[
Φ
(
y1
)]

x2 = F−1
2

[
Φ
(
y2
)||| x1

]
⋮

yn = F−1
n

[
Φ
(
yn
)||| x1,… , xn−1

] (4.44)

If the Xi are independent random variables, all the conditions in (4.42) to (4.44) disap-
pear, and the transformation is essentially identical with that discussed in the previous
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118 Structural Reliability Analysis and Prediction

section and given by (4.31). This means that, for the present case also, the expansion
point is identical with the checking point.

Before the above transformations can be incorporated into an iteration algorithm, it
is necessary to determine the transformation of the limit state function from G (x) = 0
to g (y) = 0. A probability density function defined in the x space is transformed to the y
space according to identity (A.150). This transformation also holds for the relationship
between any (continuous) functions in X and Y; in particular it also holds for G(X):

G (x) = g (y) |J| (4.45)

where the Jacobian J has elements Jij = 𝜕yi∕𝜕xj; (see A.151). The differential may
be evaluated by substituting for yi using (4.43), and then noting that, from (4.42),
𝜕yi =

[
𝜙
(
y1
)]−1

𝜕Fi
(

x1
|| x1,… , xi−1

)
, so that

𝜕yi

𝜕xj
= 1

𝜙
(
yi
) 𝜕Fi

(
xi
|| x1,… , xi−1

)
𝜕xj

(4.46)

Evidently, if i < j, 𝜕Fi∕𝜕xj = 0, so that J is lower triangular. This allows the inverse J−1

to be obtained from J by back-substitution.
The components 𝛼i of the gradient of g(Y) are given by (4.5), but this is not easily

evaluated since usually no explicit expression for g(Y) is available. However, it follows
easily that

𝜕G (x)
𝜕xj

=
n∑

i=1

𝜕g (y)
𝜕yi

𝜕yi

𝜕xj
(4.47)

so that⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕G (x)
𝜕x1
∶

∶
𝜕G (x)
𝜕xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= [J]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕g (y)
𝜕y1
∶

∶
𝜕g (y)
𝜕yn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.48)

from which the components of the gradient 𝜕g∕𝜕yi can be computed by matrix inversion.
This allows the direction cosines 𝛼i to be evaluated. However, the earlier interpreta-
tion of 𝛼i as sensitivity factors (see Section 4.3.3) is not now necessarily valid. This is
because the yi have, in general, no direct physical meaning (unless the basic variables are
independent).

4.4.3.2 Nataf Transformation
In some cases only the marginal cumulative distribution functions FXi

( ) , i = 1,… , n
and the correlation matrix P = {𝜌ij} are available instead of the complete joint
cumulative distribution function FX(x). It is now not possible to apply the Rosenblatt
transformation since the conditional distributions required in (4.43) are not available.
However, some of the above ideas can be used in part to ‘create’ an approximation,
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Second-Moment and Transformation Methods 119

based on a joint Normal distribution, to the complete distribution FX(x). As will
be seen, this has the advantage that it generates immediately the random variables
formulated in the n-dimensional standard Normal variable space y.

Consider the marginal transformation from the random variables X =
(
X1,… ,Xn

)
in x space to the standardized Normal random variables Y =

(
Y1,… ,Yn

)
in y space,

given by

Yi = Φ−1 [FXi

(
Xi
)]

, i = 1,… , n (4.49)

where, as before, Φ( ) is the standard Normal cumulative distribution function. It is now
assumed that Y =

(
Y1,… ,Yn

)
is jointly Normal, with n-dimensional standard Normal

probability density function 𝜙n(y, P′) having zero means, unit standard deviations and
correlation matrix P′ = {𝜌′ij}. The Nataf (1962) approximation for the joint probability
density function f X( ) is then given by:

fX (x) = 𝜙n
(

y, P′) .|J | (4.50)

where the Jacobian |J | is necessary due to the usual rules for transformation of random
variables (A.150) and is defined by:

|J | = 𝜕
(
y1,… , yn

)
𝜕
(
x1,… , xn

) =
fX1

(
x1
)
. fX2

(
x2
)
… fXn

(
xn
)

𝜙
(
y1
)
𝜙
(
y2
)
…𝜙

(
yn
) (4.51)

Thus f X( ) is forced to be a unique n-dimension joint density function defined by (4.50).
The only matter left for resolution is the definition of the correlation matrix P′ = {𝜌′ij} in
(4.50). It would be expected that this should be related to the correlation matrix P = {𝜌ij}
in x space.

For convenience, introduce the Normalized random variables Zi =
(
Xi − 𝜇Xi

)
∕𝜎Xi

.
Then for any two random variables the correlation between the Xi can be stated as
(see A.123, A.124):

𝜌ij =
cov

[
XiXj

]
𝜎Xi

𝜎Xj

= E
[
ZiZj

]
= ∫

∞

−∞∫
∞

−∞zizj𝜙2

(
yi, yj; 𝜌′ij

)
dyidyj (4.52)

with yi and yj dummy variables. From this expression the terms in the correlation matrix
P′ = {𝜌′ij} can be determined for each pair of marginal distributions with known P =
{𝜌ij}. Clearly it will be an iterative (and rather tedious) process, as the unknown is con-
tained within the double integral, but readily programmable. To ease the burden, Liu
and Der Kiureghian (1986) have produced empirical, approximate expressions for the
ratio

R =
𝜌′ij

𝜌ij
(4.53)

for which some results are given in Appendix B for a range of combinations of
marginal distributions. Suffice to note here that with the clear exception of combi-
nations involving the shifted Exponential distribution, it is generally the case that
0.9 ≤ R ≤ 1.1. In view of the fact that the correlation structure can, in practice, only
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seldom be determined with high precision, this suggests that for many problems it is
sufficient to take the correlation structure P′ = {𝜌′ij} for the standardized variables Y
as P = {𝜌ij} [cf . Der Kiureghian and Liu, 1986]. Restrictions on the use of the Nataf
transformation are given in Appendix B.

Once P′ = {𝜌′ij} has been obtained, the complete description of the ‘created’
(approximate) probability density function f X( ) is available in (4.50). In principle
this could be used in the Rosenblatt transformation to obtain a set of equivalent
independent Normal random variables for use in FOSM analysis. In practice it is
simpler to go directly to one of the FOSM solution schemes, to determine 𝛽, such
as the iterative scheme of Section 4.3.5. This is possible since f X( ) is a (transformed)
Normal distribution as can be seen from (4.50). The only additional requirement over
what was done previously is the need to evaluate |J |. The resulting distribution may
be transformed to an independent standardized distribution 𝜙n(z′, I) through a simple
orthogonal transformation (see Appendix B).

Example 4.6 Let two random variables X1 and X2 have identical exponential
marginals with means 1.0 and correlation coefficient 𝜌12 = 𝜌 = 0.25. It follows from
Section A.5.5 that the standard deviations also are unity and from expressions (A.35)
and (A.36) that

FXi
= 1 − exp

(
−xi

)
and

fXi
= exp

(
−xi

)
To obtain the approximate probability density according to the Nataf transformation,
expression (4.50) must be applied. This requires knowledge of 𝜌′ = R. 𝜌. From Table B.2,
for both marginals Exponential distributed, R = 1.229 − 0.367𝜌 + 0.153𝜌2 = 1.148, so
that 𝜌′ = 0.287.

The term 𝜙n( ) in (4.50) becomes (see A.125)

𝜙2
(

y, 𝜌′
)
= 1

2 𝜋𝜎1𝜎2
(
1 − 𝜌′2

)1∕2 exp

[
− 1

2
(h2 + k2 − 2𝜌′hk(

1 − 𝜌′2
) ]

with h =
x1 − 𝜇X1

𝜎X1

= y1 since the mean and standard deviation are each unity. A similar

result holds for X2. Substituting 𝜌′ = 0.287 and the mean and standard deviation values
produces

𝜙2
(

y, 𝜌′
)
= 0.166 exp

[
0.545

(
y2

1 + y2
2
)
− 0.574y1y2)

]
To complete the probability density function the Jacobian is required:

|J | = fX1

(
x1
)
. fX2

(
x2
)

𝜙
(
y1
)
. 𝜙

(
y2
)
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with the two terms in the numerator given by fXi
= exp

(
−xi

)
and the terms

in the denominator obtained from the standard Normal distribution N(0, 1) as
𝜙
(
yi
)
= 1√

2𝜋
exp

(
− 1

2
y2

i

)
(see Section A.5.7). It follows readily that

|J | = exp
(
−x1

)
. exp

(
−x2

)
0.159 exp

(
−0.5y2

1
)

exp
(
−0.5y2

2
)

and substituting into (4.50) that

fX (x) = 0.104 exp
(
−x1 − x2

)
exp

[
−0.045

(
y2

1 + y2
2
)
+ 0.313y1y2

]
with yi = Φ−1 [1 − exp

(
−xi

)]
[cf. expression (4.49)].

4.4.4 Algorithm for First-Order Reliability (FOR) Method

The algorithm given in Section 4.3.6 for determining the design point in FOSM theory
can now be generalized to FOR [Hohenbichler and Rackwitz, 1981]. For illustration the
Rosenblatt transformation will be assumed.

(1) Select an initial checking point vector x∗ = x(1) where x(1) might be 𝜇X.
(2) Use the transformation (4.43) to obtain y(1); this transformation will be of the simple

form (4.31) for any of the components of X that are independent random variables.
(3) Use expressions (4.45) and (4.46) to obtain the Jacobian J and its inverse J−1.
(4) Compute the direction cosines 𝛼i according to equations (4.5) and (4.48), the cur-

rent value of g(y(1)) and the current estimate of 𝛽 according to 𝛽 = −y∗T ⋅ 𝛼 (see 4.9)
where 𝛼 is the vector of direction cosines.

(5) A new estimate of the co-ordinates of the checking point in y space is then given by
expression (4.24) using the current 𝛽 value.

(6) The co-ordinates in x space of the current estimate of the checking point are then
given by the reverse transformation (4.44).

Repeat steps (2)–(6) until x∗ (or y∗) and 𝛽 stabilize in value.
It is evident that this algorithm is essentially a generalization of that given in Section

4.3.6 with the more complex transformation (4.43) and the inverse (4.44) used in steps
(2) and (6).

Example 4.7 The following example is adapted from Dolinsky (1983) and Hohenbich-
ler and Rackwitz (1981). It is one of the few cases that can be treated wholly analytically
using the Rosenblatt transformation.

Consider the problem in which the limit state function is G (x) = 6 − 2x1 − x2 = 0
(e.g. the random variables X1, X2 are actions) with X being rather highly correlated and
having the joint probability density function

fX (x) =
(
ab − 1 + ax1 + bx2 + x1x2

)
exp

(
−ax1 − bx2 − x1x2

)
for

(
x1, x2

)
≥ 0

= 0, otherwise.
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By appropriate integration (see Section A.6), it follows that the marginal probability
density functions for X1 and X2 are

fX1

(
x1
)
= a exp

(
−ax1

)
, for x1 ≥ 0

fX2

(
x2
)
= b exp

(
−bx2

)
, for x2 ≥ 0

while the joint cumulative distribution function is

FX (x) = 1 − exp
(
−ax1

)
− exp

(
−bx2

)
+ exp

(
−ax1 − bx2 − x1x2

)
for

(
x1, x2

)
≥ 0

= 0, otherwise.

Substituting into the first and second lines of the Rosenblatt transformation (4.42)
produces

Φ
(
y1
)
= F1

(
x1
)
= ∫

x1

0 fX1
(t) dt = 1 − exp

(
−ax1

)
, for x1 ≥ 0 (4.54)

Φ
(
y2
)
= F2

(
x2
|| x1

)
=
∫

x2

0 fX
(
x1,w

)
dw

fX1

(
x1
)

= 1 −
(

1 +
x2

a

)
exp

(
−bx2 − x1x2

)
(4.55)

The limit state function becomes

G (X) = 6 − 2F−1
1
[
Φ
(
y1
)]

− F−1
2
[
Φ
(

y2
|| x1

)]
= 0

This expression can only be evaluated numerically. For example, if a = 1, b = 2 and
x1 = 1, then (4.81) becomes Φ

(
y1
)
= 1 − exp (−1) = 0.6321 or y1 = 0.34. Then, in

(4.55), Φ
(
y2
)
= 1 −

(
1 + x2

)
exp

(
−2x2 − x1x2

)
, but x2 = 4 for G (x) = 0, so that

Φ
(
y2
)
= 1 − 5 exp (−12) = 0.999969 or y2 ≈ 4.01. This marks point A on Figure 4.12(a).

The complete curve can be constructed in a similar manner by taking other values of x1.
Noting (4.46), the Jacobian (A.151) is evaluated using (4.54) and (4.55) as:

J =

⎡⎢⎢⎢⎢⎢⎣
1

𝜙
(
y1
) a

exp
(
ax1

) 0

1
𝜙
(
y2
) (

1 + x2∕a
)

x2

exp
(
bx2 + x1x2

) 1
𝜙
(
y2
) −1∕a +

(
b + x1

) (
1 + x2∕a

)
exp

(
bx2 + x1x2

)
⎤⎥⎥⎥⎥⎥⎦

(4.56)

from which it follows by back-substitution that

J−1 =

⎡⎢⎢⎢⎢⎢⎣
𝜙
(
y1
) exp

(
ax1

)
a

0

−𝜙
(
y1
) (

1 + x2∕a
)

x2 exp
(
ax1

)
1∕a −

(
b + x1

) (
1 + x2∕a

)
a

−𝜙
(
y2
) exp

(
bx2 + x1x2

)
1∕a −

(
b + x1

) (
1 + x2∕a

)
⎤⎥⎥⎥⎥⎥⎦

(4.57)

With a = 1, b = 2, the algorithm can now be used as follows.
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Figure 4.12 Local stationary points for Example 4.7: (a) original order of dependent basic variables; (b)
interchanged order.

(1) Let a trial design point be, arbitrarily, x1 = 1, x2 = 4, which it was seen corresponds
to the point A in Figure 4.12(a).

(2) From (4.54) it follows that 𝜙
(
y1
)
= 1 − exp (−1), or y1 = 0.34 and, from (4.55) that

Φ
(
y2
)
= 1 − (1 + 4) exp (−12) or y2 = 4.01. Hence y = [0.34, 4.01]T .

(3) From (4.56) and (4.57):

J =
[

0.977 0
0.917 0.642

]
J−1 =

[
1.024 0
1.462 31.289

]
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(4)(a) The direction cosines are [see (4.5) and (4.48)]

[
c1
c2

]
=

⎡⎢⎢⎢⎢⎣
𝜕g
𝜕y1

𝜕g
𝜕y2

⎤⎥⎥⎥⎥⎦
= J−1

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕G (x)
𝜕x1
∶
∶

𝜕G (x)
𝜕xn

⎤⎥⎥⎥⎥⎥⎥⎦
=
[

1.024 0
1.462 31.829

] [
−2
−1

]
=
[
−2.048
−34.21

]

so that l ≈ 34.27, 𝛼1 = −0.060, 𝛼2 = −0.998.
(b) By the original choice of values for x1 and x2 it is seen that the limit state function

is identically satisfied for this cycle, i.e. g (y) = G (x) = 0.
(c) Calculate 𝛽:

𝛽 =
(

yT ⋅ y
)1∕2 =

(
0.342 + 4.012)1∕2 = 4.02

(5) From (4.24) the new estimates for y are[
y1
y2

]
= −

[
−0.060
−0.998

]
(4.02 − 0) =

[
0.24
4.02

]
which, by inspection of Figure 4.13(a), is obviously a better estimate of the (apparent)
checking point P∗.

(6) From (4.54) inverted according to (4.44), the second estimate for x1 is

x1 = F−1
1
[
Φ
(
y1
)]

= − ln [1 − Φ (0.24)] = 0.903

and from (4.55)

1 − Φ
(
y2
)
=
(
1 + x2

)
exp

[
−
(
2 + x1

)
x2
]

i.e.
0.262 × 10−4 =

(
1 + x2

)
exp

[
−2.903x2

]
or x2 = 4.2 obtained by trial and error.

The algorithm should now be repeated until y or x stabilizes. This should then give 𝛽1
as shown in Figure 4.12(a).

4.4.5 Observations

Without actually using the algorithm, it is evident that if a rather different starting point
was chosen in the above example, say y = (1.5, 1.3)T , the algorithm would converge to
𝛽2 in Figure 4.12(a), with 𝛽2 < 𝛽1. This shows again that the algorithm provides only
stationary points and that, for each of these, the respective 𝛽 (and hence pf ) must be
checked [Dolinsky, 1983].

This difficulty does not arise if a numerical algorithm for seeking the point of
maximum likelihood (or the MPP) is used instead of the iteration algorithm (which
identifies only stationary points). Such an approach was outlined in Section 4.3.5
for a second-moment problem with non-linear limit state function [cf. Beck and
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Silva Jr., 2016]. The present problem is essentially similar but has a highly non-linear
limit state function, owing to the format of the joint cumulative distribution func-
tion used.

Difficulties may arise also with sensitivities (see Section 4.3.3) for 𝛽 when there are
random variables modelled by asymmetrical distributions such as the exponential or
extreme value distributions, with 𝛽 tending to increase with increased variance (rather
than the reverse) [Sørensen and Enevoldsen, 1993].

A further problem can arise. The Rosenblatt transformation (4.42) can be given in n!
different ways, depending on how the basic variables are arranged. The importance of
this can be demonstrated as follows. If the order x1, x2 in (4.42) is interchanged, then

Φ
(
y1
)
= F2

(
x2
)

Φ
(
y2
)
= F1

(
x1
|| x2

)
(4.58)

and for a = 1, b = 2 as before

Φ
(
y1
)
= 1 − exp

(
−2x2

)
Φ
(
y2
)
= 1 −

(
1 +

x1

2

)
exp

(
−x1 − x1x2

)
(4.59)

Using a similar procedure as before, the limit state function G (x) = 0 is transformed to
that shown in Figure 4.12(b). Again two stationary points exist. Let the respective dis-
tances from the origin be marked as 𝛽3 and 𝛽4. Then it is easily verified that 𝛽3 <𝛽2 <𝛽4.
This demonstrates that in principle all n! possible combinations of arrangement of X in
(4.42) must be considered if the critical (i.e. lowest) is to be identified [Dolinsky, 1983].
In practice some prior knowledge of the problem may be advantageous in selecting an
appropriate ordering of variables.

The above example represents an unusually severe test for the FOR method. In
most practical situations, highly correlated exponential distributions, as used here, are
unlikely to occur.

4.4.6 Asymptotic Formulation

It should be evident that the use of the simple transformation of Section 4.4.1 and the
Rosenblatt and the Nataf transformations essentially are attempts to find a new sur-
face, in the standard normal space, which closely matches the surface of the actual joint
probability density function. This new surface then facilitates estimating the probability
content under (an appropriate part of ) the surface, in a manner simpler than was pos-
sible under the original PDF. For a simple one-dimensional situation this new surface is
shown in Figure 4.10 as the transformed distribution.

The idea of using an approximating surface can be extended mathematically by seeking
functions which are asymptotic to the true surface such that the error in the approxi-
mation is minimized. Specifically, (1.31) can be rewritten as

pf = ∫D fX (x) dx = ∫D exp
{

ln
[
fX (x)

]}
dx (4.60)

where D is the failure domain. If, as is usually the case, the probability content enclosed
by D is small, the probability density function f X( ) is also small everywhere in D and the
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{} term is negative. Defining now a ‘scaling factor’ 𝛽0 =
√

−max
D

ln
[
fX (x)

]
and letting

h (x) = ln
[
fX (x)

]
∕𝛽2

0 allows the integral (4.60) to be rewritten as:

pf = ∫D exp
[
𝛽2

0 h (x)
]

dx (4.61)

The integral in (4.61) may be compared to the following integral of the Laplace type
[Breitung and Hohenbichler, 1989]:

pf (𝛽) = ∫D exp
[
𝛽2h (x)

]
dx (4.62)

for which solution schemes exist. Expression (4.62) approximates (4.61) asymptotically
as 𝛽 → ∞ but provides good approximations with 𝛽 = 𝛽0, where 𝛽0 is the scaling factor
corresponding to the point of maximum likelihood (see above) on the failure domain
boundary.

These results carry-over to the space of the original random variables provided the log
likelihood function of the joint probability distribution is used, with the approximation
point (cf . ‘checking point’) at the point of maximum log likelihood [Breitung, 1991]. The
reader is referred to the specialized literature for detailed discussion of this approach.

4.5 Second-Order Reliability (SOR) Methods

4.5.1 Basic Concept

From the above discussions it should be clear that approximating the limit state sur-
face by a linear surface (through a Taylor series expansion) may not be satisfactory if
the limit state surface has significant curvature. Even for linear limit state functions in
the original space, a non-linear limit state may be the result when the reliability problem
is transformed from the original space to the standard Normal space. That this can occur
is shown very clearly in Figure 4.12 of Example 4.7.

Since the use of a linear approximation for the limit state surface becomes less
accurate as the limit state function becomes more curved, it would be expected that
limit state curvature has a role in defining any simple surface used to approximate
a non-linear limit state function. Various ways of doing this have been proposed. In
the context of second-moment approaches and developments thereof, methods to
deal with the non-linearity of the limit state function have been termed ‘second order’
methods [Fiessler et al., 1979; Hohenbichler, et al., 1987]. The most common approach
has been to attempt to fit a parabolic, quadratic or higher order surface to the actual
surface, centred on the checking point. This requires some decision about the extent to
which the approximation is valid away from the checking point. Figure 4.13 shows the
relationship between a first order (linear) approximation and a second order (parabolic)
approximation at the checking point in standard Normal space [Der Kiureghian, et al.,
1987].

4.5.2 Evaluation Through Sampling

There are no easy ways to estimate the probability content enclosed by a quadratic sur-
face. Essentially two approaches for estimating it have been proposed. The first relies on
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Figure 4.13 Second order approximation to actual limit state surface at checking point y∗ in y space,
showing also first order (linear) approximation.

sampling the space between the linear approximation and the quadratic approximation
to estimate the probability content between these two approximations to the limit state
surface. The majority of the probability content is estimated using First Order theory
[Hohenbichler and Rackwitz, 1988]. Alternatively, the FOR result for a linear limit state
can be taken as the starting point for simulation about the design point to estimate the
error in failure probability between that given by the linear limit state approximation
and the actual limit state [e.g. Mitteau, 1996].

4.5.3 Evaluation Through Asymptotic Approximation

An alternative approach to evaluating the probability content for the Second Order
approach uses asymptotic concepts. In the space of independent standard Normal
random variables (the y space), and for a limit state function which is not too highly
non-linear, the failure probability can be estimated from a determination of the limit
state surface curvatures Ki at the design point y∗ and then applying the asymptotic
expression [Breitung, 1984]:

pf ≈ Φ (−𝛽)
k∑

j=1

[n−1∏
i=1

(
1 − 𝛽 .𝜅i

)]−1∕2

(4.63)

where 𝜅i = −
[
𝜕2yn

𝜕y2
i

]
is the ith principal curvature of the limit state surface g (y∗) = 0 at y∗.

Evidently, the (known) limit state function must be continuous and twice differentiable
in the neighbourhood of y∗. Also, this approach can deal, directly, only with a single
design point.

The error in the asymptotic approximation (4.63) is not defined, in general, but it
appears that, roughly, the approximation improves as the limit state becomes ‘flatter’, i.e.
as 𝛽 → ∞, in which case the first order result is approached (i.e. that with a linear limit
state function). Evidently, (4.63) has a singularity if 𝛽i = 1∕𝜅i so that (4.63) gives rather
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poor results for high curvature limit states. Derivations and more formal discussions are
available [Breitung, 1984, 1994; Ditlevsen and Madsen, 1996].

The use of (4.63) requires computation of the curvatures, which can be demanding for
large problems with a large number of basic variables or where the limit state function
is complex. The curvatures could be approximated iteratively using the gradients of the
limit state function using a gradient-based algorithm. This can then find both the check-
ing point and the principal curvatures [Der Kiureghian and De Stafeno, 1991]. A number
of algorithms for finding the checking point(s) have been reviewed and proposed [Abdo
and Rackwitz, 1990; Liu and Der Kiureghian, 1991a; Haukaas and Der Kiureghian, 2006;
Santos et al., 2012; Beck and Silva Jr., 2016].

Rather than using curvatures, an alternative approach is to return to the idea of
Figure 4.13 and to fit a quadratic surface through the checking point y∗ and a set of
points on the limit state surface. The location of the points is arbitrary. They may
be selected to lie along the axes of a standardized Normal space in which one axis
coincides with the checking point (which must be obtainable) and the points may be
located a distance 𝛽 iK i away from the checking point, with 𝛽 iK i around 3 for 𝛽i > 3 and
Ki = 1 for lower 𝛽 i values [Der Kiureghian et al., 1987]. Because there is no attempt to
match the curvature at the checking point, this approach tends to allow for smoothing
of localized irregularities and for limit state surfaces which are not close to a quadratic
shape in the region of interest.

It will become evident that this approach is not unlike the response surface approach
(see Section 5.5.4), except that, compared to the situation discussed there, the origi-
nal limit state surface is known for the present situation. Improved versions of (4.63)
have been proposed, including removal of the limitation on accuracy for higher val-
ues of 𝛽 [Tvedt, 1985, 1990; Hohenbichler and Rackwitz, 1988]. However, this comes at
the expense of more complexity. A simpler version, using an accurate polynomial based
expansion of the gradient of the probability density function around the checking point,
appears promising [Köylüoglu and Nielsen, 1994].

4.6 Application of FOSM/FOR/SOR Methods

The FOSM method in particular has proved very popular with those wishing to obtain
probability statements about particular problems with relative ease. The procedure to
determine the safety index 𝛽 is straightforward even for non-linear limit state functions.
Once experience has been gained with the FOSM method, its extension to non-normal
random variables, known as the First Order Reliability (FOR) method (sometimes
FORM), is a natural step to incorporate distributional probability information. As
was discussed in relation to Example 4.7 it is only in rather extreme situations that
difficulties arise or that the linearization of the transformed limit state equation leads
to grossly inaccurate results. Applications of the FOSM/FOR methods can be found
aplenty in the literature, although mainly for problems with relatively simple or with
only a few limit state functions. How to deal with more complex systems will be
discussed in Chapter 5.

Both the FOSM and the FOR methods require the use of derivatives of the limit
state function. For the simple examples given in this chapter, explicit expressions could
be obtained for derivatives. More generally, however, such as when the limit state
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function is complex and/or dependent on structural behaviour analysis, resort may
have to be made to numerical procedures. This will have a significant effect on the
amount of computation necessary as the number of basic variables increases.

The concept of using a second-moment (SM) representation to approximate a
non-Normal distribution function can be extended and improved by also using
approximating higher moments. One such approach uses a weighted system of
second-moment cumulative distribution functions to represent the non-Normal distri-
bution and to modify the limit state function accordingly [Grigoriu, 1982]. Winterstein
and Bjerager (1987) suggested also exploiting the information contained in the third
and fourth moments: in this way the deviations in the distribution tails obtained with
fewer moments are reduced significantly. Further, it is possible to bypass the use of
the Rosenblatt transformation by the use of Hermite polynomials. Such methods are
beyond the scope of this book.

Finally it is possible also to specify safety indices other than 𝛽. A useful overview
of most of these has been given by Turkstra and Daly (1978). None has found wide
acceptance.

4.7 Mean Value Methods

As mentioned in Sections 4.2 and 4.3.2, the natural and theoretically consistent point
for linearizing non-linear limit state functions (in standard Normal space y) is the
checking point (or point of maximum likelihood or the most probable point – MPP)
y∗ on the limit state function. This also was shown (Section 4.3.4) to be the natural
point for the Normal tail approximation of non-Normal random variables in the FOR
approach. However, it is clear that in both cases the point y∗ is not known at the outset.
Typically an iterative (or other) process is required to seek y∗. This may be complicated
by the need to also seek the appropriate Normal tail approximation most consistent
with the current estimate of y∗. The net result is that the computational demands
increase in progressing from linear limit state functions through non-linear limit state
functions to non-Normal distributions. If the reliability analysis is then also to be
embedded in a structural analysis program, for example, a finite element analysis, or
an optimization scheme (see Chapter 11), the total computational costs become very
high. Although not originally developed for such applications, there is a simplified,
approximate, reliability analysis, known as (Advanced) Mean Value reliability analysis
[Wu et al. 1990] that sometimes can be used to help reduce high computational
costs.

As noted, usually the checking point is not known at the beginning of the analysis.
On the other hand, the mean point 𝜇Y is always known a priori. It does not need to be
sought by numerical or other means, irrespective of whether second-moment or Normal
or non-Normal random variables are involved. Using the mean value of the relevant
random variables as the expansion point makes it easy, using Taylors series expansion,
as before, to determine an equivalent linearized limit state function. It also makes the
computation of 𝛽 or the equivalent probabilities very easy, through single evaluations of
the limit state functions and of their gradients at the mean values. However, generally
the 𝛽 value so obtained will not have the same value as that obtained from the theory
and the various algorithms described in Sections 4.3–4.5 [Wu et al., 2002].
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It has been claimed that mean value methods provide reasonable results for many
practical applications such as reliability analyses. They can have acceptable accuracy
when the limit state functions are nearly linear (not ‘excessively non-linear’) and when
the probability density functions for the random variables are approximately Normal.
However, the accuracy can be poor in other situations. This cannot be estimated without
additional analyses to obtain estimates of the errors involved. Algorithms for this are
available [e.g. Eldred and Bichon, 2006].

4.8 Conclusion

The discussion in this chapter commenced with the FOSM method. It was shown that for
linear limit state functions the failure probability can be obtained directly from the safety
or reliability index 𝛽. If the limit state function is non-linear, 𝛽 can still be defined, but
only with respect to an approximating tangent (hyper-)plane. In each case 𝛽 represents
the shortest distance from the origin in standardized Normal space to the (hyper-)plane.
It is therefore perpendicular to the hyperplane. The corresponding point on the hyper-
plane was termed the ‘checking’ point (also sometimes known as the ‘design’ point).
This point is the point of greatest probability density (or point of maximum likelihood
or the most probable point) within the space encompassed by the failure region. This
point may be found by direct minimization using a Lagrangian multiplier formulation,
by numerical maximization or by iteration to find a saddle point.

When more than second-moment information is available for some or all of the basic
variables, the FOSM method of determining a nominal failure probability, or 𝛽, may
still be used, provided that each basic variable is first transformed to an equivalent Nor-
mal random variable. The procedure for doing this has been termed the First Order
Reliability (FOR) method (sometimes called the FORM method). The transformation
may be based on the Rosenblatt transformation if sufficient information is available or
on the Nataf transformation if only marginal and correlation information is available
(see Appendix B). In the special case when all basic variables are independent, these
transformations degenerate into transformation of each variable independently.

A brief discussion was given of Second Order Reliability (SOR) methods (sometimes
called SORM), including the formulation based on using an asymptotic surface approx-
imation of the joint probability density function in the region of the point of maxi-
mum likelihood. Such methods are inherently more complex and may require numerical
methods such as importance sampling for solution.

Finally, some remarks were made about the approximate mean value methods. These
may be useful where the computational demands imposed by the theoretically more
rigorous FOR and SOR methods are too great, such as in iterative design or optimization
schemes.
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5

Reliability of Structural Systems

5.1 Introduction

This chapter is concerned with structures for which more than one limit state must be
considered. Even in simple struc tures composed of just one element, various limit states
such as bending action, shear, buckling, axial stress, deflection, etc., may apply. Most
structures are, in addition, composed of many members or elements. Such a composi-
tion will be referred to as a ‘structural system’.

The reliability of a structural system is likely to be a function of the reliability of its
members, for the following reasons:

(a) Load effects (stress resultants) on different members may be obtained from one or
more common loads;

(b) Loads and resistances may not be independent (e.g. dead loads may be related to
member size, and strength may be related to previously applied loadings);

(c) Correlation of member properties such as member strength and stiffness may exist
between different locations in the structure;

(d) Construction practices may influence member properties for a group of members.

Furthermore, there may exist limit states for the structure as a whole rather than its
elements (e.g. overall deflection, foundation settlement, residual stiffness) and the con-
figuration of the structure itself may be of importance. It is likely, therefore, that the
reliability assessment of structural systems will involve the need to consider multiple
and perhaps correlated limit states.

In this chapter only time-invariant random loading will be considered. This means, as
previously discussed in Section 1.4.1, that the structural reliability problem is reduced
to one for which the probability of failure is sought under the maximum (but uncer-
tain) loading applied (once only) to the system sometime during its life [0, tL]. Where
there is more than one load applied to the structural system, this approach remains
valid if the loads are all fully dependent, so that there is in essence only one indepen-
dent load parameter. This is often assumed to be the case, for example, in conventional
rigid-plastic theory. This approach is valid also if each of the loads is applied only once
and in a known order since then the sequence of structural response can be traced with
certainty. Thus in both cases the statistical properties assigned to the load(s) represent
the uncertainty about the actual maximum value which is applied. When these assump-
tions about loading do not hold, it is necessary to turn to the time-dependent reliability
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assessment, as discussed in Chapter 6. Emphasis in the present chapter, therefore, is on
structural system response.

The basic structural system reliability estimation problem will be formulated in the
next section. This section will describe also the fundamental structural system ideal-
izations and essential approaches to problem solution. Monte Carlo solutions are con-
sidered in Section 5.3 and bounding methods, using the First-Order Second-Moment
(FOSM) or First-Order Reliability (FOR) methods, are discussed in Section 5.4. This will
lead to response surface methods in Section 5.5. Sequential methods of analysis for large
complex structures are described in Section 5.6.

5.2 Systems Reliability Fundamentals

5.2.1 Structural System Modelling

The analysis of realistic structural systems even within a deterministic framework can
be a considerable task. Usually it is facilitated by simplifications and idealizations in
each of (i) applied loads and load sequencing (load modelling), (ii) structural system
and its components and connections between components (system modelling), and (iii)
material response and strength characteristics (material modelling). Criteria for limit
state violation also need to be specified—in conventional design usually a permissible
stress criterion as adopted (see Section 1.2.1) but other criteria may have greater validity.

5.2.1.1 Load Modelling
The discussion in the previous chapters has been confined, largely, to extreme value
loading, that is, the probability of failure has been estimated using the probability distri-
bution for the uncertain extreme loading which might be applied to the structure some-
time during its life (see Section 1.4.4). As already noted, this idealization assumes that
there is only one such load possible and that the structure is, therefore, essentially loaded
only once. Of course, a realistic load process with time is more like that shown in Figure
1.7 for a single time-dependent load. If the entire time-dependent load pattern is con-
sidered, it is conceivable that some part of the structure might reach a (local) limit state
before an overall structural limit state is reached. Therefore, it is possible that the failure
mode of a structure will depend on the exact loading sequence. Clearly, if the loading is
a random process this means that there are an infinity of possible load realizations and
hence failure possibilities—an impossible situation for analysis. The possibility of more
than one loading process acting on the structural system only adds to the complexity.

This issue has been termed ‘load-path dependence’ in the literature, indicating that in
many cases the estimated failure probability may depend on the path traced out by the
(stochastic) vector of the applied load processes [Ditlevsen and Bjerager, 1986; Wang
et al. 1995]. This may be important for some structures. A simple example is shown in
Figure 5.1(a). It has a column loaded by a vertical force V and a horizontal force H. If the
column were loaded first with a given value of vertical force followed by an increasing
horizontal force H, the load path would be V-H as shown. As H is increased, eventually
the point marked ‘Failure’ would be reached on the failure envelope for the column (as
given in elementary texts for reinforced concrete design). However, the alternate load
path H-V is not feasible for the same failure point since the failure envelope would be
reached already for a lower value of H, before V even could be applied.
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Figure 5.1 (a) Simple example of load path dependence—horizontal load applied before vertical load
produces a different failure mode than an attempt to apply the loads in the reverse order. (b) Typical
internal action path OBC within many realistic structures.

Despite the above observations, it is likely that for many practical structures the
load-path issue is not as critical as appears at first sight [Melchers, 1998a]. In part this is
due to the combination effect of internal actions at critical locations fixing the internal
action path to something like OBC in Figure 5.1(b), with OB being due to self-weight
and sustained live loading and only BC being due to extreme loading. In part also the
apparent insensitivity to external load-paths is due to many realistic structural systems
being designed deliberately (according to accepted design codes) to fail in ductile failure
modes rather than brittle ones. In this sense the behaviour of many structures tends
to approach plastic behaviour for which the well-known rigid-plastic theory provides
a good approximation of structural system behaviour [Ditlevsen, 1988]. Fortunately,
the capacity of simple ideal rigid-plastic systems does not depend on the load-path.
For these the deformation of the system at failure is governed only by the ‘normality
flow-rule’ (see also Section 5.2.2.3 below).

The matter of load-path dependence has not had much consideration in structural sys-
tem reliability work. In many cases the loads have been idealized as time-independent
random variables (i.e. as uncertain extreme loads applied once only during a specified
time period). This approach will be used also in the present chapter where appropri-
ate. A more general formulation (but subject to restrictions about the modelling of the
structural system and member properties) is described in Chapter 6.

5.2.1.2 Material Modelling
Because of the complexity of actual material behaviour, material behaviour in struc-
tural engineering usually is idealized. When combined with cross-sectional properties,
member response relationships such as those shown in Figure 5.2 can be hypothesized.

Elastic behaviour (Figure 5.2(a)) corresponds to the maximum permissible stress
concept of Section 1.2.1. With this idealization, failure at any one location within the
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Figure 5.2 Various strength-deformation (R-Δ) relationships.

structure, or of any one element, is considered to be identical with structural system
failure. Although clearly unrealistic for most structures, it is nevertheless a convenient
idealization.

When one load (or one fully dependent load system) acts on a structure, the loca-
tion of the peak stress or stress resultant can be identified from an appropriate analysis,
such as an elastic stress analysis. For this, the use of deterministic elastic properties and
dimensions is often adequate owing to the very low coefficient of variation associated
with these variables (see Chapter 8). Typically, the location of the peak stress (resultant)
will depend on the magnitude of the load (system), and several candidate locations or
members may need to be considered. For large structures, such identification may not
be easy by inspection alone.

Brittle failure of a member does not always imply structural failure owing to redun-
dancy of the structure. The actual member behaviour therefore can be better idealized
as ‘elastic-brittle’ indicating that deformation at zero capacity is possible for a member,
even after the peak capacity has been reached (Figure 5.2(b)).

Elastic-plastic member behaviour (Figure 5.2(c)) allows individual members or
particular regions within a structure to sustain the maximum stress resultant as
deformation occurs. When the elastic member stiffness Ki approaches infinity, this
behaviour is the well-known idealized ‘rigid-plastic’ behaviour. A generalization of
both elastic-brittle and elastic-plastic behaviour is elastic-residual strength behaviour
(Figure 5.2(d)) and a further generalization is elastic-hardening (or softening) behaviour
(Figure 5.2(e)). The latter may be seen as an approximation to general behaviour includ-
ing post-buckling effects. Even without introducing reliability concepts, the analysis
of structures with these latter behaviours is complex. Of course, general non-linear
(curvilinear) strength-deformation relationships (Figure 5.2(f )) present even more
difficulty.
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5.2.1.3 System Modelling
Even in conventional deterministic structural analysis, the actual structural system is
simplified for analysis. For example, in framed structures the members are idealized by
their centroids, the connections are idealized as points, and critical sections for strength
or stress checking are taken only at a finite number of pre-defined points in the frame.
Similarly, the loads are modelled as point loads or limited forms of continuous loads.
When the loads are not point loads, the critical points for safety checking may vary with
load combination and intensity.

Structural system failure (as distinct from individual member or material failure) may
be defined in a number of different ways, including:

(a) maximum permissible stress reached anywhere (𝜎(x) = 𝜎max);
(b) (plastic) collapse mechanism formed (i.e. zero structural stiffness attained: |K| = 0);
(c) limiting structural stiffness attained (|K| = Klimit);
(d) maximum deflection attained (Δ = Δlimit);
(e) total accumulated damage reaches a limit (e.g. as in fatigue).

Structural failure modes that consist of the combined effects of two or more member
(or cross-section) failure events, such as for statically indeterminate structures, are of
particular interest in the determination of structural systems reliability.

When all the different failure modes for the structural system have been identified, the
various events (member or cross-sectional failures) contributing to these failure modes
may be enumerated systematically using the ‘fault-tree’ concept. An example of a fault
tree is shown in Figure 5.3(b) for the elementary structure of Figure 5.3(a).

The procedure is to take each structural system failure event and to decompose it
into contributing sub-events, which themselves are decomposed in turn. The lowest
sub-events in the tree correspond, for structures, to failure of individual members or
cross-sections. At this level (if not earlier) local limit state equations can be written.
Fault-tree methodology has found most application in general, rather than structural
systems, reliability analysis but clearly is applicable also to structural reliability [Henley
and Kumamoto, 1981; Stewart and Melchers, 1997]. These methods also suggest pos-
sibilities for simplification of the structural system, such as restricting the number of

Q
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Beam mode
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1 2 3 1 3 2 3
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1 2
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Figure 5.3 Fault tree representation.
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potential failure modes, that is, the number of limit states that are developed for the
structural system.

For the particular case of rigid-plastic structural systems the traditional approach for
failure mode identification is that of combination of elementary mechanisms. These
can be obtained systematically, for example using an algorithm proposed by Watwood
(1979). An alternative is to use an algorithm that determines all the collapse mechanisms
(elementary and combinations) such as proposed by Gorman (1981).

Evidently, these various aspects of system modelling introduce a subjective element to
the reliability analysis of structural systems. One way of handling this aspect is to intro-
duce a modelling error. Thus it may be appropriate to represent a real system with an
idealization such as rigid-plastic behaviour [e.g., Ditlevsen and Arnbjerg-Nielsen, 1992].

For simplicity, discussion in much of this chapter will be confined to framed struc-
tures such as trusses and rigid frames. These are essentially ‘one-dimensional systems’.
For two-dimensional systems such as plates, slabs and shells, and for three-dimensional
continua such as earth embankments and dams the same general principles apply
although the actual problem formulation and execution might be more complex.

5.2.2 Solution Approaches

For the reliability analysis of multi-member structures (or structures which can be
idealized as such) there are, in principle at least, two complementary approaches that
can be adopted [Bennett and Ang, 1983]. These are the ‘failure modes’ approach and
the ‘survival’ modes approach.

5.2.2.1 Failure Mode Approach
The failure mode approach is based on the identification of all possible failure modes for
the structure. A common example is the collapse mechanism technique for ideal plastic
structures. Each mode of failure for the structure will normally consist of a sequence of
member ‘failures’ (i.e. the reaching of an appropriate member limit state) sufficient to
cause the structure as a whole to reach a limit state such as (a)–(e) above. The possible
ways in which this might occur can be represented by an ‘event tree’ (Figure 5.4) or as
a ‘failure graph’ (Figure 5.5). Each branch of the failure graph represents the failure of a
member of the structure, and any complete forward path through the branches starting
from the ‘intact structure’ node and concluding at the ‘failure’ node represents a possible
sequence of member failures. This information is also conveyed in the event tree.

Since failure through any one failure path implies failure of the structure, the event
‘structural failure’ FS is the union of all m possible failure modes:

pf = P(FS) = P(F1 ∪ F2 ∪… ∪ Fm) (5.1)

where Fi is the event ‘failure in the i th mode’. For each such mode, a sufficient number
of members (or structural ‘nodes’) must fail; thus

P(Fi) = P(F1i ∩ F2i ∩… ∩ Fni) (5.2)

where Fji is the event ‘failure of the j th member in the i th failure mode’ and ni represent
the number of members required to form the i th failure mode. For the simple example
of Figure 5.3(a), there are m = 3 failure modes, and n1 = 3, n2 = 2, n3 = 2.
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Figure 5.5 Failure-graph representation for structure of Figure 5.3(a).

5.2.2.2 Survival Mode Approach
The survival mode approach is based on identifying various states (or modes) under
which the structure survives. For the structure of Figure 5.3(a), each of A, B, C, D, E, F,
G (but not H!) in the failure graph Figure 5.5 represents such a state (see also Figure 5.4).
For each survival mode the structure has partially failed but is still capable of supporting
the load (i.e. it is still statically and geometrically stable).

Survival of the structure requires survival in at least one survival mode, or

ps = P(SS) = P
(
S1 ∪ S2 ∪… ∪ Sk

)
(5.3)

where SS is the event ‘structural survival’ and Si the event ‘structural survival in mode i’,
i = 1, … , k, with k not equal to the final node index.

From (A.5) it follows that

pf = P(S1 ∩ S2 ∩… Sk) (5.4)
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where Si is the event ‘structure does not survive in survival mode i’. Clearly, to attain
survival in any particular survival mode all the members contributing to that survival
mode must survive. For example, survival in mode B of Figure 5.4 requires member 3 to
survive.

It follows that failure to survive in a given survival mode is equivalent to failure of a
sufficient number of the contributing members, or

P(Si) = P
(
F1i ∪ F2i ∪… ∪ F𝓁i i

)
(5.5)

where Fji is the event ‘failure of the j th member in the i th survival mode’ and where 𝓁i
represent the number of members required to ensure survival of the i th survival mode.
Some results have been given for structural systems composed of ideal rigid-plastic
members [Bennet and Ang, 1983].

The survival mode approach has received much less attention in the literature than
the failure modes approach, perhaps in part owing to difficulties in conceptualization
of survival modes and in formulating the limit state equations and in part owing to the
difficulty of generating a truly lower bound stress field to satisfy the requirements for
the survival mode. For this reason, it will not be explored further herein.

5.2.2.3 Upper and Lower Bounds—Plastic Theory
It follows directly from (5.1) and (5.5) that any estimate of the probability of structural
system failure based on failure modes will be un-conservative (i.e. tend to underesti-
mate pf ) unless all possible failure modes have been included in the analysis; conversely,
the failure probability based on the survival mode approach (5.4) will be conservative
(i.e. tend to overestimate pf ) unless all possible survival modes have been incorporated
in the analysis.

When these statements are applied to rigid-plastic structures, statements analo-
gous to the well-known bounding theorems of ideal plastic (limit analysis) materials
are obtained [Augusti and Baratta, 1972; Augusti, 1980; Baratta, 1995]. Thus, if the
intensity of all the loads acting on a structure depends on only one factor w ≥ 0 the
probability of the plastic collapse event {Ek} for the k th collapse mode can be written
as Prob{Ek} = Pk(w). Evidently, if there are n failure modes possible for the structure,
then P(w) = Prob{E} = Prob{E1 ∪ E2 ∪…En} denotes the probability of failure for the
structural system as a whole (cf . 5.5). If the set of size 𝛾 denotes a subset of the total
plastic collapse event set of size n then the application of such a subset of failure modes
will imply failure of the system. However, the probability of such a subset occurring is
lower than that of the complete set, or

P𝛾 (w) ≤ P(w) (5.6)

This is the first bounding theorem (kinetic theorem). It is rather obvious and is widely
used in an intuitive way.

In classical plastic limit analysis a dual approach is the ‘static’ or equilibrium approach,
stating that a structure does not fail if there exists at least one statically admissible stress
field, that is, a stress field in equilibrium with the applied loads and which nowhere vio-
lates the local yield conditions of the material. Suppose now that there exist at least one
such stress field.

If D denotes the event that none of a set of stress fields which are investigated turns
out to be admissible, then by the static theorem this implies failure of the system.
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The probability of this occurring can be written as Prob{D} = P𝜓 (w). It then follows
immediately that

P(w) ≤ P𝜓 (w) (5.7)

which is the second bounding theorem of probabilistic limit analysis (static theorem).
Its application has not been extensively explored, but see Augusti (1980), Ditlevsen and
Bjerager (1984), Melchers (1983b) and Wang et al. (1995) for examples.

5.2.3 Idealizations of Structural Systems

Structural systems or their sub-systems may be idealized into two simple categories:
series and parallel. Some structural systems will consist of combinations of these, and
others still will be more complex, containing conditional aspects as well. The idealiza-
tions are discussed below, together with some simple results.

5.2.3.1 Series Systems
In a series system, typified by a chain, and also called a ‘weakest link’ system, attainment
of any one element limit state constitutes failure of the structure (Figure 5.5). For this
idealization the precise material properties of the elements or members do not matter.
If the members are brittle, failure is caused by member fracture; if the members have a
plastic deformation capacity, failure is by excessive yielding. It is evident that a statically
determinate structure is a series system since the failure of any one of its members
implies failure of the structure. Each member is therefore a possible failure mode. It
follows that the system failure probability for a weakest link structure composed of m
members is [Freudenthal, 1961; Freudenthal et al., 1966]:

pf = P
(
F1 ∪ F2 ∪ F3 ∪… ∪ Fm

)
(5.8)

Comparison with (5.1) shows that the series systems formulation (5.8) is of the ‘failure
mode’ type.

If each failure mode Fi(i = 1,m) is represented by a limit state equation Gi(x) = 0
in basic variable space, the direct extension of the fundamental reliability problem
(1.31) is

pf = ∫
D∈X

…∫ fX(x)dx (5.9)

Q

Q

R1

R2

R3

(b)(a)

Figure 5.6 Example series systems.
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μx2

μx1

x2

x1

D

D1

D D1

D

G3(x) = 0

G1(x) = 0

G2(x) = 0

0

Contours

of fx( )

Figure 5.7 Basic structural system reliability problem in two dimensions showing failure domain D
(and D1).

where X represents the vector of all basic random variables (loads, strengths of mem-
bers, member properties, sizes, etc.) and D (and D1) is the domain in X defining failure
of the system. This is defined in terms of the various failure modes as Gi(X) ≤ 0. In
two-dimensional x space, expression (5.9) is defined in Figure 5.7 with D and Gi(X) ≤ 0
shown shaded.

Let the safe (or survival) region be denoted D. Evidently, it is the complement of the
failure regions shown as D and D1 in Figure 5.7. D is given by

D ∶ F1 ∩ F2 ∩… ∩ Fm (5.10)

where Fi is defined as ‘survival in mode i’ or Gi(X) ≥ 0. The probability of survival is
then

ps = P

( m⋂
i=1

Fi

)
= ∫D …∫ fX(x)dx (5.11)

clearly indicating that this formulation is equivalent to the ‘survival mode’ approach of
Section 5.2.2.

A particularly simple result can be derived immediately without recourse to the inte-
grations required by (5.9) or (5.11) above. For the chain of Figure 5.6 the load effect S in
each link of the chain is identical with the load Q. If FRi

(r) is the cumulative distribution
function for the strength of the i th link, then the cumulative distribution function FR( )
for the chain as a whole is given by

FR(r) = P(R ≤ r) = 1 − P(R > r)
= 1 − P

(
R1 > r1 ∩ R2 > r2 ∩… ∩ Rm > rm

)
which, for independent strength properties, becomes

FR(r) = P(R ≤ r) = 1 − [1 − FR1
(r1)].[1 − FR2

(r2)]…

= 1 −
m∏

i=1

[
1 − FR1

(r1)
]

(5.12)
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This expression forms the basis for the probability distribution of the mechanical
resistance of perfectly brittle materials [Weibull, 1939]. When each Ri is identically and
normally distributed, the distribution of R as m approaches infinity is given by the type
III extreme value distribution for the smallest value (see section A.5.13).

The series system model is appropriate for a redundant structure such as a redundant
truss or framework if there are only a small number of members and these members are
brittle. In this case, failure of one member will usually lead to a redistribution of internal
actions which then triggers failure in another member, and so on. In this case the prob-
ability of failure for the whole structural system is well approximated by the probability
of failure of the first (brittle) member(s) [Moses and Stevenson, 1970]. However, this is
not a good approximation when there is a large number of redundant brittle members
since then the reserve strength can be quite significant.

Example 5.1 Consider the chain (series system) shown in Figure 5.6(a) consisting of
three links of strength Ri(i = 1, 2, 3) described only by the first two moments (𝜇i, 𝜎i) as
(110, 20), (140, 10) and (68, 5). The cumulative distribution function for the load capacity
FQ( ) can then be expressed as follows and the probability of failure for a given value of
a deterministic load of Q = 50 may be determined, and the rest follows.

For a given value of applied load Q = q, say, the probability that the capacity of the
system will be less than this value is given by:

Prob[Q < q] = Prob
[
(R1 < q) ∪ (R2 < q) ∪ (R3 < q)

]
which becomes, for independent links in the chain:

FQ(q) = P(R1 − q < 0) + P(R2 − q < 0) + P(R3 − q < 0)

For a given value Q = q the probability of failure then becomes, using second-moment
theory and Appendix D:

pf = FQ(q) = Φ
(q − 𝜇1

𝜎1

)
+ Φ

(q − 𝜇2

𝜎2

)
+ Φ

(q − 𝜇3

𝜎3

)
or

pf = Φ
(50 − 110

20

)
+ Φ

(50 − 120
10

)
+ Φ

(50 − 68
5

)
pf = Φ(−3) + Φ(−7) + Φ(−3.5) = (0.135 + 0.0233 + neg1.) × 10−2 = 0.16 × 10−2

5.2.3.2 Parallel Systems—General
When the elements in a structural system (or subsystem) behave in such a way or are
so interconnected that the reaching of the limit state in any one or more elements does
not necessarily mean failure of the whole system, the system is said to be a ‘parallel’ or
‘redundant’ system. Two simple parallel systems are shown in Figure 5.8.

Redundancy in systems may be of two types. ‘Active redundancy’ occurs when the
redundant member(s) participates in structural behaviour even at low loading. ‘Passive
(or stand-by or fail-safe) redundancy’ occurs when the redundant member(s) does not
participate in structural behaviour until the structure has suffered a sufficient degree of
degradation or failure of its members.@Seismicisolation@Seismicisolation
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R1 R2 R3

Q

(a)

Q1

Q2

(b)

Figure 5.8 Simple parallel systems: (a) parallel members (b) rigid-plastic frame.

Whether active redundancy is beneficial depends on the behaviour characteristics of
the members or elements and how failure is defined. For ideal plastic systems, the ‘static
theorem’ guarantees that active redundancy cannot reduce the reliability of a structural
system [Augusti and Barratta, 1973]. Hence it is beneficial.

With active redundancy, the failure probability of an n component parallel
(sub-)system is given by

pf = P(FS) = P(F1 ∩ F2 ∩… ∩ Fn) (5.13)

where Fi is the event ‘failure of the i th component’. It follows immediately that (5.13) is
equivalent to (5.4), and can be represented in x space by

pf = ∫D1∈X …∫ fX(x)dx (5.14)

as shown in Figure 5.7 for the intersection domains D1.
In contrast with the situation for series systems, a parallel system can fail only when

all its contributory components have reached their limit states. This means that the
behavioural characteristics of the system components are of considerable importance
in defining ‘system failure’. This is illustrated in Example 5.2.

Example 5.2 Consider the idealized parallel system (Figure 5.9) in which all the
elements are brittle, with different fracture strains 𝜀f . The maximum load Q that can be
supported at any particular strain level 𝜀 is given by

Rsys = max
𝜀

[
R1(𝜀) + R2(𝜀) + R3(𝜀)

]
(5.15)

where Ri = Ai𝜎i(𝜀) for i = 1, 2, 3. Here Ai represents cross-sectional area and 𝜎i
represents stress.

Since each resistance Ri (i = 1, 2, 3) is a random variable, it is not easy to apply
expression (5.15) since each possible state 𝜀f 1, 𝜀f 2 and 𝜀f 3 must be considered as a
possible state of maximum capacity. This means that all possible combinations of failed
and surviving members must be considered:

Rsys = max
{
[R1(𝜀f 2) + R2(𝜀f 2) + R3(𝜀f 2)], [R1(𝜀f 1) + R3(𝜀f 1)], R3(𝜀f 3)

}
(5.16)
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Figure 5.9 Brittle material behaviour in parallel system.

and when Rsys is known, the failure probability for the system is

pf = P(Rsys − Q < 0) (5.17)

In order to evaluate (5.17) the probability density or cumulative distribution func-
tion for Rsys must be known. By comparison to (5.13), it is obtained from (5.16) as
[Hohenbichler and Rackwitz, 1983b]

FRsys
(r) = P

{
max
𝜀fi

[ n∑
i=1

Ri(𝜀fi)

]
≤ r

}

= P

{⋂
𝜀fi

[ n∑
i=1

Ri(𝜀fi) − r ≤ 0

]}
(5.18)

In general, evaluating this type of expression is not straightforward. When all [ ] terms
can be approximated as, or converted to, standard Normal, the methods described in
Appendix C may be employed.

A special case of practical importance occurs when the elastic modulii Ei of the brittle
members in Figure 5.9 are identical. In this case it can be shown that the probability
distribution for Rsys approaches a Normal distribution as n approaches infinity [Daniels,
1945].

5.2.3.3 Parallel Systems—Ideal Plastic
In parallel systems of low redundancy and with brittle elements, failure of one element
often is sufficient to cause failure of the system. Unless the failed element contributed
very little to the system strength immediately prior to its failure, the load redistribution
caused by it usually leads to overloading of other elements in sequence (causing
so-called ‘progressive collapse’). This has led to the common assumption that, with
brittle members, failure of the most highly stressed member even for a parallel system
is tantamount to failure of the system.

The situation is completely different for ideal plastic structures, such as rigid
frames (Figure 5.8(b)), for which each collapse or failure mode (i.e. limit state) can be
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represented by an equation of the following type:∑
i

Qi Δi −
∑

j
Mj 𝜃j = 0 (5.19)

where Qi (i = 1,…) are the external loads, Δi are the deflections corresponding to
Qi (a function of 𝜃j and dimensions), Mj is the plastic moment resistance at section
j = 1,… and 𝜃j is the plastic rotation at section j. Expression (5.19) clearly is of the
‘parallel’ type since each resistance Mj must be mobilized to develop the total resistance
against the loading Qi.

Collectively, a set of failure mode equations, each like (5.19), constitutes a series
system since the structure will fail when any one failure mode (collapse mode) occurs.
It follows that plastic moment capacities Mj may occur in more than one failure mode
expression. This means that the structural capacities obtained from different failure
modes may be correlated. (Note that this is quite distinct from any correlation that may
exist between individual Mj values.)

Example 5.3 Consider the parallel member system shown in Figure 5.8(a). Let there
be n members with each member assumed to take an equal proportion of the load and
each member assumed to have ideal rigid-plastic behaviour. Let the plastic resistance
Ri, i = 1,… , n, of each member be identical and be a Normal distributed random
variable with mean value 𝜇i = 𝜇 and standard deviation 𝜎i = 𝜎. For independent
members, the total load capacity for the system is then given by

RS =
n∑

i=1
Ri (5.20)

and from (A.160) and (A.162) it follows that the mean and variance are

𝜇S =
n∑

i=1
𝜇i = n𝜇 𝜎2

S =
n∑

i=1
𝜎2

i = n𝜎2 (5.21)

for equal member mean and member variance. It follows readily that the standard
deviation of the total capacity is given by 𝜎S =

√
n 𝜎. This shows that the vari-

ance of the total system capacity increases with the number of members if their
strengths are independent. Of course, the total capacity also increases with increased
number of members. Hence another way of expressing this is to rewrite the result
in terms of the coefficient of variation Vi = 𝜎i ∕𝜇i. The equivalent expression is
then

VS = 1√
n

V (5.22)

If the strengths of the members are not independent, the expressions in (5.21) must
be replaced with (A.160) and (A.161) or (A.162) with an appropriate value for the
covariance. In the special case when there is complete dependence between member
strength, such as when they are all taken from the one piece of homogeneous material,
𝜌ij = 1 in (A.162). It is easily shown that in this case the variance in (5.21) becomes
𝜎S = n𝜎 and that (5.22) becomes VS = V , i.e. there is no advantage in increasing the
number of members.
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It is left as an exercise for the reader to show that if the problem were rephrased to
seek the effect of increasing the number of independent members while holding the
system capacity to a given mean value, the system standard deviation would be given
by 𝜎S = 𝜎∕

√
n. This and the previous result (5.22) show that the random variability of

the overall strength of the system decreases indefinitely as the number of independent
redundant members in parallel increases. In other words, the effects of individual
high or low member strengths tends to vanish. This is an important result [Moses,
1974].

Example 5.4 The rigid-plastic portal frame shown in Figure 5.10 is loaded by two
random variable loads, H and V , and has random variable moment capacities Mi,
i = 1,… , 4. The limit state equations are defined by the four plastic collapse modes
shown in Figure 5.10(a-d):

mode a∶ M1 +2M3 +2M4 −H −V = 0
mode b∶ +M2 +2M3 +M4 −V = 0
mode c∶ M1 +M2 +M4 −H = 0
mode d∶ M1 +2M2 +2M3 −H +V = 0

(5.23)

Let each random variable Xi = (M1, M2,… , H, V ) be Normal distributed, with prop-
erties 𝜇Xi

= (1.0, 1.0, 1.0, 1.0, 1.0, 1.0) and 𝜎Xi
= (0.15, 0.15, 0.15, 0.15, 0.17, 0.50).

The 𝛽 index for each collapse mode can be obtained using the FOSM concepts of
Chapter 4. These give, for mode a:

G(X) = M1 + 2M3 + 2M4 − H − V

so that

𝜇G = 1 + 2 + 2 − 1 − 1 = 3

and

𝜎2
G = (0.15)2 + 22(0.15)2 + 22(0.15)2 + (0.17)2 + (0.5)2 = 0.4814

Thus

𝛽a =
𝜇G

𝜎G
= 3√

0.4814
= 4.32.

1

2 3 4

2

1
(a)

(d)(c)

(b)

V
H

Figure 5.10 Rigid frame and collapse modes: Example 5.4.
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Beam 1

Beam 2

Conditional system

Figure 5.11 Conditional system.

The 𝛽 indices for modes b, c and d may be determined similarly; 𝛽b = 4.83, 𝛽c = 6.44 and
𝛽d = 7.21. Since the same plastic moments are involved in a number of collapse modes,
the limit state expressions and hence the safety indices are not independent. How these
results for individual failure modes can be combined is considered in Example 5.6.

5.2.3.4 Combined and Conditional Systems
A real structural system usually requires both series and parallel subsystems for its
complete specification. For example, a redundant structure having brittle members
may not fail if one of the brittle elements fails. Conversely, it might be possible for the
system to fail before all the brittle members have failed. The combination of member
and sub-system failure is important in specifying limit states for a structure. For
complex structures this is not a simple task, in part due to the redistribution of internal
actions within the structure as members fail and in part because the loading usually
also changes with time and with structural response (e.g. if the structure deflects).
The graph-theoretical cut-set (series system) and tie-set (parallel) representation
used extensively in classical reliability theory is therefore not particularly helpful in a
structural reliability context. When the loads can be represented as random variables
and the precise order of member failure is not critical, recourse can be made to methods
such as those discussed in Section 5.6.

The modelling of a real structural system also may require the use of conditional (sub-)
systems. The latter arises if the failure of one independent element or group of elements
affects the likelihood of failure of other elements or element groups. For example, in
Figure 5.11, if the upper beam collapses, it may affect the performance and reliability of
the lower beam (since the lower beam may be damaged and will be subject to extra load)
[Benjamin, 1970]. In this situation, the failure probabilities of the structural elements are
dependent on the behaviour of the structure under extreme events. Provided that the
sequence of events can be enumerated, it is evident that a structure with conditional
events can be reduced to one containing both ‘series’ and ‘parallel’ element groups or
sub-systems.

Example 5.5 Consider a single-span three-girder bridge. Investigations show that it
will fail if any two adjacent girders Gi fail, or if any deck panel D fails or if either (or
both) of its abutments Aj fail. The abutments could fail through failure of its two bored
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piles Pk or through overturning O. This set of scenarios can be expressed as

pf = P
[
(G1 ∩ G2) ∪ (G2 ∩ G3) ∪ D ∪ A1 ∪ A2

]
where

D = ∪
i
Di

and

Aj = (P1j ∩ P2j) ∪ Oj

with obvious notation.

5.3 Monte Carlo Techniques for Systems

5.3.1 General Remarks

The following section builds directly on the discussion of Monte Carlo techniques
given in Chapter 3. The concepts described there can be used to deal with the calcu-
lation of systems reliability. Section 5.3.2 extends the importance sampling approach
of Section 3.4 to structural systems for which failure is defined by multiple limit
state functions. The discussion includes comments about search-type techniques
(Section 3.4.5) in cases where the points of maximum likelihood are not known initially.

In Section 5.3.3 brief comments are made about the extension of directional simula-
tion (Section 3.5) to systems, and in Section 5.3.4 a more detailed description is given of
the extension of directional simulation in the load space (Section 3.5.4) to structural sys-
tems. The latter approach appears to be particularly suited for systems as distinct from
the original directional simulation approach. In this context some comments are made
also about the use of finite element and other complex structural analyses techniques.

5.3.2 Importance Sampling

5.3.2.1 Series Systems
The probability of failure represented by (5.9) can be rewritten as:

pf = ∫…∫ I[ ] fX(x)dx (5.24)

where the indicator function I[ ] for a series system is generalized from (1.33) and (3.6)
to

I
[ m
∪

i=1
Gi(x) ≤ 0

]
= 1 if [ ] is true

= 0 if [ ] is false
(5.25)

where Gi(x) = 0 represents the i th (known) limit state function, i = 1,… ,m.
For a two-dimensional x space, I[ ] represents the integration domain abcd of

Figure 5.12(a), i.e. a sample point x̂ lies in the failure region if any one Gi(x) ≤ 0. This
formulation is directly applicable if the ‘crude’ Monte Carlo approach is used. It is also
immediately applicable in the case of importance sampling.
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Figure 5.12 Two variable system problems: (a) original space; (b) hypothetical standardized space,
with failure regions shown hatched.

The integration of (5.24) using importance sampling was described by (3.17) for one
limit state function. Where there are m different limit state functions as in a structural
system, it is unlikely to be sufficient to use a uni-modal sampling density function. Very
large errors can be introduced this way [Melchers, 1991]. Instead, a useful approach is
to use the multi-modal sampling function [Melchers, 1984, 1990a]:

hV( ) = a1hV1( ) + a2hV2( ) + a3hV3( ) +… + amhVm( ) (5.26)

with
m∑
i

ai = 1

where the ai are weighting coefficients. Each component hVi( ) is selected for the i th limit
state in the same way as for an individual limit state, with most interest being the regions
contributing the greatest probability density for the limit state. Points such as A, B, C and
D in Figure 5.12(a) represent the points of maximum likelihood (probability density),
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and these may be used as surrogates for these regions (see Section 3.4.6.2). They have
the advantage of being obtainable systematically, such as through search techniques
(see below) or approximate FOSM analysis [Melchers, 1989a].

Normally, not all limit states will be of equal importance for a reliability analysis. This
can be taken into account by appropriate selection of the weighting coefficients ai. In
particular, the calculations will be simplified if those limit states which contribute in
only a minor way to pf can be identified. One way in which this can be done is with
reference to FOSM concepts. The suggested algorithm runs as follows [Melchers, 1984,
1990a].
(a) For each limit state i determine x∗

i , the point in n -dimensional x space having the
highest probability density f X( ) consistent with Gi(X) ≤ 0.

(b) For each x∗
i , calculate 𝛿i =

[ n∑
j=1

(y∗j )
2
i

]1∕2

with (y*)i given by y∗j =
(

x∗
j − 𝜇Xj

)
∕𝜎Xj (i.e.

a ‘standardized’ space such as shown in Figure 5.12(b) might be visualized in which
the relative importance of each limit state function is considered).

(c) Ignore all limit state functions for which 𝛿i > 𝛿L where 𝛿L is some arbitrarily chosen
limit. As a first-order approximation, the error in pf associated with any limit state
which is ignored in this way is given by perror ≈ Φ(−𝛿L).

(d) For the remaining k limit states, use (5.26) as the sampling function in (5.24) with ai
chosen on the basis of the 𝛿i values.

The total number of sample points required in this approach if M points are to fall
in the failure region is 2kM, which is considerably less than M/pf required for ‘crude’
Monte Carlo’ simulation, unless k is extremely (and impracticably) large.

When the limit states are closely clustered over all or part of the region of integra-
tion, one sampling function hV( ) may be used for such limit states considered as a
group. Such an approach might be invoked when the distance Δij between any two
‘checking points’ i and j in the hypothesized ‘standardized’ space, given, in k = 1,… , n
space, by

Δij =

[ n∑
k=1

(
y∗ki − y∗kj

)2
]1∕2

(5.27)

is less than some criterion ΔC, say. In this expression y∗ik represents the k th component
for the i th checking point. The suggested coordinates for hV( ) would be the mean of
x∗

i , x
∗
j . This concept is readily extendable to situations with more than two-limit-state

‘checking points’ in a cluster. A suggested criterion ΔC might be one standard deviation
in Y space.

5.3.2.2 Parallel Systems
For parallel systems the probability content associated with the intersection of two or
more (i.e. k) limit states is given by (5.14), which may be rewritten in the form (5.24)
but with I[ ] defined as

I
[

k
∩

i=1
Gi(x) ≤ 0

]
(5.28)
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Typically, the regions of most interest are those that are bounded by the appropriate
limit state functions and are near their intersection. Again, appropriate surrogates
for these regions and which are systematically determinable are the co-ordinates of
the intersection(s) of the appropriate limit state functions, such as points I12, I23 in the
two-dimensional space of Figure 5.12(a). It follows readily that the procedure of the
previous section applies but now with Iij, etc., instead of points A, B, etc. for the points
of maximum likelihood consistent with (5.28). Since the sampling efficiency may be
quite low (e.g. at point I23 Figure 5.12(a)), rather more sample points may need to
be used.

The point Iij is obtained, of course, directly by equating limit state functions:

Gi(x) = Gj(x) = 0 (5.29)

for a two-dimensional intersection in n (hyper-)space. In general, if the dimension of
the intersection is less than that of the (hyper-)space x, then Iij refers to what can be
imagined as a ‘crease’ (or fold) in that space (or a (hyper-)crease in x space), and the
‘checking’ point x* will then lie along the (hyper-)crease. If the dimension of the inter-
section equals that of the (hyper-)space, x* will be at the ‘vertex’ formed by the inter-
section of the limit state functions. In two dimensions this reduces to the points Iij in
Figure 5.12(a).

It is important to note, however, that x* may not lie at Iij, or along a crease. This
may occur where the limit state functions involved in the interaction are significantly
different in their contribution to pf . Consider, for example, limit state G2(x) translated
to the left in Figure 5.12(a), i.e., to the location marked G′

2(x). It is immediately evident
that the intersection G′

2(x) ∩ G1(x) has its greatest probability density at A, and not
at I′12. The extension to multidimensional space is obvious: the implication is that
the (hyper-)creases are likely points of greatest probability density, and hence good
surrogates for the region of interest, but other locations may need to be checked. This
may be accomplished using search-type techniques to locate the points of maximum
probability density as indicated in Section 3.4.5.

5.3.2.3 Search-Type Approaches in Importance Sampling
Knowledge of the points of maximum likelihood is particularly important in conven-
tional importance sampling (see Section 3.4.1). This implies that the limit state functions
must be known before the sampling functions can be selected in a sensible manner. In
many problems, however, the system limit state functions Gi(x) = 0 are not known a
priori.

The limit state functions and the points of maximum likelihood may be found by appli-
cation of a generalization of the search-type approaches (see Section 3.4.5) but now to
systems described by multiple limit state functions. Usually this will require multiple
starting points for the search process. In principle, if there are m limit state functions
with candidate points of maximum likelihood, at least m starting points will need to be
employed. If one of these starting points then converges to an already determined point
of maximum likelihood, another starting point will need to be used. However, there can
be no guarantee that all critical points of maximum likelihood will be identified [Bucher,
1988; Melchers, 1989b, 1990a]. The parallel to search-type optimization routines will be
obvious.
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5.3.2.4 Failure Modes Identification in Importance Sampling
In some problems it may be desired to identify the most common failure modes for a
structure, given that the modes of failure for individual members and the failure criteria
for the structure have been specified. In principle, this can be done by proper account-
ing of Monte Carlo results. However, experience shows that rather large samples are
required to discriminate between all important modes of failure, particularly when the
structural failure probabilities are very low, as is usual for structural reliability. In this
case only a few samples tend to fall in the failure regions.

Alternatively, the important limit states can be identified, perhaps, using a prelimi-
nary ‘crude’ sampling strategy on the whole basic variable space. One approach is to use
f X( ) (or some simplified form of it) as the sampling distribution hV( ) but with very much
larger coefficients of variation. This tends to spread the region over which sample points
are taken and results in rather more samples in the various failure regions [Vrouwen-
velder, 1983]. However, as the procedure falls somewhere between crude sampling and
good-quality importance sampling, its efficiency is still quite low. For rigid-plastic struc-
tural systems a completely different approach is to use a separate algorithm for system
failure mode identification (see Section 5.2.1.3).

5.3.3 Directional Simulation

For directional simulation in the x space or in the y space the discussions of Section 3.5.3
carry over directly with the more general interpretation of the limit state function now
defined as the (series) collection of m individual limit states:

m
∪

i=1
Gi( ) ≤ 0. With this func-

tion describing the system limit state set, there is only one important difference between
what is considered in Section 3.5.3 and what is required for the treatment of structural
systems. Specifically, for a given individual directional sample, it is likely that several
limit state functions will be encountered. As evident (see, for example, Figure 5.7) the
governing limit state function is the limit state function first encountered when moving
from the safe domain to the unsafe domain. This is implicit in the union expression for
the limit states.

Evidently, if the limit states for the structural system are of the general form shown
in Figure 5.7, the technique is likely to be more efficient than is the case for linear or
near-linear limit state functions for individual elements or members (see Section 3.5.3).

In practical problems the limit state functions may not be explicit, and search tech-
niques may need to be used along the individual directional sample. Such techniques
need to be able to differentiate between the various limit state functions that may inter-
sect the directional ‘ray’. An application of the technique, and an exposition of some of
the details of numerical solution, has been given by Ditlevsen and Bjerager (1989).

5.3.4 Directional Simulation in the Load Space

The theory for directional simulation in the load space follows directly from
Section 3.5.4. The only complication is that the procedures for deriving the variation
of strength with radial direction will need to be modified to allow for the existence of
multiple limit state functions describing the strength of the structural system. Thus, use
of either expression (3.45) or (3.46) requires the evaluation of the variation of structural
strength with distance along the radial direction, expressed through the probability
density function fS|A( ) or the cumulative distribution function FS|A( ) (see Figure 3.13).

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

152 Structural Reliability Analysis and Prediction

Radial direction
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s

ss1

s1

Figure 5.13 Resulting cdf FS|A( ) and pdf fS|A( ) in radial direction A = a with multiple limit state
functions each with a probabilistic representation [Melchers, 1992].

As noted in Section 3.5.4.2, if the limit state expression G(x) = 0 is known explic-
itly, fS|A( ) can be evaluated directly by multiple integration along the radial direction S.
As a practical alternative, when only the first two moments of the random variables
X contributing to S are known, the first two moments of S can be estimated using
second-moment algebra (Section A.11).

The situation becomes more complex if there are several limit state functions. In
this case their probability distribution may overlap for any simulation direction A = a.
The effective cdf FS|A( ) can be obtained by enveloping all component FSi|A( ) for each
limit state function (which is described in the load space as a probabilistic function, see
Figure 3.13). This is shown schematically in Figure 5.13 and becomes:

FS|A( ) = sup
i,S

[FSi|A(s)] (5.30)

The evaluation of fS|A( ) follows directly as

fS|A( ) = fSi|A( ) ||||FSi |A( )>FSj |A( ) ∀j ≠ i (5.31)

both of which can be used with little difficulty if numerical methods are used for
integration of (3.45) or (3.46).
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It might be noted that the possibility of solving structural reliability problems in the
load space Q treated as a vector of random variables has been explored also in various
ways other than directional sampling [Augusti and Baratta, 1973; Schwarz, 1980; Melch-
ers, 1981; Moses, 1982; Gorman, 1984; Lin and Corotis, 1985; and Katsuki and Fran-
gopol, 1994]. In most of these cases, simplified methods of numerical multi-dimensional
integration were proposed.

As already noted briefly in Section 3.5.4, the concept of the load space formulation
is attractive because it should be possible to include all types of structural behaviour,
including non-linear effects, in the analysis. This has been demonstrated for certain
complex structures [Moarefzedah and Melchers, 1996b] and for problems involving
finite element analysis [Guan and Melchers, 1998]. However, a possible limitation of
this approach is that it is assumed that the system limit states do not depend on the load
path, that is, on the order in which the loads are applied to the structure [Ditlevsen and
Bjerager, 1986; Ditlevsen and Madsen, 1996]. Of course, as discussed in Section 5.1 this
limitation is not an issue in the case of a one-parameter load system. It also appears not
to be a serious limitation for a range of framed structures. Where these limitations are
not satisfied, the system reliability estimation problem becomes much more complex.

5.4 System Reliability Bounds

Rather than to attempt to proceed with the direct integration of expressions (5.9) and
(5.14), an alternative approach is to develop upper and lower bounds on the probability
of failure of a structural system. Consider a structural system subject to a sequence of
loadings and which may fail in any one (or more) of a number of possible failure modes
under any one loading in the loading sequence. The total probability of structural failure
may then be expressed in terms of mode failure probabilities as (see Section A.1)

P(F) = P(F1) ∪ P(F2 ∩ S1) ∪ P(F3 ∩ S2 ∩ S1) ∪ P(F4 ∩ S3 ∩ S2 ∩ S1) ∪ … (5.32)

where Fi denotes the event ‘failure of the structure due to failure in the i th mode, for
all loading’ and Si denotes the complementary event ‘survival of the i th mode under all
loading’ (and hence survival of the structure). Since P(F2 ∩ S1) = P(F2) − P(F2 ∩ F1)…,
(5.32) may be written also as

P(F) = P(F1) + P(F2) − P(F1 ∩ F2) + P(F3) − P(F1 ∩ F3)
− P(F2 ∩ F3) + P(F1 ∩ F2 ∩ F3) +… (5.33)

where (F1 ∩ F2) is the event that failure occurs in both modes 1 and 2, etc.

5.4.1 First-Order Series Bounds

The probability of failure for the structure can be expressed as P(F) = 1 − P(S),
where P(S) is the probability of survival. For independent failure modes, P(S) can
be represented by the product of the mode survival probabilities, or, noting that
P(Si) = 1 − P(Fi), by

P(F) = 1 −
m∏

i=1

[
1 − P(Fi)

]
(5.34)
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where, as before, P(Fi) is the probability of failure in mode i. This result can, by
expansion, be shown to be identical with (5.33). Also, it follows directly from (5.33)
that, if P(Fi) << 1, the terms P(Fi ∩ Fj) are negligible and (5.34) can be approximated
by [Freudenthal et al., 1966].

P(F) ≈
m∑

i=1
P(Fi) (5.35)

In the case where all failure modes are fully dependent, it follows directly that the
weakest failure mode will always be the most likely to fail, irrespective of the random
nature of the material strength. Hence

P(F) =
m

max
i=1

[
P(Fi)

]
(5.36)

Equations (5.34) or (5.35) and (5.36) can be used to define relatively crude bounds on
the failure probability of any structural system of the series type when the failure modes
are somewhere between completely independent and fully dependent [Cornell, 1967]:

m
max

i=1

[
P(Fi)

]
≤ P(F) ≤ 1 −

m∏
i=1

[
1 − P(Fi)

]
(5.37)

It has been suggested that for many practical structural systems the series bounds (5.37)
tend to be rather wide [cf . Grimmelt and Schuëller, 1982].

Example 5.6 For the rigid-plastic frame shown in Figure 5.10 the mode safety indices
𝛽a,…, 𝛽d were calculated in Example 5.4 as (4.32, 4.83, 6.44, 7.21). From Appendix
D, the corresponding (nominal) failure probabilities are (0.77 × 10−5, 0.70 × 10−6,

0.59 × 10−10, 0.28 × 10−12), and from (5.37) the first order system failure probability is
then bounded by

m
max

i=1
(pi) ≤ pf ≤ 1 −

4∏
i=1

(1 − pi) ≈
4∑

i=1
pi

or

0.77 × 10−5 ≤ pf ≤ 0.84 × 10−5

It is evident that modes c and d have negligible effect on the failure probability of the
structure.

5.4.2 Second-Order Series Bounds

Second-order bounds are obtained by retaining terms such as P(F1 ∩ F2) in expression
(5.33). For ease of exposition, (5.33) may be rewritten as

P(F) = P(F1)

+ P(F2) − P(F1 ∩ F2)

+ P(F3) − P(F1 ∩ F3) − P(F2 ∩ F3) + P(F1 ∩ F2 ∩ F3)
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+ P(F4) − P(F1 ∩ F4) − P(F2 ∩ F4) − P(F3 ∩ F4) + P(F1 ∩ F2 ∩ F4)

+ P(F1 ∩ F3 ∩ F4) + P(F2 ∩ F3 ∩ F4) − P(F1 ∩ F2 ∩ F3 ∩ F4)

+ P(F5) −…

=
m∑

i=1
P(Fi) −

∑ m∑
i<j

P(Fi ∩ Fj)+
∑∑ m∑

i<j<k
P(Fi ∩ Fj ∩ Fk) −… (5.38)

Because of the alternating signs as the order of the terms increases, it is evident that
consideration only of first-order terms (i.e. P(Fi)) produces an upper bound on P(F),
consideration only of first- and second-order terms a lower bound, first-, second- and
third-order terms again on upper bound, and so on [Bonferroni, 1936].

It should be clear also that consideration of an additional failure mode cannot reduce
the probability of structural failure, so that each complete line in equation (5.38)
makes a non-negative contribution to P(F). Noting that P(Fi ∩ Fj) ≥ P(Fi ∩ Fj ∩ Fk), a
lower bound to (5.38) can be obtained if only the terms P(Fi) − P(Fi ∩ Fj) are retained,
provided that each makes a non-negative contribution [Ditlevsen, 1979b]. This can be
expressed as:

P(F) ≥ P(F1) +
m∑

i=2
max

{[
P(Fi) −

i−1∑
j=1

P(Fi ∩ Fj)

]
, 0

}
(5.39)

An alternative way of using the terms P(Fi) and P(Fi ∩ Fj) is to select only those
combinations of all such (k) terms in (5.38) which give the maximum value (of the
lower bound) [Kounias, 1968]:

P(F) ≥ P(F1) + max

{ k≤m∑
i=2, j<i

[
P(Fi) − P

(
Fi ∩ Fj

)]}
(5.40)

In both formulations the result depends on the order in which the various modes of
failure are labelled. Algorithms for optimal ordering of events to obtain the best bounds
have been proposed [Dawson and Sankoff, 1967; Hunter, 1977]; a useful rule of thumb
is to order the modes in order of decreasing importance. For a given ordering, (5.39)
may give a better bound than (5.40); both bounds are equal if all possible orderings are
considered [Ramachandran, 1984].

An upper bound may be obtained by simplifying each line in (5.38). As noted, a typical
line, such as line 5, makes a non-negative contribution to P(F) and can be written, with
Pijk for P(Fi ∩ Fj ∩ Fk) etc., as

U5 = P5 − P15 − P25 − P35 − P45 + P125 + P135 + P145 + P235 + P245 + P345

− P1235 − P1245 − P1345 − P2345 + P12345 (5.41)

Apart from the term P5, the rest of the line can be written as

−V5 = −P
(
E15 ∪ E25 ∪ E35 ∪ E45

)
(5.42)
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where Eij represents the event ij. For any pair of events A, B, say, it is well known that
P(A ∪ B) ≥ max [P(A),P(B)]. It follows readily that

V5 ≥ max
[
P(E15),P(E25),P(E35),P(E45)

]
(5.43)

and, since V 5 makes a negative contribution to U5 use of the bound (5.43) will increase
the right-hand side of (5.41). Hence

U5 ≤ P5 − max
j<5

(
Pj5

)
(5.44)

but, since Pj5 ≡ P(Fj ∩ F5) and since line 5 was a typical example, it follows that [Kounias,
1968; Vanmarcke, 1973; Hunter, 1976; Ditlevsen, 1979b]

P(F) ≤
m∑

i=1
P(Fi) −

m∑
i=2

max
j<i

[
P(Fj ∩ Fi)

]
(5.45)

This result may also depend on the ordering of failure events Fi.
Bounds (5.39) and (5.45) have been compared with (crude) Monte Carlo simulation

results for a series of rigid-framed, rigid-plastic frames [Grimmelt and Schuëller, 1982].
For a range of distribution types and a range of variances, it was found that the bounds
were mainly quite close to the simulation results. However, the bounds are not neces-
sarily always close [Ditlevsen, 1979b].

Example 5.7 Consider the three linear limit state functions shown in Figure 5.14(a)
in two-dimensional y space. For simplicity, the safety indices 𝛽1, 𝛽2 and 𝛽3 are shown
of equal length. The probability contents enclosed by each pair of limit state functions
have been denoted a, b,…, e and f , the last bounded by all three limit state functions.
For three limit state functions, the lower bound (5.39) becomes

p− = p1 + (p2 − p21)+ + (p3 − p31 − p32)+ with ( )+ ≡ max( , 0)
= (b + c + d + f ) +

[
(a + b + c) − (b + c)

]+ +
[
(c + d + e) − (c + d) − c

]+
= a + b + c + d + f + (−c + e)+

2 1

3a

d

c

b

e

0

f

y2

y1

β3

β2
ϑβ1

(a)
ρ = cos ϑ

(b)

0 0.5 1

β = –Φ–1(pf)

Correlation coefficient

Lower bound

on pf

Upper bound

on pf

ϑ

ρ

Figure 5.14 (a) Limit states for Example 5.5: (b) typical bounds for equi-correlated limit states [after
Ditlevsen, 1979b].
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while the upper bound (5.45) is

p+ = p1 + p2 + p3 −
[
(p12)+ + (p13, p23)+

]
= (b + c + d + f ) + (a + b + c) + (c + d + e) −

[
(b + c) + (c + d, c)+

]
= a + b + c + d + e + f

In this case, the upper bound gives the correct result. As the limit states 1, 2, 3 become
more correlated, i.e. as 𝜌 increases and the angle 𝜈 becomes smaller (see Section C.1.3),
the probability content of region c will increase and the bounds will diverge further.
This is indicated schematically in Figure 5.14(b). When all three limit state functions
coincide, they are perfectly correlated (dependent) so that (5.36) gives a unique result
for p

f
. This is responsible for the cut-off effect shown at the right of Figure 5.14(b).

5.4.3 Second-Order Series Bounds by Loading Sequences

The series bounds discussed so far consider failure events according to different modes
of failure for all possible loadings. In some situations it may be desirable to consider a
sequence of loadings, perhaps dependent in some way, and to determine the bounds on
the probability of failure for the system. It may be shown that the bounds derived above
are symmetric with respect to loading sequences with the failure event now defined over
all modes of failure.

From expression (5.32) the probability of structural failure under a sequence of loading
vectors Q1, Q2, Q3,…, may be expressed as

P(F) = P(F1) + P(F2 |S1)P(S1) + P(F3 |S2 ∩ S1)P(S2 ∩ S1) +… (5.46)

where Fi denotes the event ‘structural failure due to the i th loading’, and S denotes the
complementary event ‘structure survival under the i th loading’ P(Fi) = 1 − P(Si).

In general there will be dependence between failure under the i th loading and survival
under previous loadings in the sequence; let this be denoted the ‘transition’ probability

pi = P(Fi |Si−1 ∩ Si−2 ∩ Si−3 ∩…) (5.47)

Also, since

P(S3 ∩ S2 ∩ S1) = P(S3 |S2 ∩ S1)P(S2 ∩ S1) = P(S3 |S2 ∩ S1)P(S2 |S1)P(S1)

and similarly for other corresponding terms in equation (5.32), it follows, upon using
equation (5.47) and writing p1 for P(F1), that

P(F) = p1 + p2(1 − p1) + p3(1 − p2)(1 − p1) + p4(1 − p3)(1 − p2)(1 − p1) +… (5.48)

or, for n loads in the loading sequence

P(F) =
n∑

i=1
pi −

∑ n∑
j<i

pipj +
∑ ∑

k<j<i

n∑
pipjpk−

∑∑
𝓁<k

∑
<j<i

n∑
pipjpkp𝓁+… (5.49)

which is identical with equation (5.38) provided that P(Fi) is interpreted as pi, P(Fi ∩
Fj), j < i is interpreted as pipj, j < i, etc. Hence, with this interpretation, the bounds
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(5.39) and (5.45) can be interpreted as bounds on P(F) for structural failure under load
sequences.

5.4.4 Series Bounds by Modes and Loading Sequences

The series bounds (5.39) and (5.45) for failure modes can be generalized to include
loading sequences. For failure in several modes, each of the bounds given by equations
(5.39) or (5.45) can be interpreted as the probability P(Fk) of failure under k th loading
in a load sequence. To determine the total probability of failure, under the complete
loading sequence, equations (5.39) and (5.45) are again applicable, but now interpreted
for loading sequences as in Section 5.4.3 above.

In practice, however, it is not always easy to evaluate the terms P(Fi ∩ Fj) since Fi and
Fj usually will be correlated (see Example 5.7). One approach is to then use a simpler
result obtained by considering two limiting cases for the evaluation of the terms P(Fi ∩
Fj): complete independence of (Fi, Fj) or complete dependence. If the events (Fi, Fj) are
completely independent, (A.4) applies and (5.33) reduces to (5.34).

Similarly, if (Fi, Fj) are completely dependent, then terms of form P(F1 ∩ F2 ∩ F3),…,
reduce to max[P(F1), P(F2), P(F3)],…, since the critical case will govern. As a result,
(5.32) reduces to (5.36).

It is now possible to extend the first-order bounds (5.37) to consider the effect of both
loading sequences and failure modes:

m
max

i

{
n

max
j

[
P(Fij)

]}
≤ P(F) ≤ 1 −

mn∏
ij

[
1 − P(Fij)

]
(5.50)

where P(Fij) is the probability of failure in the i th mode under the j th load in the loading
sequence. The right-hand bound may be replaced by a slightly looser bound, provided
that P(Fij) << 1 [Cornell, 1967]:

m
max

i

{
n

max
j

[P(Fij)
}

≤ P(F) ≤
m∑
j

n∑
i

P(Fij) (5.51)

When it is known that either load sequences or failure modes are independent, the
appropriate left-hand maximum operator can be replaced by a summation operator
to improve the bounds; similarly, if it is known that either load sequences or failure
modes are completely dependent, the appropriate right-hand summation operator can
be replaced by a maximum operator.

If it is known that the load sequence consists of N successive, mutually exclusive inde-
pendent loads having the same probability density function, it follows readily that the
right-hand bound can be replaced by [Freudenthal et al., 1966]:

N
m∑
i

P(Fij) (5.52)

5.4.5 Improved Series Bounds and Parallel System Bounds

As demonstrated in Example 5.7, the second-order series bounds generally deterio-
rate as the correlation between (linear) limit state functions increases. One approach
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to improving series bounds is to transform the problem to one resulting in lower corre-
lation between limit state functions. This may be achieved using (C.13) to obtain a new
set of variables [Ditlevsen, 1982b].

Alternatively, improved bounds for series systems may be obtained if higher-order
terms are retained, for example, if terms of the form Pijk = P(Fi ∩ Fj ∩ Fk) are retained
in (5.32) [Hohenbichler and Rackwitz, 1983a; Ramachandran, 1984; Feng, 1989;
Greig, 1992; Zhang, 1993]. In this case the third-order series bounds become, with
Fi(i = 1,… ,m) denoting the m possible failure modes:

P−
3 ≤ P

( m
∪

i=1
Fi

)
≤ P+

3 (5.53)

with

P−
3 =

m∑
i=1

[
Pi −

∑
j<i

(
Pij − max

k<j
Pijk

)]+

P+
3 =

m∑
i=1

(
Pi −

∑
j<i

[
Pij −

∑
k<j

Pijk

]+)
where [ ]+ indicates that the term is to be included only if the term [ ] is positive.

Again some ordering of failure events may be necessary to obtain the best bounds.
However, the greatest difficulty is to evaluate the tri-section terms Pijk . When the
events Fi are all expressible as linear functions, a non-linear lower bound is given by
[Ramachandran, 1984].

Pijk ≥
P(Fi ∩ Fk)P(Fi ∩ Fj)

P(Fi)
(5.54)

provided that 𝜌kj > 𝜌ik𝜌ij > 0 where 𝜌ij is the correlation coefficient between the linear
failure functions for events i and j, etc. An alternative but approximate approach for
both Pij and Pijk based on the angle between the linear limit state functions has been
proposed by Feng (1989).

For parallel systems the failure probability is given by (5.2) or (5.13). Bounds for this
can be obtained from applying series bounds to the right-hand side of the identity:

P
( m
∩

i=1
Fi

)
= 1 − P

( m
∪

i=1
Fi

)
(5.55)

The resulting bounds are poor since the second term on the right will be close to
unity for high-reliability systems. In the special case of parallel systems with linear
safety functions, a better approach is to apply the results given in Appendix C for the
multi-normal integral with multiple linear limit state functions.

5.4.6 First-Order Second-Moment Method in Systems Reliability

Utilization of series bounds such as the second-order series bounds (5.39) and (5.45)
requires evaluation of intersection terms of the form P(Fi ∩ Fj) where Fi denotes
the event ‘failure in limit state i’. In two dimensions the intersection terms refer to
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odd-shaped domains such as D1 in Figure 5.7 as obtained from the non-linear limit
state functions Gk(x) = 0 (k = 1, 2, 3).

In principle it would be possible to use Monte Carlo integration to evaluate the prob-
ability content of terms such as P(Fi ∩ Fj) for use with the bounds given above. This is
seldom appropriate, however, since a direct Monte Carlo evaluation of the whole system
is likely to be more efficient (than the use of system bounds together with Monte Carlo
evaluation of the intersections).

The second-order series bounds are more useful in the special case of problems with
linear limit state functions and therefore when used in conjunction with the FOSM
methods of Chapter 4. The evaluation of the intersections P(Fi ∩ Fj) is then over regions
such as D1 in Figure 5.15 bounded by, for example, gL1(y) = 0 and gL2(y) = 0. The limit
state functions can be linearized, once the checking points y∗i have been identified, and
the direction cosines are determined (see Section 4.3.2). The approximating linearized
limit state functions gL( ) = 0 are then given by (4.7).

For linearized limit states given by gL1(y) = 0 and gL2(y) = 0, the probability content
enclosed by these limit states is

P(F1 ∩ F2) = P

[ 2⋂
i=1

gLi(y) ≤ 0

]
(5.56)

which for the standardized Normal vector y can be evaluated using the bivariate Normal
integral Φ2( ) [see (A.140b) and Appendix C]. In each case the correlation coefficient 𝜌
between the two limit state functions (1 and 2, here) is required to be known. It can be
obtained for two intersecting limit states 1 and 2 as follows.

In standardized independent Normal y space, a linear limit state function is given by
(4.7):

gLi(y) = 𝛽i +
n∑

j=1
𝛼ijyj (5.57)

y2

y1

D1

D1

β1

β2β3

0

y3*

y2*

y1*

g3(y) = 0

gL3(y) = 0

gL1(y) = 0
g1(y) = 0

gL2(y) = 0
g2(y) = 0

Region for P[(gL1<0)∩(gL2<0)]

ϑ

Figure 5.15 Linearization of limit states in standard normal space.
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For g1( ) and g2( ), the variance and covariance are then (A.162) and (A.163)

𝜎2
i =

n∑
j=1

𝛼2
ij i = 1, 2

cov(gL1, gL2) =
n∑
j
𝛼1j𝛼2j

and from (A.124)

𝜌12 =
cov(gL1, gL2)(
𝜎2

1𝜎
2
2
)1∕2 =

∑n
j 𝛼1j𝛼2j(∑n

j 𝛼
2
1j
∑n

j 𝛼
2
2j

)1∕2 (5.58)

These expressions can be given a geometric interpretation when attention is restricted
to the (y1, y2) plane, in y space (see Figure 5.16).

From elementary geometry, the unit outward normal vectors ni (i = 1, 2) to the
hyperplanes gL1(y) = 0 and gL2(y) = 0 shown in Figure 5.16 are obtained from (5.57)
[Ditlevsen, 1979b]

n1 =
n∑

j=1
𝛼1j ej

/( n∑
j=1

𝛼1j

)1∕2

(5.59a)

n2 =
n∑

j=1
𝛼2j ej

/( n∑
j=1

𝛼2j

)1∕2

(5.59b)

where the ei represent the unit base vectors. The scalar product of these normals is
given by n1 ⋅ n2 = n1n2 cos v = cos v, where v is the angle between the ni (i = 1, 2) in
the plane common to both (see Figure 5.16). It follows readily from expressions (5.59)
that the scalar product is also equal to the right-hand side of expression (5.58) so that
(cf . Section 3.2)

𝜌12 = 𝜌(y1, y2) = cos v = n1 ⋅ n2 (5.60)

y2

Failure in both limit states

Failure in limit

state 2

Failure in 
limit state 1

–9 y1

n1

n2

β2

3

4

β1

8

0

g1(y) = y1 – 3y2 + 9 = 0

g2(y) = –y1 – 2y2 + 8 = 0

ϑ

Figure 5.16 Intersection of linear limit states.
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Example 5.8 For the two linear limit state functions g1(y) = 0 and g2(y) = 0 shown
in Figure 5.16 in standardized Normal space, it follows from (A.162) and (A.163) that
𝜎2

1 = +10, 𝜎2
2 = +5 and cov(y1, y2) = +5 from which 𝜌 = 5∕(10 × 5)1∕2 = 1∕

√
2 > 0

so that 𝜈 arcos(1∕
√

2) = 45∘. Using (4.1), 𝛽1 = 9∕
√

10 = 2.85 and 𝛽2 = 8∕
√

5 = 3.59.
Applying now (C.8) and (C.9) it follows that h = 𝛽1, k = 𝛽2, a = (𝛽1 − 𝜌𝛽2)∕(1 − 𝜌2)1∕2

and b = (𝛽2 − 𝜌𝛽1)∕(1 − 𝜌2)1∕2 so that Φ(−h) = 0.002186, Φ(−k) = 0.000165, Φ(−a)
= 0.33264 and Φ(−b) = 0.0135. Substituting these values in (C.8) yields 0.000 055 ≤

P(g1 ≤ 0 ∩ g2 ≤ 0) ≤ 0.000 084.
Let the event g1 < 0 be denoted F1 and similarly for F2. Expressions (5.39) and (5.45)

for the probability bounds for a two-failure-mode structure then lead to

P(F1) + P(F2) − P(F1 ∩ F2)+ ≤ P(F) ≤ P(F1) + P(F2) − P(F1 ∩ F2)−

or 0.002 26 < pf < 0.002 29, where the choices for the intersections have been made to
give the widest bounds.

Example 5.9 The nominal failure probability for the rigid-plastic frame of Example
5.4 will now be determined using second-order system bounds and the FOSM result for
P(Fi ∩ Fj). Only the first three collapse modes of Example 5.4 will be considered. These
are

mode 1∶ +M1 +2M3 +2M4 −H −V = 0 (combined)
mode 2∶ +M2 +2M3 +M4 −V = 0 (beam)
mode 3∶ +M1 +M2 +M4 −H = 0 (sway)

Let each random variable be standardized to N(0, 1), such that xi = (Xi − 𝜇Xi
)∕𝜎Xi

.
Noting that for all Xi = (M1,… ,M4,H,V ) the means and standard deviations are
𝜇Xi

= 1.0 and 𝜎Xi
= (0.15, 0.15, 0.15, 0.15, 0.17, 0.50) it follows that the limit state

equations in standard Normal space are

g1 = 0.15m1 + 0.30m3 + 0.30m4 − 0.17h − 0.5v + 3 = 0
g2 = 0.15m2 + 0.30m3 + 0.15m4 − 0.5v + 3 = 0
g3 = 0.15m1 + 0.15m2 + 0.15m4 − 0.17h + 2 = 0

Further, using (A.162) and (A.163)

𝜎2
g1
= (0.15)2 + (0.3)2 + (0.3)2 + (0.17)2 + (0.5)2 = 0.481

𝜎2
g2
= 0.385

𝜎2
g3
= 0.096

cov(g1, g2) = (0 + 0 + 0.3 × 0.3 + 0.3 × 0.15) + 0 + (0.5)2 = 0.385
cov(g1, g3) = 0.096
cov(g2, g3) = 0.045

From (5.58) it follows that the correlation coefficients are

𝜌12 = 0.385
(0.481 × 0.385)1∕2 = 0.895
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𝜌13 = 0.447
𝜌23 = 0.234

so that the angles v = arcos𝜌 are v12 = 26.5∘, v13 = 63.5∘ and v23 = 76.5∘.
The 𝛽 indices were calculated already in Example 5.4. They are given also by

𝛽 = 𝜇g ∕𝜎gi or

𝛽1 = 3√
0.481

= 4.32, 𝛽2 = 4.83, 𝛽3 = 6.44

since𝜇x
i
= 0. From Appendix E the corresponding nominal probabilities are 0.77 × 10−5,

0.70 × 10−6 and 0.59 × 10−10.
It is now possible to calculate the terms P(Fi ∩ Fj) needed for the second-order

bounds (5.39) and (5.45). This can be done by using the bounds given by (C.8) (see also
Example 5.8). As before, let pij denote P(Fi ∩ Fj). Then for p12,

h = 𝛽1 = 4.32, k = 𝛽2 = 4.83

a =
𝛽1 − 𝜌12𝛽2

(1 − 𝜌2
12)1∕2

= 4.32 − 0.895 × 4.83
(1 − 0.8952)1∕2

= −0.0064

b =
𝛽2 − 𝜌12𝛽1

(1 − 𝜌2
12)1∕2

= 4.83 − 0.895 × 4.32
(1 − 0.8952)1∕2

= 2.160

so that, according to (C.8), the bounds are

p12 =
[
Φ(−h)Φ(−b)+, Φ(−k)Φ(−a)

]
=

[
(0.77 × 10−5)(0.01539)+, (0.70 × 10−6)(∼ 0.5)

]
=

[
0.35 × 10−6, 0.47 × 10−6]

and for p13,

p13 =
[
0.317 × 10−11, 0.479 × 10−11]

and, for p23

p23 =
[
0.189 × 10−13, 0.374 × 10−13]

Substituting into (5.39) to obtain the lower bound on the system failure probability,

p−
f = 0.77 × 10−5 +

(
0.70 × 10−6 − 0.47 × 10−6)+

+
(
0.59 × 10−10 − 0.479 × 10−11 − 0.374 × 10−13)+

= 0.79 × 10−5

The upper bound is given by (5.45):

p+
f =

(
0.77 × 10−5 + 0.70 × 10−6 + 0.59 × 10−10) − 0.35 × 10−6

− max
(
0.317 × 10−5, 0.189 × 10−13)

= 0.81 × 10−5
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Figure 5.17 Effect of correlation on system safety index 𝛽 = −Φ−1(pf ).

In each case, the pij result giving the worst p+
f value has been chosen.

The bounds on the nominal probability of failure for the system coincide within the
limit of accuracy of the calculations used here. As expected, the present result is con-
tained within the first-order bounds determined in Example 5.6.

5.4.7 Correlation Effects

The above examples show that the failure modes are correlated if some or all of
the resistance and load basic variables are shared between two or more of the limit
state functions. This has important implications for the estimation of structural system
failure probabilities, as was seen above in the calculation of bounds. It is also seen in
the Monte Carlo techniques but is handled there automatically through the complete
failure domain being defined as:

m
∪

i=1
Gi(X) ≤ 0 (see Figure 5.12).

Correlation also can arise from dependence between loads and, more commonly, from
correlation between structural members and within individual members [Garson, 1980;
Melchers, 1983a]. As has been noted already in Section 4.4.3, correlation of basic vari-
ables in second-moment reliability analysis is dealt with by transforming the correlated
set to an uncorrelated set (see Appendix B).

A set of typical results showing correlation effects for a rigid-plastic portal frame, sub-
ject to two loads each applied once only and each having the statistical properties shown,
is given in Figure 5.17 [Frangopol, 1985a]. Experimental data on actual strength (and
load) correlation are, however, scarce. In practical problems conservative assumptions
may need to be made.

5.4.8 Bounds by Matrix Operations and Linear Programming*

As noted earlier, the second-order series bounds (5.45) and the improved third-order
series bounds (5.53) depend on the ordering of failure modes. Ideally the narrowest
bounds are desired, but this requires computing all n ! possible sequences of the order-
ing of the failure modes, usually entailing lengthy calculations. An alternative is to use
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matrix operations [Song and Kang, 2009] or linear programming to expedite the process
[Song and Der Kiureghian, 2003] as described below.

Consider a system event Esys whose ith component, i = 1,… , n, has two possible
states: failure or survival. The sample space can be obtained by enumerating the m = 2n

basic mutually exclusive and collectively exhaustive (MECE) events ej, j = 1,… ,m.
Then, any system event can be represented by an event vector c whose jth element is
1 if ej belongs to the system event, and 0 otherwise. Let pj = P[ej], j = 1,… ,m, denote
the probability of basic event ej. Since the ej represent mutually exclusive events, the
probability of the system event, P[Esys], is simply the sum of probabilities of basic
MECE events contributing to the system event. Hence, the system probability can be
computed by the inner product:

P
[
Esys

]
= Psys =

∑
j∶ej⊆Esys

pj = cT p (5.61)

where p = {pj}T , j = 1,… ,m is the column probability vector of the components
pj. This formulation can be generalized to compute probabilities of multiple system
events under multiple conditions on component failure by the matrix multiplication:
Psys = CT P, where Psys is the matrix of system event probabilities, whose elements
(Psys)ij are the probabilities that the ith system event occurs under the jth condition;
C = [c1, c2,… , cnsys

] is the matrix whose columns are event vectors, for nsys possible
system events; and P = [p1,p2,… ,pncond

] is the matrix whose columns are the proba-
bility vectors for the ncond different component conditions. This scheme has been called
the matrix-based system reliability (MSR) technique [Song and Kang, 2009].

As an example, for the case of n = 3 component events, the 23 = 8 basic MECE events
are:

e1 = E1E2E3, e2 = E
1
E2E3, e3 = E1E

2
E3, e4 = E1E2E

3
,

e5 = E1E2E3, e6 = E1E2E3, e7 = E1E2E3, e8 = E1E2E3. (5.62)

where EiEj = Ei ∩ Ej. These events are listed in Table 5.1, together with coefficients ci
leading to the four system events E1 ∪ E2 ∪ E3 (series system), E1 ∩ E2 ∩ E3 (parallel sys-
tem), (E1 ∩ E2) ∪ E3 (mixed system), (E1 ∪ E2) ∩ (E

2
∪ E3) (mixed system).

The advantages the MSR technique over other system reliability techniques include:
(a) computation of system probabilities are performed by simple matrix operations,
regardless of the complexity of the system event; (b) if there is incomplete informa-
tion on component failure probabilities and/or on their statistical dependency, the MSR
technique still yields the narrowest possible bounds for the given information (this leads
to a linear programming problem, as shown below); and (c) the conditional probabilities
and derivatives of system probabilities are easily calculated.

A drawback of the MSR technique is that the size of the problem increases exponen-
tially with number of component events, although this is not necessarily a problem with
modern personal computers.

For small-size systems, event vector c can be identified directly. For larger systems,
event vectors can be constructed by simple matrix manipulations of component event
vectors. Let cE denote the event vector of the generic event E. The complementary event
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vector, the union and intersections can be obtained as:

cE = 𝟏 − cE

cE1 E2…En
= cE1

∗ cE2
∗ …∗ cEn

cE1∪E2∪…∪En
= 𝟏 − (𝟏 − cE1

) ∗ (𝟏 − cE2
) ∗ … ∗ (𝟏 − cEn

) (5.63)

where ∗ denotes element-by-element multiplication. The event vector can be con-
structed from component and other system events using the matrix manipulations in
(5.63).

The probability vector p can also be constructed by simple matrix manipulations.
First, assume that all component probabilities are known, and that component events
are statistically independent of each other. Each element of the probability vector can
be computed as the product of the probabilities of the components and their comple-
mentary events. The following iterative procedure can be employed:

p[1] =
[
P1 P

1

]
p[i] =

⎡⎢⎢⎣
p[i−1]Pi

p[i−1]Pi

⎤⎥⎥⎦ (5.64)

where Pi is the probability of the ith component. The final vector p[n] is the probability
vector p for a system of n components.

If some component probabilities are not known, or if only their bounds are known,
system reliability cannot be computed by Eq. (5.61). However, system reliability bounds
can still be computed by solving a linear programming problem, where the unknown
vector of MECE event probabilities p is the vector of design variables, and where known
element probabilities are used as constraints:

Find pMIN which minimizes cT p

subject to A1p = b1, A2p ≥ b2,
∑m

j=1
pj = 1, p ≥ 0, (5.65)

Find pMAXwhich minimizes cT p

subject to A1p = b1, A3p ≤ b3,
∑m

j=1
pj = 1, p ≥ 0, (5.66)

where A1, A2, and A3 are matrices whose rows are event vectors for which proba-
bilities or bounds are known, b1 is the vector of known probabilities and b2, b3 are
the lower and upper probability bounds. The system reliability bounds are obtained
from the minimum and maximum objective function values found using Eqns. (5.65)
and (5.66):

cT pMIN ≤ Psys ≤ cT pMAX (5.67)

The constraints in Eqns. (5.65) and (5.66) are obtained as follows. Due to the
mutual exclusivity of basic MECE events, the probability of any subset of these
events is obtained as the sum of probabilities of the constituent events. Taking
the three-component event in Table 5.1 as an example, the single-mode probabilities
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are:

P[E1] = P1 = p1 + p3 + p4 + p7

P[E2] = P2 = p1 + p2 + p4 + p6

P[E3] = P3 = p1 + p2 + p3 + p5 (5.68)

This can be generalized to:

P
[
Ei
]
= Pi =

∑
r∶er⊆Ei

pr (5.69)

In a similar way, probabilities of intersection of events are given by:

P
[
EiEj

]
= Pij =

∑
r∶er⊆EiEj

pr (5.70)

and

P
[
EiEjEk

]
= Pijk =

∑
r∶er⊆EiEjEk

pr (5.71)

The probabilities in (5.69) to (5.71) are employed as linear equality constraints in
(5.68), with A1 the matrix containing 0’s and 1’s and b1 the vector containing the known
probabilities. If the probabilities in (5.69) to (5.71) are given as inequalities, they are
employed as inequality constraints, such that A2p ≥ b2 and A3p ≤ b3. This is the case for
conventional structural reliability problems, where bi-modal joint probability bounds
are obtained from Eq. (5.56). In general, the tri-modal bounds (5.71) are difficult to eval-
uate in structural reliability, and need not be provided. If higher-order bounds are not
provided in Eq. (5.67), the bounds will be wider, but still better than the second-order
bounds (5.45). It has been shown that the bounds obtained by solving (5.67) are the
narrowest-possible bounds for the information provided [Song and Der Kiureghian,
2003].

5.5 Implicit Limit States

5.5.1 Introduction

In many practical problems the equation (or equations) used to represent the limit state
function may not be known explicitly. Instead, the limit state may be representable only
at discrete points (in hyperspace) obtained, point-by-point, through a calculation or
evaluation procedure, such as a finite element analysis. This means that the safe domain
and the optimal sampling location(s) or the design point for FOSM and similar tech-
niques can be defined only through point-by-point ‘discovery’ of where the implicit
surface is located relative to the random variables. Obviously, one way of determining
the location of the (implicit) limit state function is through conducting a number of
repeated numerical analyses, each with a different vector of values of the random vari-
ables. These values could be random, as in Monte Carlo analysis, or specifically ordered.
Irrespective of the precise procedure, it is clear that the FOSM and related methods are
not immediately applicable, since they require a closed, and preferably differentiable,
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format for the limit state function G(x) = 0. If Monte Carlo analysis is used for struc-
tural reliability evaluation and when one or more implicit limit state functions is defined
by a Finite Element or other numerical procedure, a parallel problem arises. In this case
many evaluations will be required to check the limit state function(s), and even more if
gradients are required. In both cases the way forward is to construct an artificial limit
state function, preferably closed form and differentiable and to use that as a surrogate
(or meta-model) for the actual limit state function(s).

Several approaches have been proposed to construct surrogate limit states.
These include (i) response surfaces, (ii) artificial neural networks, (iii) vector support
machine techniques and (iv) Gaussian process modelling, also known as the Kriging
technique. Because the notion of response surfaces underlies all the others, it is
described in the next section. The others are described briefly subsequently.

5.5.2 Response Surfaces

5.5.2.1 Basics of Response Surfaces
A closed form, differentiable limit state surface can be constructed artificially, using a
polynomial or other suitable function fitted to the results obtained from a limited num-
ber of discrete numerical analyses. Such a surface in (hyper-)space is termed a ‘response
surface’. Ideally the response surface should represent the structural response with most
accuracy in the area around the checking point(s). Lower accuracy might be accept-
able elsewhere. Provided the approximating response surface fits the point responses
reasonably well, a fairly good estimate of structural failure probability is then likely to be
obtained. Leonel et al. (2011) have provided an historical overview of response surface
applications to structural reliability problems.

As before, let the structural response be represented by G(X) and let it be an implicit
function of the random variables X. This means it can be evaluated only for discrete
values of X = x. Let the vector x represent such a discrete set of points in x space, and
let G(x) be evaluated at these points. The ‘response surface’ approach is then to seek
a function G(x) which best fits the discrete set of values of G(x). Most commonly the
format of the response surface adopted is to let G(x) be an n th order polynomial. The
undetermined coefficients in this polynomial are then determined so as to minimize the
error of approximation, particularly in the region around the checking point. As noted
earlier, this point is known also as the point of maximum likelihood or the most probable
point (MPP).

Theoretically the order n of the polynomial selected for fitting to the discrete point
evaluations of G(X) will affect the number of such evaluations required to be obtained.
It also is related to the number of derivatives that are required to be estimated. Typically,
for a well-conditioned system it is desirable for G(x) to be of equal or lower degree than
G(x). Higher-degree functions for G(x) are likely to lead to ill-conditioned systems of
equations to be solved for the undetermined coefficients. This is known more generally
to lead to solutions having erratic behaviour for small changes in the input values.

In practice, since the actual limit state function is known only through (some) dis-
crete outcomes, its form and degree are not known a priori, nor can the checking point
be estimated. This means there is little guidance for the selection of the approximating
function G(x). However, most commonly a second order polynomial is employed for the
response surface, with regression analysis to obtain the best fit [Faravelli, 1989; Bucher
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and Bourgund, 1990; El-Tawil et al., 1992; Rajashekhar and Ellingwood, 1993; Maymon,
1993]. For this reason they are known also as ‘polynomial regression’ models.

Consider the limit state function approximated by a polynomial as follows:

G(X) = A + XT B + XT CX (5.72)

with undetermined (regression) coefficients defined by A,BT = [B1,B2,…Bn] and

C =

⎡⎢⎢⎢⎢⎣
C11 … C1n

∶ ∶

sym … Cnn

⎤⎥⎥⎥⎥⎦
.

The (regression) coefficients can be obtained by conducting a series of numerical
‘experiments’, that is, a series of structural analyses with input variables selected
according to some ‘experimental design’. An appropriate experimental design takes into
account that the objective lies in estimating, reasonably accurately, the probability of
failure and this implies that the main interest is in the region of the maximum likelihood
within the failure domain, that is in the region of the checking point. However, as noted,
in practice it is unlikely that this will be known initially, and thus some trial and error
may be required.

5.5.2.2 Fitting the Response Surface
Possibly the simplest approach for selecting input variables for the experimental design
is to select them around the mean value of the variables. Thus points located along the
axes are appropriate. A simple 2-D experimental design is shown in Figure 5.18. More
complex designs are available in texts dealing with response surface methodology in gen-
eral [e.g. Myers, 1971; Santner et al., 2003] and also have been discussed for structural
reliability problems [Rajashekhar and Ellingwood, 1993].

Typically there will be a difference between the approximating function (the fitted
response surface) and the actual response or the implicit limit state function. Usually
this difference is the result both of intrinsic randomness and of ‘lack of fit’ contributed
by using the simpler function (5.72) to represent the actual limit state surface. It is not

Xm

x1

x2

X

O O

O

O

O

X

XX

Figure 5.18 Simple experimental design for a two-variable problem with Xm as mean point.
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possible to separate them without more refined and detailed analysis. The important
practical step, however, is to try to select the (regression) coefficients such that the total
error is minimized. This minimization can be formulated as follows.

Let the vector D represent the collection of regression coefficients A, B, C. Then (5.72)
can be represented as G(D,X). Also, for each point xi in the experimental design let 𝜀i
represent the error between the evaluation of the actual (but implicit) limit state func-
tion G(xi) and the approximating (response) surface (5.72) given now as G(D, xi). This
is repeated for each point in the experimental design. The total error is then minimized.
One simple approach is to use a least-squares-fit method, with D selected to minimize
the sum of squares of the errors:

S = min
D

[ n∑
i=1

𝜀2
i

]1∕2

= min
D

[ n∑
i=1

(
G

(
D, xi

)
− G

(
xi
))2

]1∕2

(5.73)

The above approach to obtaining an approximating limit state function (i.e. a response
surface) is known also as polynomial regression, for obvious reasons. Another approach
is to reduce the set of random variables X to the smaller set XA describing their spatial
averages. This can be done, for example, by using the same (i.e. spatial average) yield
strength at every point on a plate under stress, rather than specifically allowing for the
variation of yield strength from point to point (or from finite element to finite element).

A quite different approach is to simplify the error effect of random variables (or spa-
tial averages) as having only an additive effect on the response, rather than some more
complex relationship [Faravelli, 1989]. The enhanced expression (5.72) with additive
error effects is then given by:

G(X) = A + XT B + XT CX +
∑

j

(
ej +

∑
k

ejk +…

)
+ 𝜀 (5.74)

where the ej, ejk ,… are the error terms due to spatial averaging (assumed here indepen-
dent of the spatially averaged random variables) and 𝜀 represents the remaining errors
(such as due to randomness) [Veneziano et al., 1983]. This format is useful if the ej, ejk ,…
can be obtained separately, such as through an analysis of variance of the effect of spa-
tial averaging. The error to be considered for fitting G(x) is then restricted only to the
term 𝜀.

A more complex but potentially more useful approach is to use an iterative solution
scheme to obtain good points for fitting the approximating response surface to the actual
(but implicit) limit state function [Bucher and Bourgund, 1990]. Let (5.72) have just suf-
ficient undetermined coefficients to fit the evaluations G(x) exactly – a so-called ‘fully
saturated’ experimental design – so that the surface fits exactly at the evaluation points
x. Typically these might be at a mean point xm (see Figure 5.18) and at points given
by xi = xmi ± hi𝜎i where hi is an arbitrary factor and 𝜎i is the standard deviation of Xi.
Using these points, the approximating surface G(x) for the assumed mean point xm can
be determined exactly. If the approximating surface is located in the optimal position,
the mean point xm would coincide with the point of maximum likelihood (the checking
point), and the distance from this point to the origin would be a minimum in standard-
ized Normal space (see Section 4.3.2).
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If xm is not the checking point, some other point, say xD, can be found on the approxi-
mating surface G(x)which is closer to the origin and which is therefore the best estimate
of the checking point. With xD known, a new mean point x∗

m can be obtained by linear
interpolation between xm and xD, as:

x∗
m = xm + (xD − xm)

G(xm)[
G(xm) − G(xD)

] (5.75)

The speed with which this technique approaches a sufficiently accurate fit depends on
the selection of hi and the shape of the actual (but implicit) limit state function in the
area being explored. It should be evident that the results are improved if the location of
points is selected to correspond with points in the lower tail area for random variables
representing resistances and in the upper tail area for random variables representing
loads [Rajashekhar and Ellingwood, 1993]. Nevertheless, in general, convergence to all
possibly relevant design points is not guaranteed [e.g. Beet et al. 2012]. It is possible
to modify search algorithms to direct the search away from checking points already
obtained [e.g. Der Kiureghian and Dakessian, 1998] or to add some error control to
prevent oscillations about the checking point(s) being sought [Duprat et al., 2010]. Some
of these issues are discussed in more detail in Leonel et al. (2011).

5.5.3 Applications of Response Surfaces

A number of example applications of response surfaces have been given in the litera-
ture [e.g. Faravelli, 1989; Bucher and Bourgund, 1990; Wu et al., 1990; Schuëller et al.,
1991; El-Tawil et al., 1992; Rajashekhar and Ellingwood, 1993; Grandhi and Wang, 1997],
and software has been developed [e.g. Schuëller and Bucher, 1991]. These developments
suggest that the concept of a response surface works well provided the checking point
(i.e. the point of maximum likelihood or the MPP) can be identified and that reasonable
decisions can be made about the points to be used for fitting the response surface. This
has led to the use of iteration [e.g. Liu and Der Kiureghian, 1991b; Liu and Moses, 1994;
Kim and Na, 1997; Romero et al. 2004].

For linear and near-linear limit state functions the estimated probability is likely to be
relatively insensitive to accurate fitting, but this may not be the case for highly curved
limit state surfaces, or with intersecting limit state surfaces. In this context it might be
noted that quadratic (parabolic) response surfaces tend to mirror those used in ‘second
order’ second moment theory, with a quadratic (or parabolic) surface fitted either to a
known non-linear limit state surface (see Section 4.5.1) or to known discrete points, as in
response surfaces. It follows that there is a close parallel between these two approaches.

The gradients required at the point of maximum likelihood can be determined or esti-
mated approximately using a finite difference–type approach, although at extra compu-
tational cost. Alternatively, the finite element analysis code might be modified to provide
gradient [e.g. Lemaire et al., 1997].

An important application of response surfaces is for the representation of random
fields that normally requires extensive finite element modelling. Applications with
implications for structural reliability include the statistical variation of properties such
as Young’s modulus across a plate and the variability of soil properties in embankments.
This is a rather specialized topic and various ways have been suggested for doing this
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[e.g. Vanmarcke et al., 1986; Li and Der Kiureghian, 1993; Zhang and Ellingwood, 1995;
Matthies et al., 1997].

5.5.4 Other Techniques for Obtaining Surrogate Limit States

Several techniques other than obtaining a response surface by polynomial regression
have been explored. One of these is the use of machine learning techniques, such as
artificial neural networks, sometimes portrayed as a universal approximating technique
with wide application [Gurney, 1997]. However, it is not without its critics [e.g. Dewd-
ney, 1997]. It has been proposed as applicable to generating an approximating limit state
function, by iteration (‘learning’) for structural reliability problems [e.g. Hurtado and
Alvarez, 2001]. Another machine learning approach is based on support vector machine
techniques that construct a hyperplane or a set of such planes in n dimensional space
such that each hyperplane best fits the individual points (realizations) with its perpen-
dicular distance closest to the point of interest [Kecman, 2001]. Because this has a direct
analogy to the linear limit state function in FOSM theory, it has been proposed as appro-
priate for use with structural reliability analysis [Bourinet et al., 2011].

A further technique is Gaussian process modelling (or Kriging). It works by predicting
an appropriate continuous functional form between data points for the mean and for
(Gaussian) variability. This is obtained as a realization of a random field described by
the Gaussian process. Since this produces functional relationships that are smooth and
continuous, interpolation between data points usually is more accurate than for simpler
techniques. However, the computational costs tend to be high.

There is a wealth of literature dealing with Gaussian process modelling as a statistical
tool for fitting a function to discrete data points in hyper-space [Cressie, 1993; Santner
et al., 2003; Press et al., 2007]. It has its roots in attempts to simulate variability in 3-D
situations such as for mineral ore deposit exploration [Matheron, 1973]. For structural
reliability analyses the sign of the limit state function (that is, of the predicted surface)
is the most important factor [Kaymaz, 2005], and this has allowed the procedure to be
simplified specifically for Monte Carlo applications [Echard, et al. 2011]. Comparisons
of these different techniques and their results for specific examples are available [e.g.
Bucher and Most, 2008; Bichon et al., 2008; Dubourg et al., 2013; Gasper et al., 2014].

5.6 Functionally Dependent Limit States

5.6.1 Effect of Order of Loading

So far it has been assumed that the limit state functions, explicit or implicit, and
the probability of failure, are not dependent on the manner, order or sequencing of
the loads applied to the structure. For simple, statically determinate structural systems
the estimate of the probability of failure usually does not depend on such sequencing
but this is not always the case. For example, in a framed structure the first member to
fail may affect the subsequent internal force distribution and thus affect the sequence
of failure of subsequent members. So-called ‘jacket’ type offshore structures often are
of this type. More generally the limit state functions (and thus most likely also the
probability of failure) are load-sequence and failure-sequence dependent, that is, they
are functionally dependent. This type of problem is considered in this section.
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In order not to limit discussion to any particular type of structure, let the term ‘nodes’
be used to denote members in trusses, or local regions in frames where failure may
occur. Examples are the plastic failure modes with their localized ‘plastic hinges’ in
ideal-rigid-plastic structural theory [Heyman, 1971], as discussed in Section 5.2.3.3 and
Examples 5.3 and 5.4. In practical structures as distinct from their idealized ‘plastic’
equivalents, the generation of the failure modes for such structures is likely to come
about through a sequence of formation of plastic hinges. More generally, this suggests
that any failure mode for a structure is likely to consist of a sequential occurrence of
failure, often confined mainly at discrete nodes. Considering the materials used for con-
struction, it is likely also that there will be dependence in the (physical) properties of the
nodes. This dependence must be taken into account in evaluating the system reliability.

5.6.2 Failure Mode Enumeration and Reduction

All modes of failure making a significant contribution to the failure probability must
be identified (cf. Section 5.2.2); if this is not done, the probability calculated will be
under-estimated. One approach to identify all structural failure modes is through
exhaustive enumeration of all possible combinations of sequences of node failures, in
each case following the notion of an event tree (Section 5.2.2.1). For all but the simplest
structural systems this will be a major task even if done systematically. Thus, each node
should be considered in turn and added to a sequence of failure of previous nodes. Each
new sequence is examined to ascertain whether a valid structural failure mode has
been attained; if not, a further node may be added. The concept is shown schematically
in Figure 5.19.

When structural failure is defined as collapse of the structure or some part of it, as
for example in plastic theory, each failure mode must be kinematically admissible (i.e.
a valid collapse or failure mode must exist). In addition, of course, there must be cor-
respondence everywhere between internal actions and local strains. Equilibrium also
must be satisfied.

The probability that the k th failure mode, consisting of n nodes, will occur is given by

pfk
= P(E1 ∩ E2 ∩… ∩ En) (5.76)

Event 2 Event 3Event 1

1

2

2

3

3

2

1 2 3

i

Systematic node sequence generation

Member or node number

pj

pj +1

pj +2

select max [pj,pj+1,pj +2]

Selection

level

Figure 5.19 Systematic enumeration procedure.
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where Ei denotes the event ‘resistance of the i th node exceeded’. In general a number
of such sequences of failure modes exist. An example is shown in Figure 5.19 with the
sequence of failure modes shown as 1, 2, 3. The probability of failure for this sequence
may be evaluated by any of the methods described so far.

When a failure mode has been identified, enumeration of the next failure mode is
achieved by ‘back-tracking’ until a new combination or ordering of nodes becomes pos-
sible. For complex node behaviour, unloading, stress reversal, loss of stiffness, etc. also
may need to be considered, including as possibilities in the event tree. This will add
greatly to computation effort and still presents a challenge for the probabilistic analysis
of complex structures, even with the adoption of systematic procedures. For the special
case of ideally rigid-plastic structures considerable simplifications are possible, since the
precise order of failure of the nodes in a sequence of modes should not matter [Heyman,
1971].

Computational effort is likely to be considerably reduced if failure modes that con-
tribute little to the structural failure probability could be identified before being included
in the computational scheme. They could then be eliminated from further analysis if
the error in so doing is not large [Ibrahim, 1992]. A number of techniques have been
proposed to do this as early as possible in the enumeration procedure, and preferably
before full calculation of mode failure probabilities [Moses, 1982; Murotsu et al., 1977,
1984; Guenard, 1984; Melchers and Tang, 1984; Thoft-Christensen and Murotsu, 1986;
Ibrahim, 1992; Zimmerman et al., 1992]. Some of these are intuitive and empirical.

5.6.3 Reduction of Number of Limit States—Truncation

In addition to reducing the complexity of each failure mode (limit state), it would be
computationally advantageous also to reduce the number of failure modes (limit states)
that need be considered without significant compromise of the estimated probability of
failure for the structure as a whole. One approach to do this is to eliminate all failure
modes for which (see 5.76 above) the individual failure probability pfk

≤ 𝛿pf , where 𝛿

is an appropriately valued ‘truncation criterion’ and pf is the estimated nominal failure
probability for the whole structural system. With this criterion, all failure modes are
evaluated if 𝛿 = 0.

Unless a subjective estimate is available prior to the analysis, pf may be approximated
by the most significant (i.e. maximum) value of pf so far estimated in the procedure, e.g.
from an earlier estimation of a mode failure probability pfk . Let this value be denoted p∗

f :

p∗
f =

k−1
max
𝓁=1

(
pf𝓁

)
, k ≥ 2 (5.77)

Since it always will be the case that p∗
f ≤ pf the use of (5.77) is conservative, because

fewer failure modes are discarded. Further, it is noted that the probability of failure for
each individual failure mode included in (5.77) may be bounded by using a smaller num-
ber of nodes, q ≤ n, as shown in the inequalities

pfk
= P

(
E1 ∩ E2 ∩…En

)
≤ P

(
E1 ∩ E2 ∩… ∩ Eq

)
… ≤ P

(
E1 ∩ E2

)
≤ P(E1)

(5.78)
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In principle the selection of the node(s) to be eliminated may be in any order. However,
intuitively it is clear the approximation for pfk and hence the probability of failure of
the whole system may depend on the choice of which node(s) to delete. As noted in
Section 6.5.2, an efficient algorithm will select the nodes of little consequence as early
as possible. A reasonable strategy is to select the next node such that the probability
of occurrence of the partial node sequence including the selected node is maximized.
Working from the first to the q th node in a sequence, this means that the selections are
made as

first node: P
(
E1

)
= max

i

[
Pi(E1)

]
(5.79a)

second node: P
(
E1 ∩ E2

)
= max

i

[
Pi(E1 ∩ E2)

]
(5.79b)

.

.

or in general for the q th node:

P
(
E1 ∩ E2 …∩ Eq

)
= max

i

[
Pi(E1 ∩ E2 …∩ Eq)

]
(5.79c)

where the maximization is over the set of all ‘eligible nodes’ at each selection level
(see Figure 5.19). Thus, at the q th level, the events E1 to Eq−1 are held fixed and a
decision is made about selection of event Eq from the remaining nodes. This strategy
will achieve a reasonably good estimate pf in (5.77).

For the evaluations of the failure probabilities in expressions (5.76, 5.78 and 5.79) any
of the methods discussed in Chapters 3 and 4 and in Appendix C can be used. Then,
with the probabilities pfk

for the dominant failure modes known, the nominal failure
probability for the structural system can be obtained, in principle, from (5.1) as

pf = P
(
F1 ∪ F2 ∪ F3 ∪… ∪ Fm

)
(5.80)

where the event Fi (i = 1,… ,m), represents failure in the i th mode. As noted in
Section 5.2.2, considering only the dominant modes obtained by the simplifications
described above will underestimate the system failure probability.

5.6.4 Applications

Although reasonably simple for single parameter loading or once-only loadings
(i.e. time-invariant cases) and useful for determining failure modes of systems that
are not too large [e.g. Xiao and Mahadevan, 1994], the detailed step-by-step analysis
of systems through event tree analysis usually becomes very complex and highly
computationally demanding. Some early efforts have been made to further simplify
the analysis, but a critical analysis suggests that full or even reduced enumeration for
complex systems is not particularly fruitful [Murotsu et al., 1977, 1983; Grimmelt et al.
1983; Thoft-Christensen and Sørensen 1982; Murotsu et al., 1985]. One possibility is to
define the load combinations to be used in a reliability analysis in a manner analogous
to that used in conventional structural design and for which only a limited number
of combinations of loading is considered [Ditlevsen and Bjerager, 1984; Ditlevsen
and Madsen, 1996]. Such an approach, whilst not fundamental, at least could give
a conditional probability statement with clearly defined conditions. More generally,
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however, how to deal with problems for which the failure probability is load-path
dependent and for which the critical limit states change depending on the order and
sequencing of multiple loads, remains an outstanding, unsolved problem for application
of structural reliability.

5.7 Conclusion

The reliability analysis of structural systems follows the procedures outlined in
Chapters 3 and 4 but with more complex formulation of limit states. For structural
systems in which the limit states do not depend on previous loadings or events, the
analysis can proceed directly with the use of the ‘crude’ Monte Carlo or with the
efficient importance-sampling and directional sampling procedures. Classification of
the system as one with series, parallel or more complex subsystems is helpful for the
use of system reliability (probability of failure) bounding theorems, such as might be
used in conjunction with the various first-order methods (FOSM, FOR).

The failure modes for the structure are not always known. These can be investigated to
some extent using Monte Carlo simulation, or they may be enumerated either exhaus-
tively or through simplified methods. Of particular interest are those failure modes that
make the greatest contribution to the system failure probability. A systematic proce-
dure to select these for one-parameter loading situations was described, together with
various procedures for limit state definition and the calculation of the corresponding
probabilities.

Except as noted in Section 5.6, the techniques described in this chapter have
limitations regarding the sequencing of loading applied to the structure. They all have
a further limitation, namely that applied loading is assumed a once-only application of
an extreme value (one-parameter) loading system (i.e. the maximum for the lifetime of
the structure). This limitation allows the basic reliability problem (1.31) to be invoked,
but it cannot deal with time-variant loadings. This limitation can be removed, at least
for simple structural systems, using the theory of Chapter 6.
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6

Time-Dependent Reliability

6.1 Introduction

This chapter discusses so-called ‘stochastic’, ‘time-dependent’ or ‘time-variant’ random
variables and the related failure probability calculations. Attention is confined initially
to situations of the type considered in Chapter 1, that is, with the resistance measured in
terms of material yield strength or some type of permissible stress. Later in this chapter
some introductory comments are made about fatigue reliability and about problems
involving dynamic structural behaviour.

As noted in Chapter 1, in general the basic variables X will be functions of time. This
comes about, for example, because loading changes with time (even if it is quasi-static,
such as is the case for most floor loading) and because material strength properties
change with time, either as a direct result of previously applied loading or because of
some deterioration mechanism. Fatigue and corrosion are typical examples of strength
deterioration.

The elementary reliability problem (1.15) in ‘stochastic’ (i.e. time-variant) terms with
a resistance R(t) and a load effect S(t), at time t becomes

pf (t) = P[R(t) ≤ S(t)] (6.1)

If the instantaneous probability density functions fR(t) and fS(t) of R(t) and S(t) respec-
tively are known, the instantaneous failure probability pf (t) can be obtained from the
convolution integral (1.18). Schematically, the changes in fR(t), fS(t) and pf (t) with time
can be depicted as in Figure 1.7.

Strictly, (6.1) has meaning only if the load effect S(t) increases in value at time t (oth-
erwise failure would have occurred earlier) or if the random load (effect) is re-applied
precisely at this time. Failure could not occur precisely at the very instant of time t
(assuming, of course, that at time less than t the member or structure was safe). Thus,
in general, a change in load or load effect is required; this is assured if:

(1) there are discrete load changes (as will be discussed in Section 6.2 below);
(2) for continuous time-varying-loads, an arbitrary small increment 𝛿t, in time, is con-

sidered instead of instantaneous time t.

With this interpretation, it follows that

pf (t) = ∫G[X(t)]≤0 fX(t)[x(t)]dx(t) (6.2)

Structural Reliability Analysis and Prediction, Third Edition. Robert E. Melchers and André T. Beck.
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Load effect
S(t)

Realization
of S(t)

0 t

Figure 6.1 Typical realization of random process load effect.

which may be represented, in two-dimensional space, as in Figure 1.8 for any given
time t. As before, X(t) is a vector comprised of the basic random variables.

In principle, the instantaneous failure probability given by (6.1) or (6.2) can be
integrated over an interval of time 0 − t to obtain the failure probability over that
period. In practice, however, the instantaneous value of pf (t) usually is correlated to the
value pf (t + 𝛿t), 𝛿t → 0, since typically the processes X(t) themselves are correlated in
time. This may be seen in a typical ‘sample function’ or ‘realization’ of a random process
load effect, as shown in Figure 6.1.

The classical approach is to consider the integration transferred to the load or load
effect process, which is then assumed to be representable, over the total time period, by
an extreme value distribution. This means the load or load effect has been turned from a
process into a random variable. Also, the resistance is assumed to be time invariant. This
approach formed the basis of discussion in the earlier chapters. It also is known as the
‘classical’ reliability problem [Freudenthal, 1961]. The theory underlying this approach
will be outlined in Section 6.2.

A refinement is to consider shorter periods of time, such as the duration of a storm,
or a year, and to apply extreme value theory within that period. Simple ideas akin to
the concept of the return period (Section 1.3) then can be used to determine the failure
probability over the lifetime of the structure. This approach, discussed in Section 6.3,
historically has been popular for practical reliability analyses of major structures, such
as offshore platforms, towers, etc., subject to definable and discrete loading events.

A somewhat different way of looking at the problem is to consider the safety margin
associated with (6.1):

Z(t) = R(t) − S(t) (6.3)

and to establish the probability that Z(t) becomes zero or less in the lifetime tL of
the structure. This constitutes a so-called ‘crossing’ problem. The time at which Z(t)
becomes less than zero for the first time is called the ‘time to failure’ (Figure 6.2)
and is a random variable. The probability that Z(t) ≤ 0 occurs during tL is called the
‘first-passage’ probability.

The corresponding situation in two-variable space is shown in Figure 6.3. The proba-
bility that the vector process X(t) will leave the ‘safe’ region G(X) > 0 (i.e. the probability
that an ‘outcrossing’ will occur) during the structural lifetime tL is again the so-called
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Failure0
t

Realization
of Z(t)

Z(t) = R(t) – S(t)

Figure 6.2 Realization of safety margin process Z(t) and time to failure.

X2

Safe domain D

Realization
of X(t)

Failure region, G(X) < 0

G(X) = 0

Failure

0 X1

Figure 6.3 Outcrossing of vector process X(t).

‘first-passage’ probability. It is, of course, equal to the probability of failure of the struc-
ture since failure is defined by G(X) ≤ 0.

The first-passage concept is more general than the classical approaches. In partic-
ular, there is no restriction on the form of G(X). However, the determination of the
first-passage probability and a proper understanding of the concept do require some
knowledge of stochastic processes. An introduction to this topic is given in Section 6.4.
An introductory discussion of the time-dependent approach to reliability calculation
follows in Section 6.5. If the elementary reliability problem (6.1) is to be made to cope
with more than one load or load effect, as is required, for example, in design code appli-
cations, it is necessary to combine two or more load effects into one equivalent load
effect. This may be achieved using the theory and methods of Sections 6.4 and 6.5 and
is described in Section 6.6.

An important strength requirement for structures is fatigue strength. This has not so
far been considered, as it is essentially a time-dependent problem. The essential prob-
abilistic considerations for the analysis of fatigue reliability are outlined in Section 6.8,
following brief comments in Section 6.7 about problems involving dynamic structural
behaviour.
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6.2 Time-Integrated Approach

6.2.1 Basic Notions

In the time-integrated approach, the whole lifetime [0, tL] of the structure is considered
as a single unit, and all statistical properties of all random variables must relate to
this lifetime. Thus the probability distribution of interest for loads is that for lifetime
maximum loads. Similarly, the probability distribution of interest for resistance is
the lifetime minimum. Simple comparison of the maximum load and the minimum
resistance is, however, not appropriate since it is highly unlikely that the occurrence
of the lifetime maximum load will coincide with the lifetime minimum resistance, as
shown in Figure 6.4 for typical realizations of R(t) and S(t).

For many practical problems it is sufficient to assume, initially at least, that R(t) is
time independent. The typical realization of R(t) is now a horizontal line (Figure 6.5).
The actual location of this realization of R is, of course, governed by the probability
density function fR( ) if R is a random variable. With this restriction (6.1) becomes

pf (tL) = P[R ≤ Smax (tL)] (6.4)

where Smax(tL) denotes the maximum load effect in the period [0, tL]. It is of course
possible, but unlikely in practice, to interchange the assumptions placed on R and S.

The probability distribution for Smax( ) may be obtained directly by fitting an
appropriate probability distribution function to observed extreme value data of past
observations and assuming it will be applicable also to the future. Usually, however, data
are not available for a sufficiently long period of time, and records for shorter periods
generally must be used to synthesize the extreme value distributions. Probability
distributions for loads and for resistances are discussed in Chapters 6 and 7.

The time-integrated approach is based on the concept of applying a (one-parameter)
loading system Q to the structure at regular intervals in time. In this case the probabil-
ity of failure of the structure may be considered simply a function of the number N of
statistically independent loading applications to cause failure [Freudenthal et al., 1966]:

P(N ≤ n) ≡ FN (n) = 1 − LN (n) (6.5)

R,S

Realization of
R

Realization
of S(t)

0
ttL

Figure 6.4 Typical realizations of load effect S(t) and resistance R(t) when both are non-stationary.
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0

Realization
of S(t)

Realization of
R

tL
t

R,S
fR( )

Figure 6.5 Typical realizations of load effect S(t) and resistance R, with R a time-independent random
variable.

where n is some given number of load applications, FN (n) is the cumulative distribution
function of N , and LN (n) is defined as the ‘reliability function’. Since N is discrete, it
follows that the probability mass function f N ( ) is given by (cf. A9):

fN (n) ≡ P(N = n) = FN (n) − FN (n − 1) (6.6)

It is also possible to define the so-called ‘hazard’ function:

hN (n) = P(N = n |N > n − 1) =
fN (n)

1 − FN (n − 1)
(6.7)

It expresses the probability of failure under the n th loading (N = n) given that failure
has not occurred under a previous loading (N > n − 1). It is more commonly expressed
in terms of time (see Section 6.3.3 below).

It will be assumed that load applications are independent in time, i.e. there is no
dependence between the i th and j th load application (i ≠ j). It will be assumed also,
for convenience, that the resistance R and the load effect S (associated with one applica-
tion of Q) each have known probability density functions fR( ), fS( ) (and hence associated
cumulative distribution functions). Both R and S (and therefore Q) will be assumed to
be stationary random processes, i.e. fR( ) and fS( ) do not change with time.

Then, for a series of n (independent) loads applied to the structure, the probability that
the maximum load effect S∗ is less than some value x, say, is given by

FS∗ (x) = P(S∗ < x) = P(S1 < x).P(S2 < x)… = [FS(x)]n (6.8)

If n is very large, (6.8) asymptotically approaches one of the extreme value distributions
(see Sections A.5.11–A.5.13), which may then be used to describe S∗.

The justification for using extreme value distributions in the time-integrated approach
can now be given directly. Using the same argument as in Section 1.4.2, the probability
of failure, i.e. the probability that fewer than n load applications can be supported, is

P(N < n) = ∫
∞

0 {[1 − FS(y)]n} fR(y)dy (6.9a)

= ∫
∞

0 [1 − FS∗(y)] fR(y)dy (6.9b)
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and integrating by parts produces [see also (1.19)]

pf = FN (n) = ∫
∞

0 FR(y) fS∗ (y)dy (6.10)

which is identical with (1.18) but with an extreme value distribution for the maximum
applied load effect S∗. Note that (6.10) does not contain specifically the number of load
applications; this has been absorbed into the derivation of the distribution for S∗ (and
is therefore assumed to be ‘large’). Note also that the lower integration limit in (6.10)
differs from that in (1.18)—the reason for this should be clear.

6.2.2 Conversion to a Time-Independent Format*

In practical situations, more than one load system may act. Usually the load systems
are assumed independent (e.g. live load and wind load) but may not be (e.g. wave load
and wind load). In addition, the peaks of different load processes usually do not coincide.
Hence it would be rather conservative to use an extreme value distribution for each load
system separately. The usual procedure is to derive one process to represent the com-
bined effect of several load processes. This is the so-called ‘load combination’ problem, as
discussed in Section 6.6. It has application also in design code calibration, as discussed in
Chapter 9, in which case the equivalent load is converted to a time-independent equiv-
alent for use in time-invariant reliability analysis (i.e. a ‘time-integrated’ approach).

Essentially the same approach can be used directly to convert a time-dependent
reliability problem to a time-independent one [Bucher et al., 1988; Chen et al., 1988].
First it is necessary to evaluate the maximum combined load effect of the time-varying
loads expected during the lifetime [0 − tL] of the structure. This can be expressed as
a generalization of (6.4) with the probability of the limit state function being violated
(i.e. (G( ) < 0) under the load effect, given by:

pf (tL) = P
{

G
[

R, max
[0, tL]

S(Q(t))
]
< 0
}

= P{G[R, Smax(tL)] < 0}
(6.11)

where S( ) is the load effect resulting from the load processes Q(t) and R is the vector of
structural resistances with the joint probability density function (pdf) fR( ).

Since (6.11) is difficult to solve directly, Wen and Chen (1987) proposed a conditioning
scheme with R in (6.11) replaced by a realization r so that the probability given by (6.11)
is the conditional failure probability pf (tL|r). The total probability is then given by

pf (tL) = ∫r pf (tL|r) fR(r)dr (6.12)

For R independent of Q(t), the conditional probability can be written as

pf (tL|r) = 1 − FSmax
(tL, r) (6.13)

where FSmax
( ) is the cumulative distribution function of Smax, the lifetime maximum

effect of the combined load processes. Its evaluation is discussed in Section (6.6). Alter-
natively, Monte Carlo methods can be used [e.g. Chen, 1989].

A slightly different approach is to convert from a time-dependent to a lifetime
time-independent problem through the introduction of an auxiliary random variable.
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This allows an augmented limit state function to be written in time-independent
reliability, which is then solved using FOSM theory or Monte Carlo simulation
[see Wen and Chen, 1987; Madsen and Zadeh, 1987].

A possible difficulty with both these last two approaches is that the conditional failure
probability pf (tL|r) must be available for all realizations r of R. Also, the use of an
equivalent load effect as a substitute for the actual load processes is only valid in linear
elastic structural systems (since the theory relies on superposition) or for ideal plastic
systems (since the loading sequence is then irrelevant—see Chapter 5).

Despite the apparent simplicity of the time-integrated approach, for situations
involving multiple load processes it is generally better to turn to stochastic process
theory (Section 6.4) and the applications that follow from it (Section 6.5).

6.3 Discretized Approach

In the discretized approach to handling time-dependent structural reliability problems,
the lifetime of the structure is divided into a number of units. These can be time periods
such as one year, say, or they may be taken as the occurrence of a discrete event such as
a storm of a particular duration. The reliability problem then becomes the calculation of
the probability of failure given that nL years or events occur during the lifetime tL of the
structure. For a given unit time period nL is fixed, once tL is decided. However, for storm
events, nL is not known a priori, although the average rate of occurrence of storms may
be known.

The discrete time unit may be a day, a month, a year, etc., although a year is commonly
adopted. The failure probability calculated using the method of the previous section
then is the probability of failure per year. The corresponding resistance and load effect
variables of interest are the extreme values per year, with appropriate probability
density functions. Such distributions are obtained from observations (e.g. wind, waves)
and are related to the particular time period used as the reference (e.g. one year). Thus
the maximum wind force per year will have a different probability density function to
(say) that of the maximum wind force per day. Only under particular assumptions is it
possible to relate these distributions easily, as will be seen below.

The discretized approach can be justified along similar lines to that used in Section 6.2
for the time-integrated approach. As noted, two cases may be distinguished:
(1) nL known deterministically;
(2) nL a random variable.

6.3.1 Known Number of Discrete Events

Consider a set of nL loads applied to the structure. If a given time period is now consid-
ered (e.g. one year) within which nL may be considered ‘large’ and for which each load
occurrence may be considered to be an independent event, then (6.8) may be used to
obtain the extreme value distribution S∗

1 for S for one year. The probability pf1
of failure

per year is then given by (6.10). However, the probability of failure for a life of nL years
is given by (6.9a), with S∗

1 substituted for S and assumed independent between years
[Freudenthal et al., 1966]:

pf (nL) = FNL
(nL) = ∫

∞

0 {1 − [F∗
S (y)]

nL} fR(y)dy (6.14)
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Noting that

[F(y)]n = [1 − F(y)]n ≈ 1 − nF(y) + n(n − 1)
F(y)2

2
−…

where F( ) = 1 − F( ) and neglecting second-order terms, it follows easily that

pf (nL) ≈ ∫
∞

0 {1 − [1 − nLF s∗1(y)]} fR(y)dy (6.15)

or

pf (nL) ≈ nL∫
∞

0 F s∗1(y) fR(y)dy (6.16)
≈ nLpf1

(6.17)

where the alternate expression (1.19) has been used for pf1
. The neglect of second-order

terms in (6.15) is valid only for those values of y for which nF ≪ 1. It is easily shown
that this implies high values of y and that as a consequence the approximation (6.15) and
hence (6.16) and (6.17) are most accurate for situations in which the standard deviation
for load effects is much greater than that for the resistances, i.e. 𝜎S ≫ 𝜎R. Clearly these
approximations are restricted also to small values of pf1

and pf (nL). Result (6.17) shows
that the lifetime failure probability pf (nL) can be determined (approximately) from the
annual failure probability pf1

simply by multiplying the latter by the number nL of years
in the designated lifetime tL.

Rather than expressing the life of a structure in terms of the number of load applica-
tions, a more natural parameter is time T . The probability that a structure will fail during
a time period [0, t] may then be stated as

P(T < t) = FT (t) = 1 − LT (t) (6.18)

where FT ( ) is the cumulative distribution function of T and LT ( ) is the ‘reliability func-
tion’ expressed in terms of time.

If now pi is the failure probability for the i th time unit (cf. pf1
above and 6.10), then,

using the same arguments as for (6.8),

P(T < t) = 1 −
t∏

i=1
(1 − pi) = 1 − (1 − p)t (6.19)

if pi = p for all i (as is the case for time-invariant R) and assuming independence of p
between time units. If pt is sufficiently small, this may be approximated by

P(T < t) ≈ 1 − exp(−tp) ≈ tp (6.20)

which corresponds to (6.17) (and has the same limitations) provided that t and p are
interpreted appropriately. This also shows clearly that the choice of time period is arbi-
trary, provided that it is consistent between t and p. Nevertheless the choice of one year
is very common. The probability of failure for a lifetime [0, tL] is thus

pf (tL) = 1 − exp(−tLp) ≈ tLp (6.21)
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6.3.2 Random Number of Discrete Events

The failure probability pi for the i th time unit depends on the number of load appli-
cations which occur during that time unit. If a time unit is considered to be an ‘event’
such as a storm, the actual number of load applications during the event might be
ignored provided that an appropriate extreme value probability distribution is used to
describe the maximum load effect S∗

e occurring during the event. The discretization is
now over ‘events’ (of indeterminate duration) rather than periods of given duration as
in Section 6.3.1.

The number of occurrences of the events, however, needs to be known to obtain the
lifetime failure probability pf (tL). Let this be given by pk(t), the probability of k events
in time [0, t]. Then the probability of failure for a period [0, t] may be expressed in time
terms as (cf. 6.11):

pf (t) = FT (t) = ∫
∞

0

∞∑
k=0

pk(t)
{

1 −
[
FS∗

e
(y)
]k}

fR(y)dy (6.22)

in which all possible values of the number of events are considered.
A common assumption is to take pk(t) as Poisson distributed (see Section A.5.4):

pk(t) =
(vt)ke−vt

k!
(6.23)

where v is the mean rate of occurrence of events. In view of the derivation of the Poisson
distribution, this means that the events must be independent and non-overlapping. This
is likely to be closely true if v is very low. If (6.23) is substituted into (6.22) and a series
approximation similar to that used in deriving (6.15) is applied, it follows readily that

pf (t) ≈ 1 − exp(−vtpfe
) (6.24)

where pf
e

is the probability of failure given the occurrence of a single event. It is given by
(6.10) with S∗

e substituted for S∗. Further, expression (6.24) corresponds to (6.20) when
it is recognized that vpfe

is the average failure probability per unit time. Again the same
limitations regarding accuracy apply to (6.24) as apply to (6.16) and (6.20).

It should be noted that the calculation of the value of pfe, the probability of failure given
that the event occurs, may well need to take account of some conditional information
[e.g. Schuëller and Choi, 1977]. For example, if the event of interest is the occurrence
of a storm at an offshore structure, then the maximum load effect S∗

e may depend on
the occurrence of the ‘characteristic’ wave height Hk during that storm. Let S∗

e |Hk rep-
resent the maximum load effect given the occurrence of a characteristic wave height
Hk . It has a probability density function fS∗

e |Hk
( ). Then the probability density function

fHk
(h) expresses the probability of occurrence of a characteristic wave height between h

and h + 𝛿h as 𝛿h → 0. The conditional failure probability pfe
|Hk may then be calculated

from (1.18):

pfe
|(Hk = h) = ∫

∞

0 FR(y) fS∗
e |Hk

(y)dy (6.25)
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Table 6.1 Analyses of failure probability for Example 6.2.

Characteristic
wave height Hk(m) fHk

( ). 𝚫h pfe
|Hk

∑
pfe|Hk

fHk
𝚫h

24 0.100 0.2× 10−9 0.020× 10−9

26 0.640 0.9× 10−9 0.576× 10−9

28 0.180 4.0× 10−9 0.720× 10−9

30 0.060 12.0× 10−9 0.720× 10−9

32 0.015 24.0× 10−9 0.360× 10−9

34 −0.005 50.0× 10−9 0.250× 10−9

Δh = 2 m
∑

= 1.00
∑

= 2.65× 10−9

Further, assuming Hk > 0, it follows from (A.11) that the unconditional failure
probability is given by

pfe
= ∫

∞

0 pfe
|(Hk = h) fH k

(h)dh (6.26)

The probability density functions fHk
( )may be obtained directly from field observations.

However, determination of fS∗
e |Hk

( ) will require both loading data for a given Hk and a
structural analysis using the applied loading Q∗

e corresponding to S∗
e .

Example 6.2 An offshore platform is subject to an average of 2.5 storms/year. It has a
planned design life of tL = 15 years. Estimates of the probability of failure given a partic-
ular characteristic wave height during a storm are set out in Table 6.1. This also shows
the estimated occurrence probabilities fHk

( ) .Δh for each characteristic wave height.
Expression (6.26) may be approximated as

∑
pfe|Hk

fHk
Δh to obtain pfe

= 2.65 × 10−9.
Using (6.24), the probability of failure in the period [0–15 years] is:

pf (tL) ≈ 1 − exp[(−2.5)(15)(2.65 × 10−9)]
≈ (−2.5)(15)(2.65 × 10−9)
≈ 10−7

6.3.3 Return Period

The return period was introduced in Section 1.3 as the mean time between defined prob-
abilistic events, usually taken as the exceedance of some given level or load. This concept
can be generalized by defining the events in terms of limit state violation, calculated
using any of the methods of Section 1.4, and Chapters 3, 4 and 5. Thus the generalized
return period may be defined as

TG = 1
pf1

(6.27)

where pf1
is the probability of limit state violation per unit time (often taken as 1 year)

calculated from (1.18) or (1.31), and TG is measured in similar time units (i.e. years). If
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there are nL time units in the design life tL, and assuming, as before, independence of
events between time units, (6.17) may be used to obtain the lifetime failure probability:

pf (tL) ≈
nL

TG

(6.28)

Further, if there are m independent phenomena contributing to the failure probability,
then (see Section A.2)

pfT
=

m∑
i

pfi
(6.29)

or

1
TT

=
m∑
i

1
Ti

(6.30)

This shows that the reciprocals of return periods may be added, but only under the
assumption of independence of events between time units.

6.3.4 Hazard Function

Another measure sometimes used in classical time-dependent reliability theory is the
‘hazard function’. It may be expressed either in terms of the number of load applications
(see also Section 6.2) or in terms of time. The latter will be used here.

From (6.18), the life of a structure expressed in terms of time as the parameter is given
by P(T < t) = FT (t) while the probability density of the design life is

fT (t) =
d
dt

[FT (t)] (6.31)

This is also called the ‘unconditional failure rate’, as it reflects the probability of failure
in the time interval t to t + dt as dt → 0.

The hazard function (also called ‘age specific failure rate’ or ‘conditional failure rate’)
expresses the likelihood of failure in the time interval t to t + dt as dt → 0, but now given
that failure has not occurred prior to time t, i.e.

P(failure t ≤ T ≤ t + dt |no failure t ≤ T) = P(t ≤ T ≤ t + dt)
1 − P(T ≤ t)

or

hT (t) =
fT (t)

1 − FT (t)
(6.32)

It is immediately evident that, for FT (t) small, that is for systems with very low failure
probability and thus very high reliability, i.e. [1 − FT (t)] → 1, the hazard function hT (t)
is closely similar to fT (t). Some typical hazard functions are shown in Figure 6.6. Using
(6.18) and (6.20) it is not difficult to show that (6.32) can be recast to

FT (t) = 1 − exp
[
−∫

t

0 hT (𝜏)d𝜏
]
≈ ∫

t

0 hT (𝜏)d𝜏 (6.33)

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

190 Structural Reliability Analysis and Prediction
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Figure 6.6 Typical hazard functions hT (t).

and

fT (t) = hT (t) exp
[
−∫

t

0 hT (𝜏)d𝜏
]

(6.34)

when it is noted that the integral term in [ ] represents the total probability of failure
P(T < t). It follows that knowledge of one of fT (t), FT (t) or hT (t) is sufficient to obtain
the other two.

For a typical, realistic structure, the hazard function usually is more complex than the
idealizations in Figure 6.6 and typically has the form of a ‘bath-tub’ curve (see Figure 6.7).
This shows the initial high-risk phase during which the hazard rate reduces sharply as

Initial phase

service
phase

wear-out
phase

Hazard function
hT(t)

0
t

Figure 6.7 Typical variation of hazard function with age of structure.
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experience is gained with loading the structure. This is essentially a proof-loading stage.
As the design life is approached, the hazard rate increases owing to deterioration and
wearing-out.

6.4 Stochastic Process Theory

Continuing with the discretization of the previous section to ever smaller time intervals
produces, in the limit, what might be called the ‘instantaneous’ approach for dealing
with time-dependent problems. Before proceeding to discuss this in detail it is neces-
sary to introduce some basic ideas about stochastic processes. It is necessary also to
describe some elementary processes used in later sections of this chapter. The discus-
sion in the following section is based largely on Crandall and Mark (1963), Newland
(1984), Papoulis (1965) and Parzen (1962).

6.4.1 Stochastic Process

A stochastic process X(t) is a random function of time t. At any point in time t the value
of X(t) is a random variable governed by probability density function fX(x, t). As before,
a specific realization of X(t) at time t is denoted x(t). More generally, the variable t may
be replaced by any kind of finite or countable infinite set of values, such as the number
of load applications (see Section 6.3). However, time is convenient.

For each value of t, the observed outcome of X(t) may be plotted; the complete set of
such values over a given time interval is called a ‘realization’ or ‘sample function’, such
as shown in Figure 6.8. Since X is a random variable, the precise form of the realization
cannot be predicted. However, statements can be made about its statistical properties.
Thus, in direct correspondence to the definition (A.10) for a random variable, the mean
of all possible realizations at any point in time is simply

𝜇X(t) = ∫
∞

−∞ x fX(x, t)dx (6.35)

where fX(x, t) is the probability density function at time t. The correlation between the
realizations at two points in time t1 and t2 is termed the ‘autocorrelation function’ since

upcrossing clumping

Realization of X(t)

x(t2)

x(t1)

t1 t2 tL

x(t)

t

Figure 6.8 Realizations x(t) of process X(t) showing clumping effect and barrier crossing.
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it relates to one realization (see Figure 6.8):

RXX(t1, t2) = E[X(t1)X(t2)]

= ∫
∞

−∞∫
∞

−∞ x1x2fXX(x1x2; t1t2)dx1dx2

(6.36)

where fXX( ) = 𝜕2FXX( )∕𝜕x1𝜕x2 is the joint probability density function. Here FXX( ) =
P{[X(t1) ≤ x1] ∩ [X(t2) ≤ x2]}. It is also possible to define an (auto)covariance function
analogous to (A.123):

CXX(t1, t2) = E{[X(t1) − 𝜇X(t1)][X(t2) − 𝜇X(t2)]}

= RXX(t1, t2) − 𝜇X(t1)𝜇X(t2) (6.37)

As might be expected, if t2 = t1 = t, the (auto)covariance function becomes the vari-
ance function 𝜎2

X(t):

𝜎2
X(t) = CXX(t, t) = RXX(t, t) − 𝜇2

X(t) (6.38)

analogous to (A.11) and with 𝜎X(t) = D[X(t)] denoting the standard deviation function.
Just as higher ‘moments’ (see Section A.4) can be used to provide a description of an

ordinary random variable, higher-order correlation functions also can be established.
However, these are seldom of much practical interest.

In addition, the above concepts for the scalar process X(t) may be generalized
to the vector process X(t) = [X1(t),X2(t),… ,Xn(t)] having covariance functions
CXiXj

= cov[Xi(t1),Xj(t2)]. When i = j, these are autocovariance functions for Xi; when
i ≠ j, CXiXj

is termed a ‘cross-covariance’ function. The collection of functions CXiXj
is

expressed in a covariance function matrix CX analogous to the covariance matrix.
Finally, the correlation function (matrix) may be defined analogously to (A.124) as

𝜌[Xi(t1),Xj(t2)] =
cov[Xi(t1),Xj(t2)]
D[Xi(t1)]D[Xj(t2)]

where D[ ] = C1∕2
X for t1 = t2, Xi = Xj.

Typically, 𝜌[Xi(t1), Xj(t2)] might have the form 𝜌 = exp[−k(t1 − t2)(x1 − x2)] where k
is some defined constant. In this case 𝜌 reduces with greater separation of time points
t1 and t2, or component processes X1 and X2, as might be expected. Also, if t1 = t2,
X1 = X2, then 𝜌 = 1, as expected for correlation at a point in time of the same process
component.

6.4.2 Stationary Processes

When the random nature of a stochastic process does not change with time, it is said to
be a ‘(strictly) stationary’ process. This means that all its moments also are independent
of time. When only the mean 𝜇X(t) and the autocorrelation RXX(t1, t2) are independent
of absolute time, the process is said to be ‘weakly stationary’ or ‘covariance stationary’.
Since the normal distribution is uniquely described by its first two moments, a weakly
stationary normal process is also strictly stationary.
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A direct consequence of stationarity is that for CXX( ) and RXX( ) only the relative
difference (t1 − t2) = 𝜏 , say, is of importance. Thus (6.36), for example, becomes

RXX(𝜏) = E[X(t)X(t + 𝜏)] (6.36a)

In particular, if 𝜏 = 0, RXX(0) = E(X2), which represents the ‘mean-square’ value of X(t).
Also note that RXX(𝜏) is an even function in 𝜏 , i.e. RXX(𝜏) = RXX(−𝜏), as is easily verified.

If a process is stationary, by definition it cannot start or stop. Each realization must,
theoretically, extend over −∞ ≤ t ≤ +∞. Usually this is ignored in practical applica-
tions. Often stationarity can be assumed to hold after a sufficient time from the start
of the process. Even if the process is slowly changing with time, it may be acceptable to
consider several shorter subprocesses each reasonably stationary over their respective
durations.

6.4.3 Derivative Process

For the discussion to follow an important property of a process X(t) is its derivative
process Ẋ(t), defined for any realization x(t) as

ẋ(t) = d
dt

[x(t)] (6.39)

The existence of such a derivative implies certain regularity properties of X(t); in partic-
ular X(t) is differentiable only (a) if its autocorrelation function RXX(𝜏) has a continuous
second-order derivative R′′

XX(𝜏) = 𝜕2RXX(𝜏)∕𝜕𝜏2 and (b) if R′′
XX(0) exists. This may be

examined by considering the limit as 𝜏 → 0 of the incremental form [x(t + 𝜏) − x(t)]∕𝜏
expressed in terms of RXX(𝜏) and its derivatives. For details see Papoulis (1965) and also
Ditlevsen (1981b).

If the second derivative exists, the first derivative R′
XX( ) must exist also. Then, since

RXX(𝜏) is an even function in 𝜏 (see previous section), it follows that at 𝜏 = 0

𝜕RXX(0)
d𝜏

= 0 (6.40)

Further, it follows from the previous section that the derivative process Ẋ(t) will be a
stationary process if its autocorrelation function RẊẊ(t1, t2) can be expressed as RẊẊ(𝜏).
To show this consider the cross-correlation between X(t) and Ẋ(t) [Papoulis, 1965]:

RXẊ(t1, t2) = E[X(t1)Ẋ(t2)] (6.41)

that can be written in limit form as

RXẊ(t1, t2) = lim
dt2→0

{
E
[

X1(t)
X(t2 + dt2) − X(t2)

dt2

]}
= lim

dt2→0

[RXX(t1, t2 + dt2) − RXX(t1, t2)
dt2

]
or

RXẊ(t1, t2) =
𝜕RXX(t1, t2)

𝜕t2
(6.42)
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Also, using a similar procedure, it follows that

RẊẊ(t1, t2) =
𝜕2RXX(t1, t2)

𝜕t1𝜕t2
(6.43)

Further, if X(t) is stationary, with 𝜏 = t1 − t2, it follows immediately that

RXẊ(𝜏) =
dRXX(𝜏)

d𝜏
(6.44)

and

RẊẊ(𝜏) = −
d2RXX(𝜏)

d𝜏2 (6.45)

from which it follows that the process Ẋ(t) is covariance stationary if X(t) is covariance
stationary (see Section 6.4.2).

Also using (6.40) in (6.44), it follows that for a stationary process RXẊ(𝜏) = E[X(t)
Ẋ(t + 𝜏)] = 0 if 𝜏 = 0, which has the useful property that there is no correlation between
a stationary process and its derivative process at any point in time t. (This does not mean,
however, that there is no correlation between X(t1) and X(t2) for t1 ≠ t2.)

6.4.4 Ergodic Processes

The mean (6.35) and the correlation (6.36) were defined for a stationary process as aver-
ages over all realizations. If they can be defined equally well by the time average over a
single realization of a stationary process, the process is ‘weakly ergodic’. If the equality
holds for all moments of a strictly stationary process, the process is ‘strictly ergodic’.
Ergodicity in the mean is defined as

𝜇X = lim
T→∞

[
1
T
∫

T

0 x(t)dt
]

(6.46)

and ergodicity in correlation as

RXX(𝜏) = lim
T→∞

[
1
T
∫

T

0 x(t + 𝜏)x(t)dt
]

(6.47)

This property clearly can hold only for stationary processes. It is of considerable practi-
cal value in estimating statistical parameters from one or a few sufficiently long records
of the process. The accuracy obtained will depend on the duration T of available records.
Often stationarity and ergodicity are assumed to hold in the analysis of stochastic pro-
cess records unless (and until) there is evidence to the contrary.

6.4.5 First-Passage Probability

As noted in Section 6.1, for time-dependent reliability interest lies mainly in the time
expected to elapse before the first occurrence of an excursion of the random vector X(t)
out of the safe domain D, defined by G(X) > 0 (see Figure 6.3). The probability of the first
occurrence of such an excursion may be considered to be equivalent to the probability
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pf (t) of structural failure during a given period [0, t]:

pf (t) = 1 − P[N(t) = 0|X(0) ∈ D]P[X(0) ∈ D] (6.48)

where X(0) ∈ D signifies that the process X(t) starts in the safe domain D at zero time
and N(t) is the number of outcrossings in the time interval [0, t].

In general, solutions of (6.48) are rather difficult to obtain owing to the need to account
for the complete history of the process X(t) in the interval [0, t]. Usually solutions will
depend on the nature of the process X(t). Series or other approximations have been
suggested [e.g. Rice, 1944; Vanmarcke, 1975]. Fortunately, for reliability problems, out-
crossings typically occur so rarely that often it is satisfactory for the individual outcross-
ings to be assumed independent events, and therefore independent of the probability of
any earlier outcrossings, including one at t = 0. The probability of no outcrossings in
[0, t] may then be approximated using the Poisson distribution (A.30) with zero events
[Cramer and Leadbetter, 1967]:

P[N(t) = 0] = (vT)0

0!
e−vt = e−vt (6.49)

where v is the mean outcrossing rate from the domain D. (A similar approach was used
in Section 6.3.2 when dealing with the random occurrence of events such as storms).

In expression (6.48), the term P[X(0) ∈ D] clearly is equivalent to 1 − pf (0), where
pf (0) is the probability of failure at time t = 0. Using also (6.49), expression (6.48)
becomes [cf. Veneziano et al., 1977]

pf (t) = 1 − [1 − pf (0)] e−vt (6.50)

= pf (0) + [1 − pf (0)](1 − e−vt) (6.51)

but, since vt > 1 − e−vt ,

pf (t) ≤ pf (0) + [1 − pf (0)]vt (6.52)

This result is an upper bound on the failure probability. It is particularly useful in struc-
tural reliability work since it accounts for the initial probability of failure pf (0) (i.e. that
on first loading) and also properly accounts for the subsequent rate of failure given by
[1 − pf (0)]vt. Only in the special case when vt is very close to zero and pf (0) ≪ vt does
the ‘first passage’ or failure probability become the more commonly quoted result

pf (t) ≈ 1 − e−vt ≈ vt (6.53)

In both cases, a useful result is that if the vector process X(t) is smooth but
non-stationary, vt may be replaced by the average outcrossing rate ∫

t
0 v(𝜏)d𝜏 .

Other, perhaps more aesthetic, derivations are available [Leadbetter et al., 1983].
Various improvements to these expressions have been proposed, as reviewed by
Engelund et al. (1995). As might be expected from the way the above expressions have
been derived, results produced by these expressions are good for rare outcrossings
but less so as the boundary moves closer to the origin (i.e. the outcrossings become
increasingly not ‘rare’).

Simulation results support that (6.52) is an upper bound. They also show that
excursions tend to occur in ‘clumps’ (see Figure 6.8) and obviously are not strictly
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independent; these aspects will be ignored herein but can be important in certain
problems [Lin, 1970; Yang, 1975; Leadbetter et al., 1983].

6.4.6 Distribution of Local Maxima

A local maximum of the scalar stochastic process X(t) is defined as the value of X(t)
at which Ẋ(t) = 0 and Ẍ(t) < 0, i.e. when Ẋ(t) has a zero crossing. Local maxima are
therefore all the peaks in a typical realization of X(t) (see Figure 6.8). Note that for a
scalar process X(t) outcrossings simply become ‘upcrossings’ of a barrier x = a (see
Figure 6.8).

The full distribution function for the local maxima can be obtained, in principle, from
an extension of Rice’s formula (6.72) as considered in Section 6.5.3 below; this approach
really is tractable only for normal processes.

Fortunately, for typical structural reliability problems the mean upcrossing rate v for
X(t) usually is low to very low in value. As a result, the distribution of the local max-
ima can be approximated directly from the first-passage probability given by expression
(6.50), using the assumption that the upcrossings follow a Poisson distribution

1 − Fm(a) = pf (t) = 1 − [1 − pf (0)] e−vt (6.54)

where Fm(a) is the cumulative distribution function P(Xm < a) for the maximum Xm in
the time interval [0, t]. Simplifying, it follows that

Fm(a) ≈ e−vt = 1 − vt (6.55)

where v is the mean upcrossing rate in [0, t] out of the safe domain D, defined,
for a scalar process X(t), as x ≤ a. This is known also as a ‘level’ crossing problem
(see Section 6.4.8.1). Evidently, the Poisson assumption becomes less accurate at lower
levels x = a, and hence Fm( ) is only well approximated by (6.55) for high values of
x = a. Result (6.55) is of considerable importance for the discussions to follow.

6.5 Stochastic Processes and Outcrossings

In this section a number of stochastic processes commonly applied in structural reliabil-
ity applications are described. This is followed by a discussion of the theory for barrier
(or ‘up-’) crossings of stochastic scalar processes and its generalization to outcrossings
for a vector process. An introduction is then given to available analytical and simu-
lation solutions for outcrossing problems, including situations composed of multiple
boundaries. All this is further preliminary information for the discussion in Section 6.6
of time-dependent reliability problems.

6.5.1 Discrete Processes

6.5.1.1 Borges Processes
One of the simplest discrete processes in time t is generated by a sequence Yk
of independent and identically distributed random variables each acting over a
given (deterministic) length of time tb (the so-called ‘holding time’). A typical
realization of this (stationary) process wb(t) is shown in Figure 6.9 [Ferry-Borges and
Castenheta, 1971].
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y

Y1

Y2 Y3

Y4

Y5

tbtbtb t

0

Figure 6.9 Realization of a Borges process.

In a given time interval [0 , tL] the number of sequences of Y will be r = tL∕tb so that,
owing to independence, the distribution of the extreme value of the sequence is given by

P
{

max
0≤t≤tL

[wb(t; tb , Y )] ≤ a
}

= P

[ r⋂
i=1

(Yi ≤ a)

]
= [FY (a)]r (6.56)

The first occurrence of the level crossing Y > a must be associated with a maximum
value of Y in [0 , tL]. It follows therefore that, on average, the number of sequences before
which Y > a occurs is equal to r and that the probability that this occurs is given by

1 − P
[
max
0≤t≤tL

(wb ≤ a)
]

or

pf (tL) = 1 − [FY (a)]r = 1 − [FY (a)]tL∕tb (6.57)

6.5.1.2 Poisson Counting Process
If the time of occurrence of the event, rather than its magnitude, is a random variable, a
different but still elementary type of process is obtained; the so-called ‘Poisson counting
process’. If N(t) denotes the number of discrete events (or ‘states’) n = 0, 1, 2, 3,… in
a given time interval [0, t], then the number of events in [0, t] is given by the Poisson
distribution (A.30)

P(n, t) = (vt)ne−vt

n!
(6.58)

where v is the mean rate of occurrence of events per unit time, also known as the ‘inten-
sity’ of the process.

The application of the Poisson distribution in the time domain assumes (i) that the
probability that an event occurs during any time increment t to t + Δt is asymptoti-
cally proportional to Δt and (ii) that the probability of more than one event in any time
interval is negligible as Δt → 0. There is thus no overlap between events. Also N(0) = 0.

An important assumption is that the occurrence of events in time increments
Δti, Δtj, i ≠ j, is independent. This means that, for any to < t1 < t2 < … < tm, the m
random variables

N(t1) − N(t0), … , N(tm) − N(tm−1) (6.59)
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0

N(t)

t1 t2 t3 t4 t5 t6 t7 t8 t

Figure 6.10 Realization of Poisson counting process.

are independent. Clearly, if (6.59) is independent also of ti (but not of ti+1 − ti) the pro-
cess has stationary independent increments [Parzen, 1962].

A typical realization of a Poisson counting process is shown in Figure 6.10. If v is con-
stant, the process is termed ‘homogeneous’. If v = v(t), it is ‘non-homogeneous’, in which
case vt in (6.58) must be replaced by v(t) = ∫

t
0 v(𝜏)d𝜏 . In this case the time increments

are no longer stationary, since N(t) depends directly on t, rather than on some time
increment.

The Poisson counting process is a case of so-called Markov (or memory-less) processes
with discrete states (0, 1, 2,…) in continuous time t. It is ‘memory-less’ in the sense that
each state is independent of previous states.

For Poisson processes, the cumulative distribution function FW (t) for the time W n
which must elapse before the occurrence of the n th event is obtained by considering all
the possible number of events N(t) < n, or

FW (t) = 1 − P(Wn > t) = 1 − P[N(t) < n]

= 1 −
n−1∑
k=0

(vt)ke−vt

k!
(6.60)

This expression represents a Gamma distribution (see A.40) with mean n/v and variance
n/v2.

Of particular interest is the waiting time before the occurrence of the first event
(n = 1) during the time period [0, t]. From (6.60) with n = 1, there is obtained:

pf (t) = FW (t) = 1 − e−vt (6.61)

This result will be recognized as equivalent to the first-passage probability (see 6.53).

6.5.1.3 Filtered Poisson process
If stochastic properties are now also attributed to the events (states) in a Poisson process,
a so-called ‘filtered Poisson process’ is obtained. Typically it is defined as [Parzen, 1962]:

X(t) =
N(t)∑
k=1

w(t, tk ,Yk) (6.62)
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where N(t) is a Poisson process of intensity v generating the time points tk at which the
events have a random magnitude Yk . The Yk are assumed independent and identically
distributed. Also w(t, tk , Yk) is a ‘response function’, which represents the response
contributing (linearly) to X(t) at time t, owing to the magnitude Yk acting at time tk .
Generally, it is taken that w( ) = 0 for t < tk .

A filtered Poisson process requires the specification of the intensity v governing N(t),
the distributional properties of Yk and the form of the response function w(t, tk , Yk).

Two forms of filtered Poisson processes have particular relevance to reliability
studies. These processes are:

(1) Poisson ‘spike’ process;
(2) Poisson square wave process.

Both processes allow explicit evaluation of their stochastic properties and find appli-
cation mainly in modelling of loading processes (see Chapter 7). However, many other
Poisson processes can be postulated, depending on the choices FY k

and w( ) and by
allowing the holding time also to be a random variable (so that pulse overlap can occur)
[e.g. Grigoriu, 1975]. These more complex processes, however, are beyond the scope of
this book.

6.5.1.4 Poisson Spike Process
A process having constant intensity v and rectangular pulses of height Yk and length b
may be described by a response function

wS(t, tk ,Yk) = Yk , 0 < t − tk < b
= 0, otherwise (6.63)

A typical realization is shown in Figure 6.11. Here Yk is a random variable, independent
between pulses and defined by the cumulative distribution function FY ( ).
The level crossing rate and the first-passage probability may be obtained directly from
the limit as b → 0. The probability that the process Y (t) has a height greater than a(t)
is 1 − FY (a) and the probability that Y (t) has a height less than a(t) is FY (a), so that the

x(t)

a(t)

tt4t3t2t1

Y1

Y2

Y3

Y4

b b b b

Figure 6.11 Realization and upcrossing of a Poisson spike process.
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probability of an upcrossing v+ of level a(t) in time Δ t → 0 is

v+a (t) = lim
Δt→0

{ 1
Δt

[P(upcrossing in Δt)]v
}

= lim
[ 1
Δt

(P{[Y (t) ≤ a(t)] ∩ [Y (t + Δt) > a(t)]}v)
]

= FY [a(t)]{1 − FY [a(t)]}v (6.64)

where v = v(t) is the rate of arrival of the pulses. If a is large and time invariant, (6.64)
reduces to v+a ≈ [1 − FY (a)]v.

It should be evident that v+a in (6.64) expresses the intensity of a Poisson process. It
is then possible to use (6.61) to obtain the first-passage probability, since ‘failure’ is the
occurrence of the first event (a spike greater than a); thus

pf1
(tL) = 1 − exp{−[1 − FY (a)]v tL} (6.65)

where tL is the nominal lifetime of the structure. As before a, v+a and v may each be
considered to be functions of time with appropriate substitution of ∫ t

0 v(𝜏)d𝜏 for v and
a(t) for a in (6.65).

The cumulative distribution function for the maximum value of the process X(t) may
be obtained by considering a(t) as time invariant. Then the first-passage probability
(6.65) represents also the probability that the maximum value of X(t) is greater than
a since the first-passage point must be the same as the maximum value of X(t). Hence

FXmax
(a) = P[Xmax(t) < a] = exp{−[1 − FY (a)]v tL} (6.66)

6.5.1.5 Poisson Square Wave Process
When the length b of each rectangular pulse in Figure 6.11 is given by the random
interval tn − tn−1, the square wave process of Figure 6.12 is obtained. The pulse height
Yk now stays constant until the next event at time tk+1 generates a new pulse height
Yk+1. As before, the Yk are independent, identically distributed random variables.
Proceeding exactly as for a Poisson spike process, and with a constant level a, the level
crossing rate v+a is given by (6.64) so that the first-passage probability for a time period
[0, tL] is given by

pf1
(tL) = FY0

(a)(1 − exp{−FY (a)[1 − FY (a)]}v tL) (6.67)

x(t)
Y5

Y4

Y3

Y1

Y0

Y6

a

0 t1 t2 t3 t4 t5 t6
t

Figure 6.12 Realization of Poisson square wave process.
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where FY0
(a) is the probability that Y0 < a, an event independent of subsequent events

because of the assumption on Yk . Clearly, if a is large, then FY0
(a) ≈ FY (a) ≈ 1 and

pf1
→ 0.

It follows readily that the cumulative distribution function for the maximum value of
X(t) is derived in a manner similar to that for the Poisson spike process, as

FXmax
(a) = P(Xmax < a) = FY0

(a) exp{−[1 − FY (a)]v tL} (6.68)

6.5.1.6 Renewal Processes
The Poisson processes above are particular forms of a more general type of process in
which events occur along a time axis. Such a process can be taken to define the poten-
tial beginning and end times of load events or pulses. The time between events in the
case of Poisson processes is exponentially distributed, as is easily shown. More gener-
ally, ‘renewal processes’ are those for which the events along the time axis are governed
by an appropriate probability law, not necessarily Poisson.

A further generalization is to employ pulse shapes more complex than the rectangles
and spikes considered so far. For most of these more general cases, however, no theoret-
ical results are available for up-crossing rates, although the results (6.64) for the Poisson
processes above may be taken as an approximation.

It is also possible to define the cumulative distribution function of Yk , the pulse height,
such that there is a finite probability p that Yk = 0. This might occur, for example, in some
types of floor loading. A typical distribution of Yk for such a case is shown in Figure 6.13
[Bosshard, 1975]. In this case (6.64) will be modified to

v+a = [p + qF(a)]{q[1 − F(a)]}v (6.69)

where F( ) is the ‘improper’ cumulative distribution function defined in Figure 6.13.

fY(y)

fY(y)

y

f(y)

Area = p

Area = q = 1– p

‘off’ state

1

p

0
y

F(y)

Figure 6.13 Probability density function and cumulative distribution function for ‘mixed’ renewal
process.
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Note that q = 1 − p and that FY ( ) is now p + qF( ) so that, by differentiation, the
probability density function is given by fY (y) = p𝛿(y) + q f (y), where f ( ) is defined in
Figure 6.13 and 𝛿( ) is the Dirac delta function.

In expression (6.69) the first term represents the probability that Y (t) ≤ a(t)
and the second term the probability that Y (t) > a(t). If each pulse automatically
returns to zero after it has been applied, the first term in (6.69) is obviously unity
[Larrabee and Cornell, 1981]. Processes of this type have been called ‘mixed processes’.
Note that the mean arrival rate of pulses for the mixed process is qv, where v is the
mean arrival rate of pulses for the unmodified process Y (t).

6.5.2 Continuous Processes

Most natural phenomena do not change their characteristics at specific points in time
but do so continuously. Thus, for example, wind velocity and wave height are not discrete
processes in time but are continuous ones. A typical realization of a continuous process
is shown in Figure 6.14.

There are many types of possible continuous processes X(t) that can be postulated.
Because of their mathematically tractable properties, the most common continuous
process employed in stochastic process work is the Normal (or Gaussian) process
X(t). At any time t this is, of course, Normal distributed. This means that for any set
of times t1, t2,…, tn, X(ti), (i = 1, 2,… , n), is jointly Normal distributed, with a given
correlation structure between the time points. As before, if the correlation structure
does not change with time, the process is (strictly) stationary (see Section 6.4.2).

6.5.3 Barrier (or Level) Upcrossing Rate

As noted in Section 6.1, an important property in reliability studies is the rate at which
a random process X(t) ‘upcrosses’ a ‘barrier’ or ‘level’ x = a(t) (Figure 6.14). If X(t) rep-
resents a loading process, then x = a(t) might represent a (time-dependent) resistance
or, if X(t) represents a safety margin, then x = a(t) = 0 might represent the limit state.
For the present, a scalar process X(t) only will be considered; the more general case for
the vector process X(t) is described in Section 6.5.4 below.

Consider the segment of sample function x(t), shown in Figure 6.15, between the
times t1 and t1 + dt, where dt → 0. Without loss of generality, the time t1 + dt may be

0
t

x(t)
Barrier

a(t)
Realization

of X(t)

Figure 6.14 Typical realization and barrier crossing of continuous process X(t).
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x(t)

0 t1

a(t1)

x(t1)

x(t)
a(t)

t

adt

t1 + dt

xdt

Figure 6.15 Segment of sample function x(t) crossing barrier a(t) in dt.

considered to be the time at which the barrier crossing occurs. Also, for dt sufficiently
small, the curves between t1 and t1 + dt can be taken as straight lines.

The sample functions which cross a(t) during dt must start below a(t) at t1 and have
sufficient slope ẋ(t) at t1 to pass through a(t) during dt. The limits on the slope Ẋ(t) are
evidently

ẋdt − ȧdt ≥ a(t) − x(t) as dt → 0 and x(t1) ≤ a(t1) (6.70)

These limits are plotted in Figure 6.16 on orthogonal (x, ẋ) axes. From Section 6.4.3,
X(t) and Ẋ(t) are uncorrelated, so that this representation is straightforward. Now the
probability that X(t) is between x and x + dx and that Ẋ(t) is between ẋ and ẋ + dẋ is
given by the joint probability density function fXẊ( ). The total number of barrier cross-
ings in dt is given by the fraction of all possible realizations which satisfy the conditions
(6.70); this is identical with the probability content contained above the shaded region
(i.e. perpendicular to the page) in Figure 6.16, or

N = ∫
∞

ȧ ∫
a

a−(ẋ−ȧ)dt fXẊ(x, ẋ)dxdẋ (6.71)

0 a x

x = a

x = a – (x – a)dt

a

x

Figure 6.16 Integration limits in (x, ẋ) plane.
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As dt → 0, the shaded region in Figure 6.16 tends to reduce to a narrow strip, or,
equivalently, a − (ẋ − ȧ)dt → a in the lower integration limit in (6.71), so that upon
dividing through by dt and integrating over x, the barrier upcrossing rate is given by
[Rice, 1944]:

v+a = ∫
∞

ȧ (ẋ − ȧ) fXẊ(a, ẋ)dẋ (6.72)

Evidently, if a is not time dependent, ȧ = 0. Also note that the barrier upcrossing rate v+a
is an ensemble average, i.e. it is the average over all realizations of X(t) at time t. Only if
the process is ergodic will v+a also be the time average frequency of upcrossings of level
x = a.

In the special case when X(t) is a stationary normal process, fXẊ( ) is given by
[cf. (A.125) with 𝜌 = 0]

fXẊ = 1
2𝜋𝜎X𝜎Ẋ

exp
⎧⎪⎨⎪⎩−

1
2

⎡⎢⎢⎣
(

a − 𝜇X

𝜎2
X

)2

+ ẋ2

𝜎2
X

⎤⎥⎥⎦
⎫⎪⎬⎪⎭ (6.73)

in which X(t) is Normal distributed N(𝜇X , 𝜎
2
X) and Ẋ(t) is N(0, 𝜎2

Ẋ). The mean of Ẋ(t) is
zero for a stationary process. Noting that

∫
∞

0 ẋ exp

(
− ẋ2

2𝜎2
Ẋ

)
dẋ = 𝜎2

Ẋ

and substituting (6.73) into (6.72) and integrating produces (noting that a is
time-invariant)

v+a = 1
2𝜋

𝜎Ẋ

𝜎X
exp

[
−
(a − 𝜇X)2

2𝜎2
X

]
=

𝜎Ẋ

(2𝜋)1∕2 fX( ) (6.74)

with fX( ) = (1∕𝜎X)𝜙[(a − 𝜇X)∕𝜎X], where 𝜙( ) is the standard normal density function
(see Section A.5.7). Note also that 𝜎X is obtained from (6.38) as

𝜎2
X(t) = RXX(t, t) − 𝜇2

X(t) (6.75)

For a stationary process this becomes

𝜎2
X = RXX(𝜏 = 0) − 𝜇2

X (6.76)

By analogy, 𝜎Ẋ is obtained similarly from 𝜎2
Ẋ(t) = RẊẊ(t, t) − 𝜇Ẋ(t). Since RẊẊ(t, t) =

RẊẊ(𝜏 = 0) for a stationary process, using (6.45) and 𝜇Ẋ = 0 leaves the variance of Ẋ as

𝜎2
Ẋ = −

𝜕2RXX(0)
𝜕𝜏2 (6.77)

For non-normal processes, the joint probability density function fXẊ( ) usually will be
much less amenable to definition and integration. Such processes arise, for example,
in river flows, mean hourly wind speeds and when Normal (i.e. Gaussian) processes
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are transformed non-linearly. It is sometimes suggested that for such processes the
upcrossing rate may be approximated by (6.74). However, this approximation can be
seriously in error [Grigoriu, 1984].

The Gaussian process with 𝜇X = 0 has special significance for dynamic problems (see
Section 6.7) or those involving fatigue (see Section 6.8). The upcrossing rate v+a for a = 0
then counts the number of loading cycles. For a standardized Gaussian process this is
given by v+0 = 𝜎Ẋ∕2𝜋𝜎X .

Finally, all the above results, and in particular expression (6.72), may be extended to
smooth non-stationary processes by interpreting v+a and fXẊ( ) as time dependent.

6.5.4 Outcrossing Rate

6.5.4.1 Generalization from Barrier Crossing Rate
The above notion of a barrier crossing, involving the scalar process X(t), can be general-
ized immediately to the outcrossing concept, now involving the vector process X(t). For
the two-component process X(t) = [X1(t),X2(t)] a realization of X(t) might be as shown
in Figure 6.17. The barriers Bi(i = 1, 2,…) indicated are limit state equations in x space
defining the safe domain DS [Veneziano et al., 1977].

To proceed, let the barriers to the safe domain DS be described by DS∶Z(t) = G[X(t)] ≤
0. Then the scalar process Z(t) can be used in (6.72), provided that fZŻ can be determined,
since whenever X(t) outcrosses barriers Bi(i = 1, 2,…), Z(t) upcrosses the level zero.
Closed-form solutions are available only for a very limited range of problems. Of these,
almost all deal with special types of two-dimensional Normal (i.e. Gaussian) processes,
and with open or closed square or circular domains [Hasofer, 1974].

More generally in m dimensional space x, the safe domain DS is bounded by a series
of q discontinuous hyper-surfaces Bi(i = 1, 2,… , q) forming the q limit state functions

DS: Gi[X(t)] ≤ 0, (i = 1,… , q) (6.78)

This represents the type of problem of interest in structural reliability studies (see
Section 6.1), but is not particularly amenable to closed-form solution. In most cases it
is necessary to obtain approximate solutions even for Normal processes.

0 B3

B2

B4

B1

x1

x2

Outcrossing

Realization
of X(t)

Domain DS

Figure 6.17 Outcrossing from safe domain DS in two-dimensional space x.
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x2

x(t1)

x(t1 + δt)

A

0
DS

SD

xδt

x1

nT xδtn

Figure 6.18 Vector process realization x(t), its change in time increment 𝛿 t and component normal to
domain boundary SD.

The first step is to generalize the Rice formula (6.72) to deal with a vector process
X(t). For convenience of exposition consider a two-dimensional vector process X(t)
and an arbitrary domain DS (Figure 6.18). Let x(t1) be on the limit state surface at A.
For an outcrossing to occur, x(t2) with t2 = t1 + 𝛿 t where 𝛿 t → 0, must be outside the
domain DS. The change in x( ) over the time increment 𝛿 t is shown by the vector ẋ𝛿 t
where Ẋ(t1) is the random vector of time derivatives [𝜕X1∕𝜕t, 𝜕X2∕𝜕t]T evaluated at
time t1. If n(t) represents a unit outward normal at A, then the component ẋ𝛿 t which
contributes to outcrossing (rather than merely moving along the domain boundary)
is the scalar product nT .ẋ 𝛿 t > 0 [i.e.(n1ẋ1 + n2ẋ2 +…)𝛿 t > 0] as shown. For conve-
nience, let this be called ẋn (a scalar) as 𝛿 t → 0. Comparison with the one-dimensional
process described in Section 6.5.3 and shown in Figure 6.15 shows that in this case ẋn
corresponds directly to ẋ. It seems entirely plausible, therefore, to suggest that (6.72)
generalizes to the m-dimensional vector process as

v+D = ∫SD

[
∫

∞

0 ẋnfXẊn
(x, ẋn)dẋn

]
dx (6.79)

where the first integral is necessary to ensure that all points of the domain boundary SD
are considered. A formal proof is available [Belyaev, 1968; Belyaev and Nosko, 1969]; the
result is not restricted to Normal (i.e. Gaussian) processes.

Noting (A.119), expression (6.79) may be rewritten by replacing ẋn in the inner integral
by the conditional expectation of the random scalar Ẋn:

v+D = ∫SD
E(Ẋn|X= x)+fX(x)dx (6.80)

where, in (6.79) and (6.80), X = X(t) and E(Ẋn|X = x) = ẋn = n(t)•ẋ(t) > 0. The latter
condition is denoted by ( )+; if ẋn ≤ 0, the expectation becomes E( ) = 0.

In (6.80) the outcrossing rate v+D can be interpreted (somewhat non-rigorously) as
follows. For any elemental point x(t) on SD, E( ) in (6.80) represents the expectation that
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an outcrossing will occur; this is then weighted by the ‘probability’ f X(x) that such a value
of x will occur. This process is repeated for all points on the domain boundary SD and the
results ‘summed’ (as represented by the integral). Comparison with (6.72) shows that the
integrand in (6.80) might be seen as a one-dimensional solution, appropriately weighted.

The solution of (6.79) or (6.80), in general, is still not straightforward. A few theoret-
ically exact solutions are available for simple time-invariant safe domains DS under the
assumption that X(t) and Ẋ(t) at any time t are mutually independent [Veneziano et al.,
1977; Hohenbichler and Rackwitz, 1986b]. However these solutions these tend to be too
restrictive for use in structural reliability analysis. An approximate bounding technique
is available for convex polyhedron safe domains and continuous Gaussian processes; this
is discussed in Section 6.5.4.3.

In all the above it has been assumed that X(t) is stationary, although, as usual, the
latter restriction may be removed for smooth non-stationary processes by appropriate
substitution of ∫ t

0 v+D(s)ds for v+D and by modifying (6.80) appropriately in f X( ).

6.5.4.2 Outcrossings for Discrete Processes
Discrete processes, such as Poisson square wave processes (see Section 6.5.1.5), com-
monly are used to describe loads such as floor loadings, in offices, hospitals, car parks,
etc. The outcrossing rate is now considered for the special case in which each of the n
independent components Xi(t) of the vector process X(t) is Poisson square wave.

Let the magnitude Y i of the process be normal distributed, and let the arrival times
t be Poisson distributed with a mean arrival rate vi. A typical realization is shown in
Figure 6.19.

The total outcrossing rate v+D is the sum over all components of the probability that an
outcrossing occurs for each component, weighted by the occurrence probability of that
combination of components [Breitung and Rackwitz, 1982; Rackwitz, 1985a]. This may
be expressed as

v+D =
n∑

i=1
vi∫

∞

−∞P(outcrossing due to Yi) fX∗ (x)dx (6.81)

D

0 x1

x2

Realization

Figure 6.19 Typical realization of Poisson square wave vector process X(t) in two dimensions.
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where P( ) = P[(Yi, x∗) ∈ DS]P[(Yi, x∗) ∉ DS]. Here X* is X without the ith component,
evaluated at the time that the i th component has a renewal. The probability density
function for X* is:

fX∗ ( ) = 𝛿(xi)
n∏

j=1
fXj
(xj), j ≠ i (6.82)

and 𝛿(xi) is the Dirac delta function, introduced to ensure that fX∗ ( ) = 0 unless the
ith component is considered. The (multiple) integral in (6.81) extends over all the
components of X and for any one component extends over all its values −∞ < Xi < ∞.
Particular solutions depend on the shape of the domain. If this is defined as the
hypercube aj ≤ xj ≤ bj, and X is a vector with standard normal components, it
follows that

P[(Yi, x∗) ∈ DS] = P(ai ≤ Yi ≤ bi) = Φ(bi) − Φ(ai) for aj ≤ xj ≤ bj; j ≠ i
= 0 otherwise (6.83)

and

P[(Yi, x∗) ∉ DS] = P[(Yi < a) ∪ (Yi > bi)] = 1 − Φ(bi) + Φ(ai) (6.84)

so that

v+D =
n∑

i=1

{
vi∫

b

a1
…∫

b

an
[Φ(bi) − Φ(ai)][1 − Φ(bi) + Φ(ai)]

×
n∏

j=1, j≠1
𝜙(xj)dx1 … dxi−1dxi+1 … dxn

}
(6.85)

=
n∑

i=1

{
vi[Φ(bi) − Φ(ai)][1 − Φ(bi) + Φ(ai)].

n∏
j=1,j≠i

[Φ(bj) − Φ(aj)]

}
(6.86)

This expression has a direct interpretation. The first [ ] term represents the probabil-
ity that the renewal Y i of Xi is in the safe domain DS, the second [ ] term represents the
probability that Y i is outside DS and the

∏
[ ] term is the probability that all the remain-

ing components are in DS, i.e. that Xi actually is the only component outcrossing at this
time. Evidently (6.86) may be contracted to

v+D =
n∏

j=1,j≠i
[Φ(bj) − Φ(aj)]

n∑
i=1

{vi[1 − Φ(bi) + Φ(ai)]} (6.87)

in which the
∏
[ ] term denotes the probability that all components are in the safe

domain DS and the summation term represents the sum of each component that is
independently out of DS.

By a parallel argument it may be shown that for a hyper-plane defined by
𝛽 + AX = 0 where A = [𝛼1, 𝛼2,…]T is the vector of direction cosines of the nor-
mal to the hyper-plane and 𝛽 the distance from the origin perpendicular to the plane
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(cf. Section 4.3.2), the outcrossing rate is given by

v+D =
n∑

i=1
{vi[Φ(−𝛽) − Φ2(−𝛽,−𝛽, 𝜌)]} (6.88)

where 𝜌i = 1 − 𝛼2
i and Φ2( ) is the bivariate standard Normal integral [Breitung and

Rackwitz, 1982].
Extension of these analytical results to other forms of limit state functions is not neces-

sarily easy since the formulation of the term P( ) in (6.81) generally is more difficult than
for the above examples. An alternative is to use numerical methods for the evaluation
of the integrals, as outlined in Section 6.5.5.

For the special case of linear addition of just two (independent) load processes
X1(t) and X2(t) the range of analytic solutions for the mean outcrossing rate and
hence the first-passage probability is somewhat greater. For Poisson square wave
processes, exact solutions for the first-passage problem have been given by Bosshard
(1975), Hasofer (1974) and Gaver and Jacobs (1981). An exact solution for the mean
level upcrossing rate of rectangular renewal processes was given by Larrabee and
Cornell (1979). Approximate solutions or bounds for the mean level crossing rate also
are available for two additive renewal processes having more general pulse shapes
[Larrabee and Cornell, 1981; Madsen et al., 1979; Waugh, 1977]. Because of their
particular use in load combinations, consideration of these special results is deferred to
Section 6.7.

6.5.4.3 Outcrossings for Continuous Gaussian Processes
Analytic solutions for outcrossing rates for continuous processes when the limit state
functions have general forms are limited. Again, numerical solutions can be obtained
rather more easily, as outlined in Section 6.5.5.

For Normal processes some analytic progress has been made, particularly when the
safe domain is described by convex (hyper-)polyhedrals as limit state functions. In this
case the failure domain consists of a set of linear limit state functions and, as might be
expected, the problem of outcrossing rate determination has a close affinity with the
first-order second-moment (FOSM) method. The possibility of extension of the results
to non-Normal processes, in the manner of the first-order reliability (FOR) method of
Chapter 4 is noted briefly in Section 6.5.4.4 below. First, however, normal processes with
convex polyhedral limit state functions are considered.

Recall that for the safe domain DS, bounded by SD, the outcrossing rate v+D of a vector
process X(t), is given by (6.80):

v+D = ∫SD
E(Ẋn|X = x)+ fX(x)dx (6.89)

where, as before, (Ẋn|X = x) = ẋn = n(t) • ẋ(t) > 0 is the unit rate vector normal to SD at
x and ( )+ ≥ 0 for ẋn > 0, and ( )+ = 0 otherwise. Also as before, the term f X(x) denotes
the probability density function for X(t).

Let it now be assumed that SD consists of a set of time-invariant piecewise continuous
convex (hyper-)planes. It then follows that on any one (hyper-)plane, the expectation
term E( )+ will be independent of the precise value of X, since the unit normal ẋn will
have the same direction anywhere on the (hyper)plane. Also, as shown in Section 6.4.3,
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Xi and Ẋi are independent, so that (6.89) may be rewritten as

v+D = E(Ẋn)+∫SD
fX(x)dx (6.90)

where the integral over the domain surface SD represents the probability that X lies on
SD and the expectation term E( ) that an outcrossing will occur for X on SD. For any
one (the l th) (hyper-)plane Hl, containing the partial domain surface ΔSl, the partial
outcrossing rate is then

v+ΔDl
= E(Ẋnl)+∫ΔSl

fX(x)dx (6.91)

In parallel to (6.90), the integral in (6.91) represents the probability that X lies on ΔSl.
This can be considered also in two parts: firstly, the probability that X lies on the (hyper-)
plane Hl and, secondly, that X lies within ΔSl given that X is on Hl. It should be noted
that, for linear limit state functions, ΔSl as projected on Hl is a (hyper-)polygon of
dimension n − 1; the probability content within ΔSl may be obtained directly by inte-
grating f ∗X ( ) overΔSl, where f ∗X ( ) is the n − 1 probability density function obtained from
f X( ) by integrating in the direction normal to Hl. Rather than determining f ∗X ( ) first,
f X( ) may be integrated over the n − 1 dimensions of ΔSl, provided that the result is
weighted by the probability that X lies on Hl. Hence the integral in (6.91) may be replaced
by two terms:

v+ΔDl
= E(Ẋnl)+∫Hl

fX(x)dx∫ΔSl ,n−1 fX(x)dx (6.92)

where it is now understood that integration of f X( ) over ΔSl is in n − 1 dimensions
and that the integral over Hl is in one dimension, perpendicular to Hl [Veneziano et al.,
1977].

The second integral in (6.92) may be evaluated by using the system bounds for linear
limit state function (see Chapter 5) but now used to determine the probability content
pl contained within ΔSl rather than that outside ΔSl. Clearly the probability content
required is the complement of that obtained directly from the system bounds. Example
6.3 below will illustrate this.

The first integral in (6.92), which represents the probability that X lies on Hl, may be
evaluated by considering what happens when the hyper-plane Hl is displaced laterally
to itself.

If the l th linear safety margin has the expression Zl = a0 + a1X1 + a2X2 +…+ anXn,
with a0 > 0 and the ai all constants, it follows from the discussion in Section 4.3 that the
limit state Zl = 0 has a normal on Hl defined by:

Al = (𝛼1l, 𝛼2l,…)T (6.93)

where

𝛼il =
ai

l
(6.94)
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x2

x10

nl

Zl > 0

-α0/α2

-α0/α1

Zl = a0 + a1x1 + a2x2 = 0

βl

α1l

αl
α2l

δ

Figure 6.20 Parallel shift of hyperplane Hl .

with

l =

( n∑
i=1

a2
i

)1∕2

If the (hyper-)plane is displaced a distance 𝛿 in the direction of the normal Al, the change
in the value of Zl is (see Figure 6.20):

Zl(> 0) − Zl(= 0) = [a0 + al(X1 + 𝛿𝛼1) + a2(X2 + 𝛿𝛼2) +…] − (a0 + a1X1 +…)

which becomes, using (6.94):

Zl(> 0) − Zl(= 0) = 𝛿

n∑
i=1

ai𝛼il = 𝛿

( n∑
i=1

a2
i

)1∕2

(6.95)

For linear limit state functions the reliability index is given by 𝛽 = 𝜇Z∕𝜎Z = E(Zl)∕D(Zl)
and the corresponding change in the reliability index is:

Δ𝛽l =
E(Zl > 0) − E(Zl = 0)

D(Zl)
(6.96)

Figure 6.20 makes clear that the probability content between the two hyperplanes is
given by ΔΦ(−𝛽l) = Φ(−𝛽l) − Φ[−(𝛽l − Δ𝛽l)]. It follows that the probability density
∫Hl

fX( )dx is then the probability change as 𝛿, the distance between the planes,
approaches zero:

∫Hl
fX(x)dx = lim

𝛿→0

[ΔΦ(−𝛽l)
𝛿

]
= lim

𝛿→0

[
𝜙(𝛽l)

Δ𝛽l

𝛿

]
(6.97)

or, using (6.95) and (6.96),

∫Hl
fX(x)dx =

𝜙(𝛽l)
D(Zl)

( n∑
i=1

a2
i

)1∕2

(6.98)
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When all Xi are standard Normal random variables, it follows readily that (6.92) reduces
to 𝜙(𝛽 l) [Veneziano et al. 1977].

The result (6.98) together with the expectation term E( )+ in (6.92) may be seen as a
correction term defined by

Kl = E(Ẋnl)+∫Hl
fX(x)dx (6.99)

This term can be simplified by noting that the polyhedron ΔSl may be defined on Hl
by a series of linear limit state functions based on the (random variable) safety margin
expressions:

Zj = a0j +
n∑

i=1
aijXi j = 1,… , n; j ≠ l (6.100)

such that Zj > 0 inside the safe domain defined on Hl, that is, withinΔSl, and with Zl = 0
elsewhere.

Noting that Żl =
n∑

i=1
aiẊi and Ẋnl = nT

l ⋅ Ẋ, where nl is the outward normal vector

to the plane Hl and therefore equal to −Al (see Figures 6.18 and 6.20), it follows that,
using (6.94):

Ẋnl = −AT
l ⋅ Ẋ = −

n∑
i=1

𝛼ilẊi (6.101)

=
n∑

i=1
aiẊi

/( n∑
i=1

a2
i

)1∕2

(6.102)

= −
Żl( n∑

i=1
a2

i

)1∕2 (6.103)

Collecting terms (6.103) and (6.98) into (6.99) produces

Kl = E(−Żl) +
𝜙(𝛽l)
D(Zl)

(6.104)

This expression can be simplified further by noting that Zl and therefore Żl are both
Normal distributed (since X is Normal). Let the mean and standard deviation of Żl
be 𝜇 and 𝜎 respectively. Then the probability density function fŻl

( ) is also given by
(1∕𝜎)𝜙[(ż − 𝜇)∕𝜎] while the expectation conditional terms on having −Żl > 0 is given
by (A.10):

E(−Żl)+ = −∫
0

−∞v 1
𝜎

𝜙

(v − 𝜇

𝜎

)
dv (6.105)

where the integration limits have been chosen to achieve the positive part of expectation.
Integrating by parts and substituting into (6.104),

Kl = 𝜙(𝛽l)
𝜎

D(Zl)

[
𝜙

(
𝜇

𝜎

)
− 𝜇

𝜎
Φ
(
−𝜇

𝜎

)]
(6.106)
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where 𝜇 = E(Żl), 𝜎 = D(Żl). Here 𝜙( ) and Φ( ) are the usual probability density function
and cumulative distribution function for the standardized normal distribution respec-
tively. In the important case when the limit states are time invariant, 𝜇 = E(Żl) = 0 and
noting that 𝜙(0) = 1∕

√
2𝜋 and 𝜎 = D(Żl) (see above) it follows that (6.106) reduces to

Kl =
𝜙(𝛽l)
(2𝜋)1∕2

D(Żl)
D(Zl)

(6.107)

The outcrossing rate v+D for the whole domain is obtained as the sum of the outcrossing
rate for each hyper-plane Hl, l = 1,… , k, thus:

v+D =
k∑

l=1
v+Dl

=
k∑

l=1
Klpl (6.108)

where pl = ∫ΔSl
fX(x)dx as described for equation (6.92). If pl is bounded, then (6.108)

also results in bounds, but now on v+D.
The above has been obtained assuming differentiability of each safety margin Zl for

all l. In particular, this implies that for the existence of the mean E[Żi(t)] the mean value
function E[Zi(t)] must be differentiable for all t and that for the existence of the standard
deviation D[Żi(t)] the covariance function cov[Zi(t1), Zj(t2)] must be differentiable with
i = j and for t1 = t2, thus:

E[Żi(t)] =
d
dt

{E[Zi(t)]}. (6.109)

var[Żi(t)] = cov[Żi(t), Żj(t)] =
𝜕2

𝜕t1𝜕t2
cov[Zi(t1),Zj(t2)]

|||| i=j
t1=t2

(6.110)

6.5.4.4 General Regions and Processes
When the safe region is not necessarily convex, the determination of the outcrossing rate
becomes more difficult. If the unsafe region can be visualized or expressed mathemat-
ically in terms of unions and intersections of component planar (half-space) regions,
some conceptual results for unions and intersections of unsafe regions may be useful
[Rackwitz, 1984]. Alternatively, a simplified convex (or spherical) region boundary may
be employed to produce bounds on the outcrossing rate [e.g. Veneziano et al., 1977].
However, these bounds may be extremely conservative.

A further complication arises with non-linear limit state functions. As in FOSM
theory, these may be linearized. As might be expected and as has been shown by an
asymptotic argument [Breitung, 1984; 1988], for an individual limit state surface an
appropriate choice of expansion point is the point of greatest local outcrossing density,
parallel in concept to the point having fX( ) a maximum is used as expansion point in
time-invariant theory (see also Chapter 4). Interestingly, some earlier results have sug-
gested that the precise choice of linearization point usually is not critical to obtaining
a reasonably accurate result [Breitung and Rackwitz, 1982]. Once linearization points
have been chosen, and the limit state linearization carried out, the estimation of the
mean outcrossing rate may follow the procedures outlined in the previous sections.

Another possibility is that the vector process X(t) is not Normal or completely con-
tinuous in all its components. In principle it is possible to separate the calculation of
the outcrossing rate into that concerned with continuous processes, that concerned
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with (various) discontinuous processes and that concerned with time-invariant random
variables [Rackwitz, 1984]. The corresponding outcrossing rates from the time-variant
components may be added provided that it is (reasonably) assumed that the different
groups of component processes are independent.

Non-normal component processes may be transformed to equivalent Normal
processes in the manner of Section 4.4.3, again using the point of maximum local
outcrossing rate as expansion point, even in the general case of non-Normal vector
process(es) and non-linear limit state function, as has been shown to be appropriate
by Breitung and Hohenbichler (1989). In a simplified version, when each component is
independently subject to a uni-variate non-linear transformation that ignores depen-
dence between components, such a transformation has also been termed a ‘translation’
of the Normal process [Grigoriu, 1984].

6.5.5 Numerical Evaluation of Outcrossing Rates

The possibility of numerical evaluation of outcrossing rates is confined to numerical
evaluation of the various functions given in the previous sections or the use of simu-
lation techniques. Given the form of the outcrossing problem shown in Figure 6.18, it
is natural that directional simulation has been proposed for numerical evaluation of
outcrossing rates for arbitrary but convex region boundaries. It has been developed
for the n -dimensional standard Normal (Gaussian) vector process N(𝝁X ,C = I)
having continuous derivatives, where 𝝁X is the vector of means and C = I is the
(diagonal) covariance matrix [Ditlevsen et al., 1987]. The simulation can be based
on using the mean as the origin (see Section 3.5). The integral to be evaluated is
(6.80) over the domain boundary SD. The integral requires evaluation of the term
Ẋn |X = x where ẋn = n(t) • ẋ(t); this means that the outward normal n(t) is the critical
matter for evaluation (see Figure 6.18). For the special case when the problem is
reparameterized to the standard Normal space and when the limit state expressions
are linear functions, this presents little difficulty since the expressions for the linear
limit state functions directly yield the expressions for the Normal equivalents, for all
t. An importance sampling technique, similar to that shown in Figure 3.9 is readily
added.

These ideas for numerical integration to estimate outcrossing rates usually can be
included directly in techniques for estimating time-dependent probability of failure, as
is discussed in the following section. It will be sufficient, therefore, to not give further
details simply for outcrossing evaluation at this stage.

Before continuing, however, it is important to observe that by focussing on the
determination of an outcrossing rate, the time-dependent vector process crossing
problem has been changed to one of determining a scalar measure, rather similar
to the return period and the annual probability of failure of Section 6.2, or even the
lifetime probability of failure of Section 6.1. The difference is essentially one of the
time-scale used and the possibility to account for the effect of multiple components of
the vector process. A more direct way to deal with these matters is possible only with
the use of stochastic process theory, as described in the next section. It opens the way
to handle time-dependent reliability estimation for multiple load processes in a rational
manner.
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6.6 Time-Dependent Reliability

6.6.1 Introduction

In the time-dependent reliability approach, the probability of failure of the structure
is estimated directly from the first-passage probability. This is valid for high reliability
systems. It is obtained from the probability that the process S(t) leaves the safe domain
DS during the nominal life [0, tL] of the structure (see Figure 6.17). As noted in
Section 6.1, this can be expressed as

pf (t) = P[R(t) ≤ S(t)] ∀(t ∈ [0 − tL]) (6.111)

where [0, tL] denotes the structural lifetime or other period of interest, R(t) is the
resistance of the structure at a point in time and as a function of time t and S(t) is the
load effect process, also a function of time. To make it operational and more general,
in Section 6.2 this expression was conditioned on the resistance, expressed as a vector,
which will now be considered also to be a function of time: R(t) with pdf fR( ). It then
followed that:

pf (tL) = ∫r pf (tL|r) fR(r)dr (6.112)

where the conditional failure probability pf (tL|r) is a function of the vector of load
processes Q(t) (or the vector of load effect processes S(t), depending on precisely
how the problem is formulated). Importantly, it represents the failure probability
conditional on the given realization R = r of the structural resistance. This problem
can now be seen to be the ‘outcrossing’ problem described above, with the resistance
realization R = r giving a deterministic ‘boundary’ and the load process Q(t) forming
the process for which the probability of outcrossing is of interest. It follows that the
results given above for outcrossing rates can be used directly, provided there is a
relationship between pf (tL|r) and outcrossing rates.

In general no simple relationship exists. The most useful approach is to rely on the
stochastic process theory result (6.51, 6.52 or 6.53) that provides an upper bound rela-
tionship between the (conditional) failure probability and the mean outcrossing rate v+D:

pf (tL) ≤ pf (0) + [1 − pf (0)]v+DtL (6.113)

where pf (0) is the probability of the structure failing at time t = 0, i.e. typically on first
load application. This result is valid for stationary vector load processes; if the vector
load processes are smoothly nonstationary v+DtL may be replaced by ∫

tL
0 v+D(𝜏)d𝜏 .

It should be clear that three matters are of interest in evaluating (6.113). The first is
the evaluation of the term pf (0). It is not a time-dependent and can be evaluated directly
using any of the methods discussed in Chapters 3, 4 and 5. The second matter is the eval-
uation of the outcrossing rate: for this the methods discussed in Section 6.5 are relevant.
When these (conditional) terms have been collected what remains is the integration in
(6.112) to obtain the unconditional failure probability. This is discussed in the sections
to follow.
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The third matter of interest is the closeness of the upper bound (6.113) to the correct
result. As noted in Section 6.4.5 for narrow band load processes (such as for the
responses of dynamically excited structures, see Section 6.8) it is possible for the out-
crossings to occur in ‘clumps’. In this case the upper bound expression will over-estimate
the outcrossing rate, perhaps significantly. Conversely, if the load process vector is not
a narrow band process, the bound is generally quite close (as ‘clumping’ is less likely).

A completely different approach for estimating time-dependent reliability is to
by-pass the finding of outcrossing rates altogether and to estimate the probability of
a multivariate vector process entering the deterministic failure domain through direct
simulation of each continuous vector process [Hasofer et al., 1987]. To do this, it is
convenient to let each multi-variate standard Gaussian vector process be represented by
a trigonometric series with random coefficients [see also Shinozuka, 1987]. Directional
simulation is then used to estimate the probability, using, for each directional sample,
the lifetime maximum approach to estimate the probability of the vector process
passing out of the domain. Although this is a very direct technique, it appears to have
the disadvantage of high computational requirements, since it requires at least s(t + 1)
simulations, where s is the number of components of the random vector process
and t is the number of random coefficients used to represent each random process.
The optimal value for t does not appear to be well researched, and it could well be
substantial in size. This technique for estimating time-dependent failure probabilities is
not discussed further herein although it has been applied in practical cases for checking
results obtained by methods discussed below [e.g. Moarefzedah and Melchers, 1996a].

6.6.2 Sampling Methods for Unconditional Failure Probability

As noted, generally the integration of (6.112) cannot be performed analytically.
Also, (6.113) may not be available analytically either. For tackling this problem three
possibilities have been proposed; these are associated with simulation and with
FOSM/FOR/SOR methods respectively. They are described briefly below.

6.6.2.1 Importance and Conditional Sampling
In this scheme, evaluation of (6.112) is performed by Importance Sampling, and the
evaluation of (6.113) is considered through conditional expectation (Section 3.6.1) [Mori
and Ellingwood, 1993a]. The process starts with time-invariant importance sampling:

pf = ∫…∫I[G(x) ≤ 0]
fX(x)
hV(x)

hV(x)dx (3.17)

where the integration is, as usual, over the failure domain D. Also, if appropriate, the
limit state function G(x) = 0 can represent a collection of m individual limit state
functions

m
∪

i=1
G(x) = 0. The multiple integral can be written in terms of conditional

probabilities as

pf = ∫…∫D1

{
∫…∫D2

I[G(x1, x2) ≤ 0] fX2|X1
(x2|x1)dx2

}
fX1

(x1)

hV(x1)
hV(x1)dx1

(6.114)

= ∫…∫D1

pf |X1=x1
• fX1

(x1)
hV(x1)

hV(x1)dx1 (6.115)
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where the { } term in (6.114) has been replaced by the conditional probability pf |X1=x1
.

In (6.115) X1 and X2 are subsets of the random vector X, with fX2|X1
( ) the conditional

pdf of X2 given X1 and D1 and D2 being the sample spaces for X1 and X2 respec-
tively. Here D1 and D2 must be mutually exclusive and together must completely
encompass D.

The next step is to recognize that (6.115) has the same form as the time-dependent
reliability function (6.112) and that the m -fold integration over D1 can be performed
by Monte Carlo simulation (i.e. by importance sampling) with samples selected as usual
from the importance sampling pdf hV( ) (see Section 3.4.2).

If the { } term in (6.114) can be evaluated numerically (or perhaps in closed form), it
will be evaluated (i.e. given a conditional expectation result) for each sampling in the
importance sampling scheme. In this way conditional expectation variance reduction is
achieved (see also Section 3.6.1), thereby reducing the amount of Monte Carlo (impor-
tance) sampling required.

In practice this approach appears to be feasible only for simplified systems such as
a weakest link (series) system subject to a limited form of random process, such as a
Poisson spike process. For this the conditional expectation can be obtained reasonably
efficiently, such as when the conditional failure probability for the strength of any link
Ri = ai is given by (6.65) [Mori and Ellingwood, 1993a].

6.6.2.2 Directional Simulation in the Load Process Space
Directional simulation in the load process space follows rather directly from the
outcrossing notions of Section 6.5.4.1, when, in Figure 6.18, the vector (X) of random
processes is interpreted as the (m -dimensional) vector of (stationary) load processes
Q(t). It then follows that in the space x the domain boundary SD can be interpreted as
one realization of the structural resistance, denoted R = r. Further, the conventional
limit state functions Gi(q, x) = 0, i = 1,… , k are now interpreted as probabilistic
‘boundaries’, as shown schematically in Figure 3.12. The only difference between the
ideas of directional simulation presented in Section 3.5.4 and those here is that the
loads are now interpreted as load processes Q(t).

As in Section 3.5.4, let the resistance R of the system have the joint probability density
function fR( ). Also, let it be a function of other random variables X such that R = R(X)
and where the components of X are not necessarily independent of time. They could
be the resistances of structural members or of components or elements, or they could
be material properties and their uncertainties. More generally, X could contain also any
uncertainties in the specification of the load processes, and Q(t) could contain processes
other than load processes. In that case the pdf of Q(t) also could reflect dependence
between the load components.

The probability of failure for the structural system is given by (6.112) or (3.46). The
conditional probability of failure pf (tL|r) for a given resistance realization R = r (and
for the time period tL of interest) can be estimated from the outcrossing rate v+D and the
initial failure probability pf (0) with the use of (6.51) or the upper bound (6.52) for high
reliability systems:

pf (s|a) ≤ pf (0, s|a) + {1 − exp[−v+D(s|a)tL]} (6.54)

where, as before, pf (0, s|a) is the failure probability at time t = 0 and v+D is the outcrossing
rate of the vector process Q(t) out of the safe domain D. Directional simulation in the
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load process space, as in Section (3.5.4), may then be applied using (6.112) or (3.46) and
the relationship R = S.A + c:

pf = ∫ unit
sphere

fA(a)
[
∫Spf (s|a). fS|A(s|a)ds

]
da (3.46)

where, as before, A is a vector of direction cosines having a pdf f A( ), S is a (scalar) radial
distance representing the (conditional) structural strength, c is some point selected as
the origin for directional simulation and f S|A( ) is the conditional pdf. The evaluation
of f S|A( ) has been discussed in Section 5.3.4. The same principles apply in the case of
time-dependent problems.

The directional simulation approach in the load space has been applied for Gaussian
processes and for Poisson pulse processes [Melchers, 1992; 1994; 1995b; Moarefzedeh
and Melchers, 1996a].

As before, the assumption underlying the use of the load-space formulation is that
the limit states are independent of the realizations of the load processes, that is, the
limit state functions have been assumed to be load-path independent (see discussion in
Section 5.1).

6.6.3 FOSM/FOR Methods for Unconditional Failure Probability

For given realizations of the limit state function(s) Gi[X(t)] ≥ 0 with i = 1,… , n, the
safe domain DS is fully described, and both pf (0) and v+D can be determined by methods
described already in Section 6.5 for FOSM/FOR techniques. An example is given below.
The conditional failure probability pf (tL |r) can then be evaluated, using the upper bound
(6.54) for outcrossing rate for each (linearized) limit state function independently. Then,
provided the load processes are purely normal vector processes, an upper bound to the
first-passage probability can be obtained through the use of the second-order system
bounds (5.39) and (5.45) of Chapter 5 and FOSM/FOR theory. Examples have been given
by Ditlevsen (1983b) and Wickham (1985), and a further example is given below.

The main part of the problem now remaining is the integration over the resistance
random variables R. As was noted in Section 6.2, one approach is to introduce an aux-
iliary random variable. This converts the time-dependent problem to a time-invariant
one. However, experience suggests that while the formulation using the auxiliary
random variable is exact to the accuracy of the FOR/SOR method used, when the limit
state function is time variant or the processes are non-stationary, computational times
tend to become excessive [Rackwitz, 1993].

Alternatively, the problem can be reformulated to employ Laplace integral approxi-
mations [Breitung, 1984; 1994]. Unfortunately, this scheme appears to be effective only
for small to very small variability in the components of R.

It would appear that while classical FOSM/FOR/SOR methods are very effective
for time-independent reliability analysis and for determination of outcrossing rates
(see example below) they become difficult to apply for fully time-dependent problems,
largely because of the integration required with respect to time-invariant random
variables such as the structural resistance R. For this purpose it has been suggested
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Figure 6.21 Rigid-plastic frame and plastic collapse modes.

that importance sampling and similar Monte Carlo techniques offer the most practical
solution method [Rackwitz, 1993].

Example 6.3 [Adapted from Ditlevsen, 1983b] The rigid-plastic frame shown in
Figure 6.21 is loaded by two stationary Gaussian stochastic load processes X1(t) and
X2(t). Their expected values are E[X1(t)] = 𝜇 and E[X2(t)] = 0.5𝜇. The covariance
functions are c11(t1, t2) = c22(t1, t2) = 𝜎2𝜌(𝜏) and c12(t1, t2) = c21(t1, t2) = 0.5𝜎2𝜌(𝜏).
Because of stationarity these are functions only of the time difference 𝜏 = t1 − t2. If
𝜏 = 0, then 𝜌 = 1. The resistance is given by random variable X3 with mean or expected
value E(X3) = 𝜆𝜇 and negligible standard deviation. Further, let 𝜎 = 0.25𝜇 and L = 4
units.

i) Preliminaries The first (preliminary) step is to determine the time-independent 𝛽

indices for each failure mode. For the rigid-plastic collapse modes in Figure 6.21 the
expressions for the corresponding safety margins are

⎡⎢⎢⎢⎣
Z1

Z2

Z3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
−4 +4

−4 +4
−4 −4 +6

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
X1

X2

X3

⎤⎥⎥⎥⎦ or Z = A.X (6.116)

from which the mean values of Zi are 4𝜇(𝜆 − 1), 4𝜇 (𝜆 − 1∕2) and 6𝜇(𝜆 − 1) respectively.
To determine the standard deviations of Zi, expression (A.162) can be applied and
(A.163) used to find the covariances between the Zi. All the required results are more
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easily obtained by matrix manipulation as given by (B.15)

CZ = ACXAT (6.117)

where CX is the matrix of covariance functions cij between Xi and Xj. In the present case
for only the two random processes X1 and X2 it is simply

CX = 𝜎2

[
𝜌(𝜏) 0.5𝜌(𝜏)

0.5𝜌(𝜏) 𝜌(𝜏)

]
= 𝜎2

[
a b
b a

]
, say. (6.118)

Substituting this into (6.117) together with the relevant part of (6.116) produces:

CZ = 16𝜎2

⎡⎢⎢⎢⎣
−1 0

0 −1
−1 −1

⎤⎥⎥⎥⎦
[

a b
b a

] [
−1 0 −1

0 −1 −1

]
(6.119)

or

CZ = 16𝜎2
⎡⎢⎢⎣

a b a + b
b a a + b

a + b a + b 2(a + b)

⎤⎥⎥⎦ (6.120)

If 𝜏 = t1 − t2 = 0 as is required to obtain the variances for Z1, Z2 and Z3 according to
(6.39) and (6.36a), then 𝜌 = 1 and (6.120) becomes

CZ = 16𝜎2
⎡⎢⎢⎣
1.0 0.5 1.5
0.5 1.0 1.5
1.5 1.5 3.0

⎤⎥⎥⎦ (6.121)

The diagonal terms represent the variances, so that the standard deviations D(Zi) are
4 𝜎, 4 𝜎 and 4

√
3𝜎 respectively. The collapse mode reliability indices 𝛽i = E(Zi)∕D(Zi)

become 4(𝜆 − 1), 4
(
𝜆 − 1

2

)
and 2

√
3(𝜆 − 1).

(ii) Initial Failure Probability The probability of failure at time t = 0, given by pf (0) can
now be calculated using the methods of Chapter 5. Here the bounds (5.39) and (5.45)
together with the approximation (C.8) for the calculation of P(Fi ∩ Fj) will be applied.
To use the latter, the correlations 𝜌ij = 𝜌(Zi,Zj) are required. These are obtained from
(6.121) as

𝜌12 = 𝜌21 =
cov(Z1,Z2)
𝜎Z1

𝜎Z2

= 16𝜎2(0.5)
(4𝜎)(4𝜎)

= 0.5

𝜌13 = 𝜌31 = 16𝜎2(1.5)

(4𝜎)(4
√

3𝜎)
= 0.5

√
3

𝜌23 = 𝜌32 = 16𝜎2(1.5)

(4𝜎)(4
√

3𝜎)
= 0.5

√
3

𝜌11 = 𝜌22 = 𝜌33 = 1
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To use (C.8), the terms (𝛽i − 𝛽j𝜌ij)∕(1 − 𝜌ij
2)1∕2 need to be evaluated. It may be shown that

these terms represent the ‘conditional’ values 𝛽 i|j (see Example 6.4) below. The results
are easily found to be:

𝛽i|j =
⎡⎢⎢⎢⎢⎣

0 4√
3

(
𝜆 − 3

2

)
2𝜆 − 2

4√
3
𝜆 0 2𝜆 + 2

0 −2
√

3 0

⎤⎥⎥⎥⎥⎦
(6.122)

Using the worst appropriate bound (i.e. additive bound) from (C.8) and ordering the
reliability indices according to increasing values, produces the following lower bound
on the initial failure probability:

pf (0) > Φ(−𝛽3) + {Φ(−𝛽1) − [Φ(−𝛽1)Φ(−𝛽13) + Φ(−𝛽3)Φ(−𝛽31)]}+

+ {Φ(−𝛽2) − [Φ(−𝛽2)Φ(−𝛽12) + Φ(−𝛽1)Φ(−𝛽21)]
− [Φ(−𝛽2)Φ(−𝛽32) + Φ(−𝛽3)Φ(−𝛽23)]}+

where {z}+ indicates { } = 0 if z ≤ 0. This bound is a function of the value assigned to
the resistance random variable R = r. For example, if 𝜆 = R∕𝜇 = 2 it can be shown easily
that

pf (0) > 2.797 × 10−4 (6.123)

From expression (5.45) an upper bound on pf (0) is given by

pf (0) ≤ Φ(−𝛽3) + Φ(−𝛽2) + Φ(𝛽1) − max[Φ(−𝛽1)Φ(−𝛽31),Φ(−𝛽2)Φ(−𝛽32)]
− max[Φ(−𝛽2)Φ(−𝛽32),Φ(−𝛽3)Φ(−𝛽23)]

which becomes, for 𝜆 = 2 as before,

pf (0) < 2.858 × 10−4 (6.124)

(iii) Conditional Probability on H3, H2 and H1 The condition probability ∫ΔSi
fx(x)dx con-

tained in equation (6.91) for l = 3 requires the projection of the limit state functions 1
and 2 onto the plane H3 representing the third limit state function. The projections of the
reliability indices 𝛽1 and 𝛽2 are required also (see Figure 6.22(a)). It may be shown that
the 𝛽 projections are the conditional reliability indices 𝛽i|j already calculated above (see
also Example 6.4 below). Also required are the conditional correlations 𝜌ij|k , represent-
ing, typically, the angle v12|3 shown in Figure 6.22(b), since 𝜌 = cos v as in (5.58). It may
be shown, either using a geometrical argument (see Example 6.4) or from a regression
consideration [Ditlevsen, 1983b], that

𝜌ij|k =
𝜌ij − 𝜌 ik𝜌jk

[(1 − 𝜌2
ik)(1 − 𝜌2

jk)]1∕2
(6.125)

which results in

𝜌12 |3 = −1, 𝜌13|2 = 𝜌23|1 = +1 (6.126)
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β2

ϑ23

ϑ12

ϑ12/3

ϑ13

0

ϑ13

ϑ13

(a)

(b)

Figure 6.22 Projections of reliability indices and planes 1, 2 and 3.

The conditional probability content within ΔS3 on the plane H3 now can be bounded
using (6.122) and (6.126) and using the most conservative combinations in (C.8). Noting
that the bounds produce the probability content outside the region ΔS3, it follows that
the probability content within ΔS3 is bounded by

1.0 − p3 > Φ(−𝛽1|3) + {Φ(−𝛽2|3) − [Φ(−𝛽2|3)Φ(−A) + Φ(−𝛽1|3)Φ(−B)]}
1.0 − p3 < Φ(−𝛽1|3) + {Φ(−𝛽2|3) − max [Φ(−𝛽2|3)Φ(−A) , Φ(−𝛽1|3)Φ(−B)]

(6.127a)

with (see C.9)

A =
𝛽1|3 − (𝜌12|3)𝛽2|3
[1 − (𝜌12|3)2]1∕2 = (2𝜆 − 2) − (−1)(2𝜆 + 2)

[1 − (−1)2]1∕2 = ∞

B =
𝛽2|3 − (𝜌21|3)𝛽1|3
[1 − (𝜌21|3)2]1∕2 = (2𝜆 + 2) − (−1)(2𝜆 − 2)

[1 − (−1)2]1∕2 = ∞

(6.127b)
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What these two results demonstrate in the present case is that the limit state functions
are 180∘ ‘apart’ on the H3 plane and that both conditional safety indices must be consid-
ered as contributing to the overall probability estimate. Such a specialized result would
not, in general, be expected.

That the limit state functions are 180∘ apart on the H3 plane follows from fact that
in (6.126) it was found already that 𝜌12 |3 = −1. However, following through the calcula-
tions for the bounds provides the same conclusion, as from (6.127a) the upper and lower
bounds are clearly the same:

1 − p3 = Φ(−𝛽1|3) + Φ(−𝛽2|3)
= Φ[−(2𝜆 − 2)] + Φ[−(2𝜆 + 2)]

which follows directly from the bounding expressions when it is noted that Φ(−A) =
Φ(−B) = Φ(−∞) = 0. Further, it follows readily that with 𝜆 = 2:

p3 = 0.9772 (6.127c)

For plane H2 the correlation between the first and the third failure modes is 𝜌13|2 = 1
which means that the limit state equations for 𝛽1|2 and 𝛽3|2 are parallel (0∘ apart) and that
the smallest 𝛽 value is critical. Since 𝛽3|2 = 2

√
3 < 𝛽1|2 = 4√

3

(
𝜆 − 3

2

)
for all 𝜆, it follows

that irrespective of the value of 𝜆,

1 − p2 = Φ(−2
√

3) or p2 = 0.99973 (6.128)

Similarly, it can be shown that for the plane H1, for all values of 𝜆,

p1 = 0.5 (6.129)

(iv) Outcrossing Rate and First-Passage Probability In this example the limit state expres-
sions are time invariant: thus the correction factor Kl for the outcrossing rate through
a plane (see 6.98 and 6.99) is given by (6.107). The terms D(Żl) are obtained from the
square root of the diagonals of var (Żl) given by (6.110).
To carry out the differentiation required by (6.110), the general expression for CZ given
by (6.119) is used with 𝜏 replaced by 𝜏 = t1 − t2 prior to differentiation, in turn, with
respect to t1 and t2. Then, putting 𝜏 = t1 − t2 = 0, produces the variance of Żl on the
diagonals i = j (cf. Section 6.4.3). It is then found that D(Żl) = 4𝜎 𝛾 (1, 1,

√
3), l = 1, 2, 3

with 𝛾 = [−𝜌′′(0)]1∕2.
From (6.107) the factors Kl, l = 1, 2, 3 become

Kl =
𝛾

(2𝜋)1∕2

[
𝜙(3.65)√

1.2
,
𝜙(5.48)√

1.2
,
𝜙(3.23)√

1.15

]
(6.130)

and, according to equation (6.108), the mean outcrossing rate v+D is then given by

v+D = [0.364𝛾 𝜙(3.65)](0.5) + [0.364𝛾 𝜙 (5.48)](0.99973)
+ [0.372𝛾 𝜙(3.23)](0.9772) (6.131)
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where the bounds have been ignored owing to their closeness. Evaluating (6.131) results
in v+D = 9.0 × 10−4 𝛾 . The first-passage probability pf (tL) ≤ pf (0) + vDtL is then bounded
using (6.52, 6.123 and 6.124):

(2.797 + 9.0𝛾 tL)10−4 < [pf (0) + v+DtL] < (2.858 + 9.0𝛾 tL)10−4 (6.132)

where, as before, [0, tL] is the period of interest. In practice 𝛾 = [−𝜌′′(0)]1∕2 can be evalu-
ated if an analytic expression is available for the correlation function, e.g. 𝜌(𝜏 = t1 − t2) =
A exp [−B(t1 − t2)] where A and B are constants.

The numerical part of this example has been determined for R = 𝜆𝜇 = 2𝜇 where 𝜇 is
the mean value of the load process X1. Thus the (conditional) first passage probability
obtained so far is for a deterministic resistance: specifically the result is conditional on
R = r = 2𝜇. If the resistance random variable properties are known, say if fR( ) is known,
then the result can be made unconditional by applying the theorem of total probability
(A.6) or (A.118) or, equivalently, carrying out the integration over r in (6.112). This will
require repeating the above calculations for different R = r values (i.e. for different values
of 𝜆) sufficient to allow numerical integration or integration by simulation.

As noted at the beginning of this example, it is clear that the computational procedure
outlined above is cumbersome even for this quite simple example.

Example 6.4 The reliability indices 𝛽 i have projections 𝛽i|j, on the plane Hj as shown in
Figure 6.22(b). These may be interpreted as conditional reliability indices in the sense of
Example 6.3. The angles vij also are shown; by (5.60) these are related to the correlation
coefficients through 𝜌ij = cos vij. Expressions for 𝛽i|j and 𝜌ij|k may be derived directly
from the three-dimensional geometry in Figure 6.23 and in Figure 6.22(b); thus for 𝛽1|3

E(Z1|Z3 = 0)
D(Z1|Z3 = 0)

= 𝛽1|3 =
𝛽1 − 𝛽3 cos v13

sin v13
=

𝛽1 − 𝛽3𝜌13

(1 − 𝜌2
13)1∕2

(6.133)

as also given in expression (C.9).

β3

β1

β2

β3

ϑ12/3

ϑ12

ϑ13

ϑ23
0

C

B

A

Figure 6.23 Geometry to determine conditional reliability indices and correlation coefficients.
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To obtain 𝜌12|3, the angle v12|3 in Figure 6.23 must be calculated. This can be found
by twice applying the cosine rule of trigonometry a2 = b2 = c2 − 2bc cos A with angle
A opposite side a:

BC2 = OB2 + OC2 − 2(OB)(OC) cos v12

and

BC2 = AB2 + AC2 − 2(AB)(AC) cos v12|3
With AB = 𝛽3 tan v13, AC = 𝛽3 tan v23, OB = 𝛽3∕ cos v23 and OC = 𝛽3∕ cos v23 and
with 𝜌ij = cos vij, it follows readily that

𝜌12|3 =
𝜌12 − 𝜌13𝜌23

[(1 − 𝜌2
13)(1 − 𝜌2

23)]1∕2
(6.134)

These results also apply, of course, to any three-dimensional subset of n -dimensional
space. As used in Example 6.3 such a subset is sufficiently detailed for consideration of
(hyper-)polyhedral safe regions.

6.6.4 Summary for Time-Dependent Reliability Estimation

The theory for time-dependent reliability assessment has developed rapidly, although in
certain aspects it is not as fully developed as time-independent reliability. The various
bases for it have been outlined above. It was seen that the simulation-based approaches
became natural extensions of time-independent analysis once the outcrossing rate can
be estimated efficiently.

However, the FOSM/FOR/SOR methods applied to time-dependent problems to
determine probabilities of failure tend to be considerably more laborious than for
time-independent problems. In applications resort often has to be made to numerical
techniques to solve the resulting formulations. Even some early experience showed that
for even relatively simple problems importance sampling was easier to apply and was
the more satisfying numerical method [Rackwitz, 1993].

Unlike time-independent reliability techniques, for which there has been extensive
discussion and comparison, often for a range of ‘standard’ cases, there has been rela-
tively little comparison of the various approaches for solving time-dependent reliability
problems. In part this could be because of the excessive computational times required
for fundamental (e.g. crude Monte Carlo) comparisons when stochastic processes are
involved. It also may be the strong focus in many application problems on the much
simpler time-independent approaches, particularly FOSM and FOR, which are much
more readily applied and easier to understand.

For many problems of practical significance, a fully time-dependent approach may
not be needed. It is required, however, when the resistance basic variables are time
dependent or when there is more than one loading case that must be considered as a
time-variant loading. This is the usual case for structural design and for analysis, but
it is clear that the methods described so far are much too complex for application in
normal design and for specification in structural design codes. For these, simplified
rules are required. However, in principle such simplified rules should be based on sound
fundamentals and the above descriptions provide such a basis, particularly for the
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difficult cases with more than one loading system applied. The development of design
code rules on the basis of structural reliability principles is discussed in Chapter 9, but
first consideration needs to be given to the matter of combination of time-dependent
loading systems. This is the subject of the next section.

6.7 Load Combinations

6.7.1 Introduction

The load combination problem consists of finding an equivalent loading system to rep-
resent the effect of two or more stochastic load processes acting in combination or
individually in a purely additive manner. This is a special case of the outcrossing problem
considered in the previous sections.

The need for this result arises from code calibration work (see Chapter 9). Typically
codes use simplified rules for load combinations. They are based on the application of
the time-integrated approach (see Section 6.2). The simplified rules will be considered
later in this section. First, as usual, it will be appropriate to consider some fundamentals.

If X1(t) and X2(t) represent stationary, mutually independent continuous load
processes, the probability distribution in a time interval [0, tL] for the linear sum
X = X1 + X2 can be obtained from a consideration of the upcrossing rate of X(t) as a
function of the barrier level x = a (see 6.55). The main problem is thus the calculation
of the upcrossing rate for X, for the barrier a or, equivalently, the outcrossing rate for
(X1, X2) out of the domain bounded by the plane x1 + x2 = a.

If X1(t) and X2(t) are each Normal stationary processes, the sum X = X1 + X2 is also
Normal and stationary, with mean and variance given by (A.160) and (A.162). The
upcrossing rate for a stationary Normal process then follows directly from the result
(6.74) for a single process X(t).

Unfortunately not all load processes can be described adequately, even under
instantaneous conditions, by a Normal process and, as noted in Section 6.5.3, the use
of (6.74) for non-Normal processes is seldom sufficiently accurate.

6.7.2 General Formulation

In principle, the expected upcrossing rate may be determined using Rice’s formula
(6.72) for the sum process X(t). To use it, the joint probability density function fXẊ( )
is required. This can be expressed in terms of fX1Ẋ1

( ) and fX2Ẋ2
( ) by means of the

convolution integral

fXẊ(a, ẋ) = ∫
∞

−∞∫
∞

−∞fX1Ẋ1
(x1, ẋ1) fX2Ẋ2

(a − x1, ẋ − ẋ1)dx1dẋ1 (6.135)

noting that ẋ = ẋ1 + ẋ2, x1 = x − x2. Changing the order of integration, the resulting
triple integral form for the upcrossing rate is given by (cf. 6.72):

v+X(a) = ∫
∞

−∞∫
∞

−∞∫
∞

ẋ=−ẋ1
(ẋ + ẋ2) fX1Ẋ1

(x, ẋ1) fX2Ẋ2
(a − x, ẋ2)dẋ2 dẋ1 dx (6.136)

This is seldom analytic. However, bounds can be established by changing the region of
integration for ẋ1 and ẋ2. If the region of integration is increased to 0 ≤ ẋ1 ≤ ∞, −∞ ≤

ẋ2 ≤ ∞ for the ẋ1 component of (6.136), and to −∞ ≤ ẋ1 ≤ ∞, 0 ≤ ẋ2 ≤ ∞ for the ẋ2@Seismicisolation@Seismicisolation
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component, an upper bound is obtained. Integrating over ẋ1 and ẋ2 leaves

v+X(a) ≤ ∫
∞

u=−∞v1(u) fX2
(a − u)du + ∫

∞

u=−∞v2(u) fX1
(a − u)du (6.137)

where vi(u) is the upcrossing rate for the process Xi(t). The rates vi(u) are evaluated
readily using the results for a single variable. For some common processes they are
given in Sections 6.5.1 and 6.5.2. The probability densities fXi

( ) are each a function
of the relevant Xi(t) for arbitrary time t. For obvious reasons they are known as the
‘arbitrary-point-in-time’ probability density functions.

Expression (6.137) is sometimes referred to as the ‘point-crossing’ formula. A lower
bound can be obtained, and the results extended to more than two loads acting simulta-
neously for non-linear combinations and also extended to non-stationary load processes
[Ditlevsen and Madsen, 1983].

For an important class of process combinations, (6.137) represents an exact solution.
This class is largely that for which one of the two processes X1(t) or X2(t) has a discrete
distribution, such as the square wave (Section 6.5.1.4) or is of the spike type (Section
6.5.1.4). More generally (6.137) is the exact result whenever the processes in the sum
satisfy the following conditions [Larrabee and Cornell, 1981]:

P[Ẋi(t) > 0 and Ẋj(t) < 0] = 0 (6.138)

for all processes i, j and at all times t. This condition ensures that one process does not
cancel out the act of upcrossing of the other process, by decreasing in value at the same
time. Typical processes that satisfy this condition are shown in Figure 6.24.

If X1(t) and X2(t) are each stationary Normal processes, with means 𝜇X1
, and 𝜇X2

and
standard deviations 𝜎X1

and 𝜎X2
respectively, then, as usual

fXi
(xi) =

1
𝜎Xi

𝜙

(
xi − 𝜇Xi

𝜎Xi

)

Any process

Any process

+

+

+

+

Figure 6.24 Combinations of random processes for which the ‘point-crossing’ formula is exact.
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and, from (6.74), the upcrossing rate for each individual process Xi(t) is

v+i (a) =
1

(2𝜋)1∕2

𝜎Ẋi

𝜎Xi

𝜙

(
a − 𝜇Xi

𝜎Xi

)
When these are substituted into (6.137), the upper bound for the upcrossing rate for
X = X1 + X2 becomes

v+X(a) ≤
1

(2𝜋)1∕2

𝜎Ẋ1
+ 𝜎Ẋ2

𝜎X
𝜙

(a − 𝜇X

𝜎X

)
with 𝜇X = 𝜇X1

+ 𝜇X2
and 𝜎2

X = 𝜎2
X1
+ 𝜎2

X2
. For the present case the exact result for the

upcrossing rate for the combined process can be obtained from (6.74) with 𝜎2
Ẋ = 𝜎2

Ẋ1

+ 𝜎2
Ẋ2

. The error is thus indicated by the ratio (𝜎Ẋ1
+ 𝜎Ẋ2

)∕(𝜎2
Ẋ1
+ 𝜎2

Ẋ2
)1∕2. This has a max-

imum of
√

2 when 𝜎Ẋ1
= 𝜎Ẋ2

. For most other combinations of load processes, the error
is less [Larrabee and Cornell, 1981].

6.7.3 Discrete Processes

It will be instructive to consider the sum of two non-negative rectangular renewal pro-
cesses of the ‘mixed’ type (see Section 6.5.1.6). Typical traces (realizations) are shown in
Figure 6.25. From (6.69) the upcrossing rate for each process is

v+i (a) = vi[pi + qiFi(a)][qi(1 − Fi(a))] (6.139)

where the mean rate of arrival of pulses in the mixed process is viqi = vmi, say. Also
the arbitrary-point-in-time distribution for a mixed process is fxi

(xi) = pi𝛿(xi) + qifi(xi),
where 𝛿( ) is the Dirac delta function (see Figure 6.25) and qi = 1 − pi. Writing
Gi( ) = 1 − Fi( ) and substituting into (6.137) for v+i ( ) and fXi

( ) with i = 1,2 and

q1 f1

q2 f2

p1

p2

x2

x1

t

t

Figure 6.25 Typical realizations of mixed rectangular renewal processes with given probability density
functions.
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integrating will lead to

v+X(a) = vm1p2[p1 + q1F1(a)]G1(a) + vm2p1[p2 + q2F2(a)]G2(a)

+ vm1p1q2

[
∫

a

0 G1(a − x) f2(x)dx
]

+ vm2p2q1

[
∫

a

0 G2(a − x) f1(x)dx
]

+ vm1q1q2

[
∫

a

0 F1(a − x)G1(a − x) f2(x)dx
]

+ vm2q1q2

[
∫

a

0 F2(a − x)G2(a − x) f1(x)dx
]

(6.140)

Fortunately, this rather fearsome-looking result has a simple explanation, as may be
shown by looking at the problem from first principles.

For one process, the probability at each renewal that the process is active, i.e. that
X(t) has a non-zero value, is simply q (see Figure 6.25). Similarly, the probability that
each renewal results in a zero (inactive) value of X(t) is p, again not influenced by the
value of X(t) in the previous time increment. The process is therefore memory-less, or
Markovian.

For two processes, the possible combinations of active and inactive states which allows
the sum of the two processes to cross from below the barrier level a to above it are shown
in Table 6.2 [Waugh, 1977; Larrabee and Cornell, 1979].

For each state change (i.e. the change of X1 + X2 < a to the state X1 + X2 > a), the
contribution to the upcrossing rate v+X(a) is given by

v+(j) = lim
Δt→0

[
P

(
up crossing
of level a

||||| change of
state in Δt

)
P
(

change of
state in Δt

)]
(6.141)

For state change (a) of Table 6.2, this becomes (with Ω = ‘change of state in Δt’):

v+(a) = lim
Δt→0

(P{[X1(t) = 0] ∩ [0 ≤ X2(t) < a] ∩ [X2(t + Δt) > a]|Ω}P(Ω))

or

v+(a) = {p1[p2 + q2F2(a)]G2(a)}v2q2 (6.142)

which corresponds to the second term in (6.140) noting that therein v2q2 = vm2.

Table 6.2 Initial conditions and state changes for upcrossings.

State change Process 1 Process 2 Upcrossing due to

(a) Inactive Active or inactive Process 2
(b) Active Inactive Process 2
(c) Active Active Process 2
(d) Active or inactive Inactive Process 1
(e) Inactive Active Process 1
(f ) Active Active Process 1
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For state change (b) of Table 6.2:

v+(b) = lim
Δt→0
all x

⟨P{[0 < X1(t)] ∩ [X2(t) = 0] ∩ [X2(t + Δt) > (a − x)|X1 = x]|Ω}P(Ω)⟩
or

v+(b) =
{

q1p2

[
∫

a

0 G2(a − x) f1(x)dx
]}

v2q2 (6.143)

which corresponds to the fourth term in (6.140) with v2q2 = vm2. In a similar fashion it
follows that the state change (c) is

v+(c) = lim
Δt→0
all x

(P{[0 < X1(t)] ∩ [0 < X2(t) < a − x] ∩ [X2(t + Δt) > (a − x)|X1 = x]|Ω}P(Ω))

(6.144)

which is identical with the sixth term in (6.140). The other terms in (6.140) arise from
state changes (d)-(f ) of Table 6.2. If each pulse returns to zero prior to the commence-
ment of the next pulse, the term p2 + q2F2(a) in (6.142) is unity by definition, as is the
term p2 in (6.143). The fifth and sixth terms in (6.128) do not exist in this case.

With the upcrossing rate determined, the cumulative distribution function FX( ) for
the total load X = X1 + X2 may be estimated using (6.55). The error in using (6.55)
together with (6.140) has been investigated by comparison with the few known exact
results for square wave processes [Hasofer, 1974; Bosshard, 1975; Larrabee and Cornell,
1979; Gaver and Jacobs, 1981] and found typically to give about a 20% overestimate for
high barrier levels a, and about a 60% overestimate for lower levels of a. These are not
insignificant errors, but at least they are conservative when translated to prediction of
the probability of failure.

6.7.4 Simplifications

6.7.4.1 Load Coincidence Method
For impulse type loading with the pulses returning to zero, (6.140) may be considerably
simplified (see above). Noting, for example, that ∫ a

0 G1(a − x) f2(x)dx = G12(a) − G2(a),
with G12( ) = 1 − F12( ), where F12( ) is the cumulative distribution function for the total
height of the two pulses, allows (6.140) to be simplified to

v+X(a) = vm1(p2 − vm2𝜇1)G1(a) + vm2(p1 − vm1𝜇2)G2(a) + vm1vm2(𝜇1 − 𝜇2)G12(a) (6.145)

Here vmi𝜇i has been substituted for qi. As before, vmi is the mean pulse arrival rate of the
process Xi(t) (see 6.139). The terms 𝜇i are the mean durations of the pulses of Xi(t). If the
pulses are of short duration, 𝜇i → 0 while, if they are of relatively infrequent occurrence,
pi → 1. Hence, a reasonable approximation for the upcrossing rate of the total process
X = X1 + X2 is

v+X(a) ≈ vm1G1(a) + vm2G2(a) + vm1vm2(𝜇1 + 𝜇2)G12(a) (6.146a)
or
v+X(a) ≈ vm1G1(a) + vm2G2(a) + vm1vm2G12(a) (6.146b)
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where

vm1m2 = vm1vm2(𝜇1 + 𝜇2) (6.146c)

a result first given by Wen (1977a) using rather different reasoning. The first and second
terms of (6.146a,b) each represent the upcrossing of one of the processes acting alone,
while the third term represents upcrossings when both processes are active, i.e. when
the pulses overlap. When the pulses are of very low rate of occurrence (i.e. the vi → 0),
the third term may be neglected.

It has been found from comparisons with simulation results that expression (6.146)
yields surprisingly good estimates of the upcrossing rate v+X(a), even when the active
fraction for each process is as high as 0.2, and for reasonably high levels of bar-
rier a [Larrabee and Cornell, 1979]. Pulse shapes other than rectangular also have
been considered, as has dependence between pulse renewals [Wen, 1977b, 1981,
1990].

6.7.4.2 Borges Processes
Borges processes (Section 6.5.1.1) are of particular interest in relation to code calibration
work because their combination provides a sufficiently good estimate of the maximum
combined load probability distribution [Turkstra and Madsen, 1980].

When each process Xi(t) in the sum X = Xl + X2 + X3 +… is represented as a
Borges process such that the duration of pulses is 𝜏1 ≥ 𝜏2 ≥ 𝜏3 ≥ … respectively for
each process, with 𝜏i = mi𝜏i+1 with mi an integer value, as shown in Figure 6.26, the
theory used in the previous sections can still be applied. The occurrence rates are
now vi = ni∕tL where ni is the integer number of pulses of process Xi in the period [0,
tL]. With the upcrossing rate determined according to one of the formulae above, the
cumulative distribution function of the maximum value of X may be obtained through
the application of (6.55). However, another approach is possible and will be outlined
below.

It may be shown that cumulative distribution function Fmax X( ) for the maximum value
of X is given by (the convolution integral) [Grigoriu, 1975; Turkstra and Madsen, 1980]:

Fmax X(x) =
{
∫

x

−∞FX1
(v)[FX2

(x − v)]mdv
}n

(6.147)

x1

x2

t

t

τ2

τ1

Figure 6.26 Realizations of two Borges processes, with 𝜏1 = m𝜏2, where m is an integer.
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for a two-component process with 𝜏2 = 𝜏1∕m, m integer, and where there are n pulses
of 𝜏1 in [0, tL]. This integral becomes more complex for more than two loads, but it may
be evaluated for such cases using an FOSM algorithm (Chapter 4).

The essential concept can be demonstrated using a linear combination of three loads.
In this case the maximum in the period [0, tL] can be rewritten as

max
tL

[X1(t) + X2(t) + X3(t)] = max
tL

[X1(t) + Z2(t)] (6.148)

where Z2(t) is another Borges process given by

Z2(t) = X2(t) + X∘
3 (t, 𝜏2) (6.149)

in which X∘
3 ( ) represents the maximum pulse of X3 over the period 𝜏2 (there are 𝜏2/𝜏3

such pulses; cf. Figure 6.26). X∘
3 (t, 𝜏i) is also known as the 𝜏 i duration envelope of X(t).

The cumulative distribution function FZ2
( ) of Z2 is given by the convolution integral

(6.147), now with m = 𝜏3∕𝜏2 and n = 1 since only the interval 𝜏2 is considered. The
maximization can be rewritten as:

max
tL

[X1(t) + X2(t) + X3(t)] = max
tL

[Z1(t)] (6.150)

with

Z1(t) = X1(t) + Z∘2(t, 𝜏i) (6.151)

where Z∘2( ) represents the total pulse of Z2 over the time interval 𝜏1. Similarly, FZ 1
( )

can be obtained also from (6.147).
The above reformulation process can be extended to any number of loads in the sum

provided that the FZi
( ) can be obtained and that the additions of the processes in Zi(t)

can be carried out. Also FOSM theory can be applied [Rackwitz and Fiessler, 1978].
The procedure may be summarized as follows. Let the cumulative distribution func-

tions FXi
( ) of each process pulse be approximated by a Normal distribution (if Xi is not

already Normal) on the basis of a set of trial ‘checking points’x*. [Recall from Section 4.4
that in so doing the tail area {= FXi

(x∗)} is preserved, and the same fXi
( ) is ensured.]

This transformation is carried out first for X2 and also separately, using the same x*, for
FX∘3 (x

∘
3) = [FX3

(x3)]m. Recall that m = 𝜏2∕𝜏3 is the number of pulses of X3 in an X2 pulse.
As a result of the transformation, the mean 𝜇X∗

2
and variance 𝜎2

X∗
2

for the equivalent
Normal distribution for process X2 are obtained, as well as 𝜇X∘3 and 𝜎2

X∘3
for X∘

3 ( ). Hence
the addition of (6.149) can be performed, to obtain the mean 𝜇Z2

and variance 𝜎2
Z2

for
Z2(t) as 𝜇Z2

= 𝜇X∗
2
+ 𝜇X∘3 and 𝜎2

Z2
= 𝜎2

X∗
2
+ 𝜎2

X∘3
. It is now possible to determine Z∘2(t, 𝜏i)

and to find the equivalent Normal distribution for X1(t) and Z∘2( ) in (6.151) and hence
the equivalent Normal distribution for Z1(t). This is, of course, the result sought, but
it depends on the initial choice of the checking point x*. The complete distribution
function Fmax X(x) is obtained by systematically choosing different values of x= x∗ and
repeating the above process. In direct correspondence to the concepts of Chapter 4,
the individual checking point values x* for the variables Xi(t) are selected so as to
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maximize the local joint probability density fX1
(x∗

1) fX2
(x∗

2) fX3
(x∗

3)….. The equivalent
normal probability density functions fX∗

i
( ) = fXi

( ) can be used for this purpose.
The use of this algorithm for deriving load combination rules for design codes has

been described by Turkstra and Madsen (1980).

6.7.4.3 Deterministic Load Combination—Turkstra’s Rule
The procedures described in the previous sections are, despite various simplifications,
still too complex for use in design codes. These currently have simple additive rules
for load combination. The most primitive form consists simply of adding stresses due
to different loads without regard to different load uncertainties; others make some
allowance for this with an appropriate set of multipliers. The question of interest here
is the justification for such multipliers.

A deterministic load combination rule may be derived from a consideration of Borges
processes [Turkstra and Madsen, 1980; Ostlund, 1993] or, as will be seen, directly from
the ‘point-crossing’ formula (6.137) [Larrabee and Cornell, 1981].

If the approximation GmaxX(a) = 1 − FmaxX(a) ≈ v+X(a)t given by (6.55) is substituted
in (6.137) there is obtained

GmaxX(a) ≈ ∫
∞

−∞GmaxX1
(x) f2(a − x)dx+ ∫

∞

−∞GmaxX2
(x) f1(a − x)dx (6.152)

where, as before, the maxima are taken over the time interval of interest, usually the life
of the structure [0, tL]. Noting that, if Z = W + V , with W , V independent, the com-
plementary cumulative distributive function GZ( ) is given by the convolution integral

GZ(z) = ∫
∞

−∞GW (z − v) fV (v)dv = ∫
∞

−∞GW (w) fV (z − w)dw (6.153)

so that the two integrals in (6.152) represent, respectively, max X1 + X2 and
X1 + max X2, with Xi representing the ‘arbitrary-point-in-time’ value of Xi. Similarly,
if Z = max (W , V ), then it may be shown that

GZ(a) = GW (a) + GV (a) − GW (a)GV (a) (6.154)

where, for high barrier levels a, the last term may be ignored. Thus using (6.153) to
represent each integral in (6.152) and then applying (6.154) it follows, loosely, that

max X ≈ max[(max X1 + X2); (X1 + max X2)] (6.155)

This result is known as ‘Turkstra’s rule’. It states: ‘design for (i) the largest value of the
lifetime maximum of load 1 plus the value of load 2 when the maximum of 1 occurs or
(ii) the lifetime maximum of load 2 plus the value of load 1 when the maximum of 2
occurs’ [Turkstra, 1970]. The rule is readily extended to more than two loads. It can also
be applied to load effects. For n loads,

max X ≈ max

(
max Xi +

n∑
j=1

Xj

)
, j ≠ i; i = 1, … , n (6.156)

In this form the rule is seen as being similar in form to the load combination rules
in many existing code formats; it is also evident that it has some affinity with the
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probabilistic requirements for load combination. However, Turkstra’s rule does not fix
the load levels to be used with the rule; these have to be selected separately. As will be
seen in Chapter 9, the value of [max Xi] is commonly selected as the 95 percentile value
of the load, while Xi, the arbitrary-point-in-time value, may be taken as the mean value,
provided that the process Xi(t) is stationary.

Although a simple and convenient rule for code calibration work and sometimes other
situations, Turkstra’s rule is not really suitable for accurate computation of probabilities.
This is because expression (6.152) is not an upper bound, as was (6.137), and because
the ( ) terms in (6.156) are not independent, as implicit in (6.154) [Larrabee and Cornell,
1981].

6.8 Ensemble Crossing Rate and Barrier Failure Dominance

6.8.1 Introduction

Both the evaluation of crossing rates in the space of load variables and the integration
required over time and over resistance random variables become computationally
demanding for all but the simplest problems, particularly when resistance degradation
or non-stationary load processes are involved. To ease the computational burden
one possibility is to include the random resistance variables in the computation of
(out)crossing rates. This results in ensemble crossing rates. In principle using these for
integration in time would violate the (Poisson) assumption of independent crossings
and also result in (perhaps grossly) approximate solutions.

Intuitively, the error involved in using ensemble crossing rates should depend on
the relative contribution of load processes and of resistance variables towards failure
probabilities. Indeed, there are some problems for which an up- or outcrossing event
is more likely to occur due to a small variation of the barrier, rather than due to the
occurrence of an exceptionally large load peak. For these, the concept of barrier failure
dominance was introduced, as described briefly below.

6.8.2 Ensemble Crossing Rate Approximation

For all but the simplest combinations of limit states and for Gaussian load processes the
computation of the upcrossing (6.72) and outcrossing (6.80) rates requires numerical
evaluation. Rephrasing the discussion in Section 6.5.3, an outcrossing occurs when the
limit state process changes from positive to negative in the load space:

v+D(r, t) = lim
Δt→0

1
Δt

P[(g(r, S, t) > 0) ∩ (g(r, S, t + Δt) < 0)], (6.157)

where g(r, S, t) is a generic limit state function. Note that v+D(r, t) is conditional on
one realization of the vector of random variables (R = r), as required in (6.112). One
way of computing the above numerically is by means of the sensitivity of a parallel
system reliability problem [Hagen and Tvedt, 1991]; a solution constructed based on
Figure 6.16, with (x, ẋ) replaced by (−g, −ġ) and with a = 0.

As noted above, inclusion of resistance degradation, or non-stationary load processes
will produce crossing rates that are functions of time and thus need to be re-evaluated
in any iterative computation scheme that allows, for example, for the effect of time. This
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adds considerable computational requirements, especially in the case of multiple load
processes crossing out of general-shaped safety domains (cf. 6.5.5).

To simplify matters, one approach is to use so-called ensemble crossing rates. For
these the crossing rates are averaged over the resistance [Andrieu et al., 2002; Beck,
2003]. From (6.72), (6.80) or (6.157) this produces:

v+ED(t) = ER[v+D(r, t)]

= lim
Δt→0

1
Δt

P[(g(R, S, t) > 0) ∩ (g(R, S, t + Δt) < 0)]. (6.158)

Of course, integrating the ensemble crossing rates over time is inconsistent with the
Poisson assumption of independent events [Pearce and Wen, 1984; Wen and Chen, 1989;
Schall et al., 1991]. The solutions so obtained also are approximate, with errors up to sev-
eral orders of magnitude [Beck, 2003]. These errors are proportional to (i) the height of
the random barrier, (ii) to the relative magnitude between variances (of the load process
and of resistance variables), and (iii) to the mean number of zero crossings. They are not
necessarily proportional to failure probabilities.

An estimate of these errors can be obtained by comparing with results obtained using
the standard case of a single stationary Gaussian load process S(t) ∼ N(𝜇S, 𝜎S) crossing
a scalar time-invariant Gaussian barrier R ∼ N(𝜇R, 𝜎R), for which a closed form solution
is available for v+ED(t) [Owen, 1980]. Compared to this case the ensemble crossing rate
error is proportional to [Beck and Melchers, 2004a]:

error = −log10

[v+ED(t)
v+D(t)

]
∝ ep = 1

𝜎S

𝜎2
R + 𝜎2

S

(μR − μS)
(6.159)

where, with 𝜇 = (μR − μS)∕𝜎S and 𝜎 = 𝜎R∕𝜎S, the error parameter ep is given by:

ep = 𝜎2 + 1
μ

(6.160)

The error parameter ep in (1.160) also applies for a standard Gaussian load process cross-
ing a random barrier R ∼ N(𝜇, 𝜎) and for narrow-banded S(t) and for broad-banded
(first-order Markov) load processes [Beck and Melchers, 2004a]. Further, the ensemble
crossing rate error in Eq. (6.160) is greater than one order of magnitude after just one
or two zero crossings (v0t ≈ 1 − 2) for large values of the error parameter (ep ≳ 1). The
error is less than one order of magnitude for ep <∼ 0.5, for up to about 200 zero crossing
events [Beck, 2008].

6.8.3 Application to Turkstra’s Rule and the Point Crossing Formula

To give some idea of the error involved in using the ensemble crossing rate, consider
now a limited comparison with the use of Turkstra’s rule and with the point crossing
formula for the sum of three stationary standard Gaussian load processes Xi i = 1,2,3,
crossing a Gaussian random barrier R [Beck and Melchers, 2005]:

G(R, S, t) = R − (X1(t) + X2(t) + X3(t)), (6.161)

This is the load combination problem described in Section 6.7. For it, Turkstra’s rule
(6.156) yields an approximate distribution for the extreme value in a given time interval.
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On the other hand, the point crossing formula (6.137) yields an approximation (upper
bound) for the crossing rate of the vector process X(t) = X1(t) + X2(t) + X3(t).

To estimate the errors in use of Turkstra’s rule and use of the point crossing approach
for (6.161), it is noted that both can be represented by the error parameter in (6.159).
To do so requires standardization by the variance of the sum of the standard Gaussian
processes (𝜎X =

√
3). Then (6.159) reduces to (6.160) [Beck and Melchers, 2005].

The error trends for the two cases are opposing, however, as should be expected.
When ep given by (6.160) increases, the error in the ensemble crossing rate increases.
However, for the same change in ep the errors in using either Turkstra’s rule or the
load combination formula decrease. More generally, this suggests that there are some
problems and a range of ep values for which error in using the ensemble crossing rate
approximation is smaller than errors of load-based approximations (Turkstra’s rule or
the load combination formula).

Continuing with the above comparison, consider now the following numerical
example. Let the total process X be a broad-band process (e.g. a first order Markovian
process with irregulatory factor 𝛼 = 0.4). Then, for a fixed number of load cycles
characterized by, say 260 zero crossings, there will be 650 load peaks. For an error
parameter (cf. 6.160) valued at ep<∼ 1.1 the error (cf. 6.159) of the ensemble crossing rate
approximation is smaller than the corresponding error for Turkstra’s load combination
rule. However, both errors are very large over a wide range of the error parameter:
0.25 <∼ ep<∼ 4 [Beck and Melchers, 2005].

For high error parameter values, say ep ≳ 4 (that is, for high standard deviations or
low means—see 6.160), a study of the sensitivity factors obtained using an FOR solution
of the resulting Turkstra load combination problems shows that the crossing problem
is dominated by barrier (resistance) uncertainties. This means that in this case the
Turkstra’s load-based approximation is satisfactory. For the same example, the error of
ensemble crossing rate approximation is smaller than the error of the point-crossing
formula for ep <∼ 0.27, whereas the maximum point-crossing error log10(

√
3) cf Section

6.7.2) is obtained for ep ≈ 0.22.
How the above errors vary for other load processes, for different number of load cycles

(zero crossings) and for different load combinations in (6.161) remains to be established.
The ensemble crossing rate error increases very quickly with increasing number of load
cycles [Beck, 2008], but the influence of numbers of load cycle or of integration time on
Turkstra’s load combination rule or the point-crossing formula remain areas for further
investigation.

6.8.4 Barrier Failure Dominance

Extensive simulations have shown that for many time-variant reliability problems,
(out-) crossings are more likely to occur due to a low realization of the random barrier,
than to an exceptionally high load peak realization [Beck, 2003]. This phenomenon is
known as barrier failure dominance [Beck and Melchers, 2005]. As indicated by the
above examples, typically, it characterizes problems for which load-based approxima-
tions, such as the time-integrated approach (or Turkstra’s rule) and the point-crossing
formula, are appropriate.

At the other end of the spectrum, there are problems for which the load peak
and the barrier realizations make a balanced contribution to (out-)crossing rates or,
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equivalently, to first-passage failures. The transition between these behaviours can
be tracked by the error parameter in (6.160). At the limit with 𝜎 → 0, the ensemble
crossing rate error is proportional to 1 /𝜇 that is, it goes to zero asymptotically with
𝜇 → ∞. This is a well-known result for independent crossings and is consistent with
the Poisson approximation.

6.8.5 Validity

The above discussion and examples have provided a different insight into how
time-variant reliability problems might be handled, albeit in an approximate man-
ner. Importantly, the results given herein and in the referenced literature must be
interpreted with care and are valid only for the particular problems addressed, that is,
crossings of a scalar stationary Gaussian process over a scalar Gaussian barrier, and
crossings of the sum of three standard first-order Markov Gaussian processes over a
scalar Gaussian barrier, for a fixed number of load cycles. Nevertheless, it might be
expected that these results will have a degree of validity, even if only approximately, for
problems not departing too much from the above scenarios (smoothly non-Gaussian
load processes and barriers, other auto-correlation structures, smoothly non-stationary
problems and vector-valued resistance variables). A further discussion of some such
cases, including for non-Gaussian barriers, and for smoothly non-stationary problems,
is available [Beck, 2003].

6.9 Dynamic Analysis of Structures

6.9.1 Introduction

A dynamic structural analysis is necessary when the structure interacts with the
time-dependent loading acting on it in such a way as to affect the structural response
to the loading. Usually both deformations and stresses are affected.

The traditional approach to the dynamic analysis of a structure is to work in the
so-called ‘time domain’, which means that the equations of motion for the structure are
integrated with respect to time. The loading must, of course, be specified in terms of its
variation with time. The response calculated for the structure is in terms of stresses and
deformations as a function of time. This procedure is very accurate and can be applied
to quite complex structures. Material and structural properties may be non-linear,
although in such cases the analysis is usually iterative and hence time consuming.
Details of the procedure are outside the scope of this book, but excellent treatments
exist [e.g. Clough and Penzien, 1975].

If the loading (or the structure, or both) has random properties, the ‘time domain’
solution scheme is of limited usefulness since a unique description of the loading as
a function of time is of course not available. Naturally a realization (see Section 6.4.1)
for the loading can be generated and the structural response analysed for this load
system; such a procedure might be repeated many times and the statistics of the
response determined. This means that one or more limit state functions G(x) = 0 can
be generated, provided of course, that a criterion such as maximum allowable stress or
maximum allowable deformation also is specified. Further, it suggests that it should be
possible to use a Monte Carlo technique to determine structural reliability. In practice
such an approach requires a large number of time domain analyses to be performed.
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Unfortunately, these are each already computationally very demanding, and this may
render the Monte Carlo approach impractical, even with high-powered computers,
unless it is possible to simplify the problem with the use of stochastic process theory.
Largely for this reason the time domain method of solution has received relatively
limited treatment in structural reliability theory and application [e.g. Schuëller, 1997;
Wu, 2013].

6.9.2 Frequency Domain Analysis

When the structural behaviour is linear, i.e. for elastic structures under small-deflection
assumptions, or more generally when the ‘transfer function’ between input (e.g. loads)
and output (e.g. stresses) is linear, an alternative procedure termed the ‘frequency
domain’ method may be employed. It has been used extensively in the analysis of the
random vibration of mechanical systems [e.g. Newland, 1984] despite the limitations
to linear systems. While the theory is essentially outside the scope of this book, it is
useful to review briefly some aspects of the method since it has application in structural
reliability analysis for systems such as dynamically sensitive large towers and offshore
structures, particularly in relation to their fatigue life (see also Section 6.10).

One way in which a stationary stochastic process X(t) can be analysed is by
decomposing it into an infinite series of sine and cosine waves, each occurring with
random magnitude but with their own constant frequency 𝜔 of oscillation. Such a
representation is known as a Fourier integral representation. The coefficients for the
cosine terms are obtained from integration of the product of the stochastic process
X(t) and cos 𝜔t, and similarly for the sine terms. Each such term is a Fourier transform
of X(t). Since the random properties of X(t) depend on its (auto-)correlation function
RXX(𝜏) (see Section 6.4.1), it might be imagined that the Fourier transform of X(t) can
be expressed as a function of RXX(𝜏). Indeed the infinite number of cosine coefficients
can be represented by a continuous function of 𝜔:

Sx(𝜔) =
1

2𝜋
∫
∞

−∞Rxx(𝜏) cos 𝜔𝜏d𝜏 (6.162)

Since RXX(𝜏) is a symmetric function, the equivalent to (6.162) for the sine terms
is zero; also SX(𝜔) is symmetric [Figure 6.27(a)]. Commonly SX(𝜔) is known as the
(mean-square) spectral density. Evidently, if X(t) is completely chaotic, RXX(𝜏) given by
(6.36), is zero (except at 𝜏 = 0 !), and it follows that SX(𝜔) is a constant for all 𝜔. This
situation is known also as ‘white noise’, since no particular frequency predominates
over any other [see Figure 6.27(b)]. Similarly, if the stochastic process has a dominant
frequency, around 𝜔0, say, the spectral density takes the form shown in Figure 6.27(c).
This is known as a ‘narrow-band’ process, and it is of major interest in dynamic
structural analysis because most structures have only one dominant mode of vibration.
Typically this mode is associated with the (lowest) natural frequency of the structure.
(Lesser modes of vibration are associated with higher natural frequencies, typically the
resonant frequencies for the structure [e.g. Clough and Penzien, 1975]).

If in (6.162) 𝜏 is put to zero and both sides integrated over the range −∞ to +∞,
it may be shown that RXX(0) = ∫

∞
−∞ SX(𝜔)d𝜔. Using also (6.36) and (6.76) and taking

uX = 0 produces:

𝜎2
X = E[X(t)2] = ∫

∞

−∞SX(𝜔)d𝜔 (6.163)
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Figure 6.27 Realizations of and spectral densities for (a) wide-band, (b) white noise and
(c) narrow-band random process.

This shows that the area under the curve SX(𝜔) is the mean-square value of the
stationary stochastic process X(t) and is also equal to its variance (see Figure 6.27(a)).
The requirement that 𝜇X = 0 merely indicates that here the stochastic part of the
problem is of interest. A separate structural analysis for the steady state condition
𝜇X ≠ 0 can be superimposed on the results from a stochastic analysis with 𝜇X = 0.

The solution of (6.163) requires the availability of the spectral density of the structural
deflections or of the stresses at some point in the structure. This may be obtained from
consideration of the excitation-response relationship(s) for linear structures when
working in the frequency domain. For a single input or load process X(t) generating a
single output (e.g. stress) Y (t), this relationship is given, in essence, by

SY (𝜔) = |H(𝜔)|2SX(𝜔) (6.164)

where the function H(𝜔) is known as the frequency response function. Expression
(6.164) may be generalized for multiple independent inputs simply by (linear) superpo-
sition, although more complex relationships may need to be used when the inputs are
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Figure 6.28 Relationship between input and output spectral density functions for an example case of
an offshore structure subject to hydrodynamic wave loading.

correlated [Newland, 1984]:

SY (𝜔) =
n∑

i=1
|Hi(𝜔)|2 SXi

(𝜔) (6.165)

The principles involved in (6.163) and (6.164) in using frequency response functions
to obtain an output spectral density from input spectral information are illustrated
schematically in Figure 6.28 for an offshore structure subject to wave loading. Ideally the
spectral input is determined by analysis directly from actual observations of the physical
process(es), that is, the wave processes in this case. Where such information is not
available, it often is taken from previous analyses for similar structures. The frequency
response function H(𝜔) depends on the system being analysed, and, for example, may
be obtained by integrating the response of a structure to a given impulse [Clough and
Penzien, 1975]. These details are outside the scope of the present discussion.

6.9.3 Reliability Analysis

For the structural reliability analysis involving structural dynamics using the frequency
domain approach, the main item of interest is the probability distribution of the
peaks of the output random process. As noted, the most straightforward case is
for narrow-banded processes. Also the analysis is simplified by the use of extreme
value distributions. To progress the discussion, let the probability distribution of the
peaks be denoted FP(a), i.e. the probability that the peaks of X(t) lie below the level
X(t) = a, with 𝜇X = 0. Use may be made immediately of the results in Section 6.5.3, for
narrow-banded processes sufficiently smooth to have maxima only above X = 0. Then
the proportion of cycles for which X > a is simply v+a∕v+0 , where v+a is the upcrossing
rate given by (6.74) and v+0 is the rate at which cycles occur (i.e. the rate at which X(t)
upcrosses x = 0). It follows directly that, for 0 ≤ a ≤ ∞,

1 − FP(a) =
v+a
v+0

= exp

(
− a2

2𝜎2
X

)
(6.166)
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fp(a)

0 σx a

Figure 6.29 Probability density function for Rayleigh distribution.

and, by differentiation with respect to the level x = a,

fP(a)
a
𝜎2

X
exp

(
− a2

2𝜎2
X

)
(6.167)

Expressions (6.166) and (6.167) represent the Rayleigh distribution (Figure 6.29). It is a
special case of the Weibull (or EV-III) extreme value distribution (see A.102a). Evidently
the maximum value of f P(a) is at a = 𝜎X which is the magnitude of the majority of peaks.
No peaks occur below a = 0.

If the process is not completely smooth, e.g. if more than one maximum may occur
per zero crossing, or if the stochastic process X(t) is not a Normal process, or does not
have an exponential ‘tail’, the (more general) Weibull extreme value distribution may be
more appropriate than Rayleigh to describe the probability distribution of the peaks of
the process.

In both cases the probability density function can be used as input, as load cases,
to a reliability analysis. Most applications have considered narrow-banded processes
and have been confined to the use of the FOSM reliability estimation technique.
Processes that are not narrow-banded represent a more difficult scenario for solution.
One approach is to consider the actual structural dynamic response as an ensemble
of narrow-banded responses and sum these in a weighted fashion. This ignores any
correlation effects. A second is to use response surfaces based on repeated dynamic
analyses of the structure, together with FOSM. This is still a major task, and difficulties
with nonlinearity of the response surface and with convergence and accuracy have
been reported [Wu, 2013]. It has been proposed to use response surfaces based on a
perturbation approach, followed by a limited amount of Monte Carlo simulation [e.g.
Huh and Haldar 2002] or by subset simulation [Au and Beck, 2003] (cf. Section 3.6.2).

6.10 Fatigue Analysis

6.10.1 General Formulation

A very important case of time-dependent reliability analysis concerns fatigue. It is also
typical of limit states that are governed by the number of load applications (and their
intensities) rather than by extreme events. A brief review of procedures for dealing
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with fatigue in a reliability analysis is therefore of interest [Sobczyk and Spencer, 1992;
Wirshing, 1998].

The safety margin or limit state function (1.15) can be re-expressed as

Z = Xa − Xr (6.168)

where Xa represents the actual performance or strength of the structure and where Xr
represents the required performance during the life of the structure. Thus, if fatigue life
is expressed in terms of the number of cycles of stress, Xa becomes the number of cycles
required to cause failure of the material and Xr the required number of cycles to satisfy
design requirements for a given lifetime. A corresponding situation exists if fatigue life
is measured in terms of crack size or in terms of a damage criterion. In general both
Xa and Xr are uncertain quantities. Their precise description depends on the form of
fatigue model employed.

6.10.2 The S-N Model

The traditional model to describe the ‘fatigue life’ Ni of a component or simple structure
under constant-amplitude repeated loading is given by [e.g. ASCE, 1982]:

Ni = KS−m
i (6.169)

where K and m conventionally are taken as ‘constants’, and Ni is the number of stress
cycles at constant stress amplitude Si. Typically the ‘constants’ m and K are estimated
from test results, and this implies that they will have a degree of uncertainty attached
to them. In addition, it is known that different laboratories may produce somewhat
different mean and standard deviations for these parameters under what are meant
to be standard conditions. For this reason it has been conventional practice to assign
conservative values to them in an effort to ensure that (6.169) produces a safe estimate
of fatigue life Ni. However, in the context of reliability analysis, the model (6.169) must
be a realistic rather than a conservative predictor, so that the typical values for m and
K quoted in the literature may not be appropriate. Expected values need to be used,
together with an analysis of the influence of the uncertainty in these parameters. Such
an analysis can follow conventional structural reliability procedures.

The safety margin (6.168) may be written as

Z = KSi
−m − N0 (6.170)

where N0 is the number of cycles the structure must be able to sustain for satisfactory
performance. N0 may be subject to uncertainty.

In practice the amplitude of the stress cycles is not constant but is a random variable. If
the number of cycles which occur at each amplitude level can be measured or estimated,
the empirical Palmgren-Miner hypothesis

l∑
i=1

ni

Ni
= Δ (6.171)
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usually is adopted with the S-N model. Here ni represents the actual number of cycles
at the stress amplitude Si and Ni is the fatigue limit (i.e. number of cycles to failure) for
Si for 1 < i < l where l denotes the number of cycle groups adopted for the analysis.

If the stress amplitudes caused by the applied loading are all different (6.171) reduces
to

N∑
i=1

1
Ni

=
N∑

i=1
K−1Sm

i = Δ (6.172)

where N is the total number of (random) variable-amplitude cycles. In practice the
data is likely to be wide- or broad-band data (cf. Figure 6.27) and thus some regularity
of cycles is likely. To deal with this it is conventional to divide the data into, say, l range
groups. For each of these the number of cycles Ni must be determined, together with
the corresponding probability distribution for Si. Expression (6.172) written as a limit
state now becomes

Z = Δ − X0

l∑
i=1

K−1NiSm
i (6.173)

where Z is the safety margin as before and the random variable X0 has been intro-
duced to allow for model uncertainty, such as when there is difficulty in measuring Si
accurately.

The damage parameterΔ conventionally is taken as unity but typically lies in the range
0.9–1.5. Hence Δ reflects the (large) uncertainty arising from the empirical nature of
(6.166); a Lognormal distribution with unit mean and a coefficient of variation of about
0.4–0.7 has been proposed as appropriate [Madsen, 1982; ASCE, 1982].

To use (6.173) the wide- or broad-band data (cf. Figure 6.27) must be divided into
range groups, and the number of cycles Ni in each range 1 < i < l must be determined.
Also, for each the corresponding stress range Si is required, together with its uncertainty.
To obtain estimates of the means of these variables, various so-called ‘cycle-counting
techniques’ are available. The most well known are the rain-flow and the range-counting
techniques. These are described in detail in the fatigue literature [e.g. Wirshing, 1998].
For each range group it is then possible to estimate both the mean and the variance of the
stress range Si. These can be combined with (6.173) to obtain the mean and variance of Z.

6.10.3 Fracture Mechanics Models

An alternative approach to fatigue modelling is to consider crack growth under repeated
or random load systems [ASCE, 1982; Schijve, 1979; Provan, 1987; Bolotin et al., 1998].
Based on experimental evidence, the crack growth rate da/dN may be related to the
range of stress intensity factor Δk (at the crack tip) by

da
dN

= C(ΔK)m (6.174)

where a is the current crack size (depth, length), N the number of stress cycles, and C and
m are experimental ‘constants’, which depend, usually, on cycling frequency, the mean
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stress and the environmental conditions, including the precise procedures followed for
fatigue testing in the test laboratories where the experiments are conducted. Both C and
m should be treated as uncertainties in a reliability analysis. The range of stress intensity
factor ΔK , for situations in which the conventional stress intensity factor K (a) does not
change significantly with stress level, may be obtained from

ΔK = K(a)ΔS(𝜋a)1∕2, ΔK > Kth (6.175)

where ΔS represents the range of applied stress and where K (a) is a function of current
crack length a, local geometry and the nature of the stress field, such as the possible
extent of plastic flow at the crack tip. Also, ΔKth is the threshold level of ΔK ; below it
ΔK = 0.

The variation of crack length a with the number N of applied stress cycles can be
obtained in principle from integration of (6.174) and using (6.175):

a(N) = a[a0, K(a), ΔS, C, m, ΔK , ΔKth, N] (6.176)

where a0 is the initial crack length. Expression (6.176) can be used to obtain the mean
and variance of a(N) given that statistical parameters are known for the parameters
involved. For variable-amplitude loading ΔS will depend on the loading sequence, and
it will be a random variable. Methods for dealing with this include application of (6.176)
in an incremental manner, or using an ‘effective’ΔK approach [ASCE, 1982]. In any case,
the limit state function (6.168) may be written as

Z = aa − a(N) (6.177)

where aa is the performance requirement on crack length given a lifetime tL in which
N cycles of loading are expected to occur. An alternative limit state formulation is in
terms of the crack-tip-opening displacement, a parameter influenced by the material
‘toughness’ [ASCE, 1982].

Examples have been given of the integration of dynamic analysis and fatigue, an impor-
tant area of practical application, for example in offshore structure reliability assessment
[Karadeniz et al., 1984, 2001; Baker, 1985; Yu et al. 2009]. However, the reader should
consult the literature for many other examples.

6.11 Conclusion

This chapter has been concerned with including random processes as distinct from
random variables in structural reliability analysis. The traditional time-integrated and
discrete time approaches were reviewed. An overview of stochastic process theory was
given in order to introduce the fully time-dependent approach to structural reliability.
The procedures for problem solution using simulation approaches and using the
FOSM/FOR/SOR methods were then outlined. An example application of the latter
was given.
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Three further topics were introduced. The discussion of load combinations was
necessary to introduce simplified procedures for load combination rules currently
employed in design codes and for the discussion of code calibration (see Chapter 9).
This was followed by an outline of spectral methods as used for the analysis of dynam-
ically sensitive structures, and it was indicated how results so obtained can be used in
reliability calculation procedures. Finally, an overview of the reliability formulation for
fatigue problems was given.
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7

Load and Load Effect Modelling

7.1 Introduction

The loads that may act on a structure can be divided broadly into two groups: those due
to natural phenomena, such as wind, wave, snow and earthquake loading, and those due
to man-imposed effects, such as dead loads and live loads (e.g. floor loading).

The magnitude of most loads varies with time and with location. This means that loads
can be represented as stochastic processes, such as those discussed in Chapter 6. In
addition, dynamic effects may occur as a result of load–structure interaction. Because
of these possibilities, the modelling of load processes can be quite difficult. As always,
perfect models are not possible owing to insufficient data, imperfect understanding and
the necessity to predict future loading. Appropriate models are therefore sought, partic-
ularly since loading is often the most uncertain factor in a structural reliability analysis.
Efforts spent on loading data collection and on load modelling may be more productive
than refinement of the reliability estimation techniques.

In the discussions to follow, usually only single load processes will be considered, since
in principle at least, loading combinations can be treated, if required, using the methods
already described in Section 6.7.

The process of constructing a probabilistic model for a particular load is as follows:

(1) identification and definition of the random variables to be used to represent the
uncertainties in loading description (this depends on the understanding of the load
process);

(2) selection of appropriate probability distributions for each random variable;
(3) selection or estimation of the distribution parameters using available data and stan-

dard parameter estimation techniques such as (a) method of moments, (b) method
of maximum likelihood and (c) order statistics.

The main emphasis in the present chapter will be on items (1) and (2). Standard statistics
texts may be consulted for item (3).

If observations of a physical load phenomenon are available over a period of time, the
statistical properties of the load can be estimated directly from data records, and yearly
maxima and daily maxima can be extracted to produce extreme value distributions
for use in time-integrated analysis. If continuous records are available, the (approxi-
mately) instantaneous probability density function may be hypothesized, and a complete
time-dependent reliability analysis (see Section 6.5) may be possible. Obviously, the level

Structural Reliability Analysis and Prediction, Third Edition. Robert E. Melchers and André T. Beck.
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of discernment and accuracy of the recording instrumentation available to measure such
loads or load effects will influence the quality of the data and thus also the quality of the
load modelling.

For man-imposed loads, such as live loads on building structures, only seldom are
there sufficient long-term data to form a probabilistic model. Usually, probabilistic
descriptions of loading must be derived mathematically, using whatever data are
available (for calibration) together with appropriate and plausible physical models and
assumptions. Largely to reflect the different aspects of load modelling, only three types
of loading are discussed in this chapter; wind loading in Section 7.2, wave loading in
Section 7.3 and floor loading in Section 7.4. For these loadings only limited attention will
be given to the physics involved; attention will be focussed mainly on their probabilistic
description. Loadings resulting from snow, earthquake, fire and impact or blast are
important in many geographical locations and in some particular circumstances—for
these the reader should consult the specialist literature. A brief summary of many
models is given in the JCSS (2001) report. For traffic loads on highway bridges reference
might be made to Nowak (1993) and Reid and Caprani (2014).

7.2 Wind Loading

Wind loading can be derived from statistical data for wind speeds. Relatively few data
exist for direct wind force (or even localized wind pressure) although generally it is con-
sidered that wind is a chaotic phenomenon, at least in the micro–time scale. In principle,
the most appropriate probabilistic model for ‘instantaneous’ wind speed at a point is a
Normal process [Davenport, 1961]. In practice, departures from the idealized model
have been noted [e.g. Melbourne, 1977; Holmes, 2007].

A complete description of wind action on structures to generate localized and over-
all wind forces requires consideration of the variation of wind speeds and hence wind
pressures from point to point on the structure, and the response of the structure itself.
However, these are matters for wind mechanics and will not be considered here [e.g.
Simiu and Scanlan, 1978; Holmes, 2007].

To convert instantaneous wind speed V (t) to wind pressure W (t), acting on a partic-
ular part of a structure, use is made often of the standard hydro-dynamic relationship:

W (t) = 1
2
𝜌CV (t)2 (7.1)

where 𝜌 is the density of air (about 12 N / m3) and C is the ‘wind pressure coefficient’, a
quasi-static quantity which depends on the size and orientation of the structure.

Expression (7.1) for the instantaneous wind pressure W (t) can be used directly with
the fully time-dependent reliability calculation approach of Section 6.6 if the dynamic
response of the structure is not significant. However, for flexible structures, account will
have to be taken of dynamic effects. In this case, the conventional procedure is to use
a spectral analysis (see Section 6.8). Because (7.1) is non-linear, it must be linearized
before it can be used in a spectral analysis to relate wind speeds, modelled as a normal
process, to wind forces. The conventional approach is to consider the wind speed V (t)
to be composed of a time-independent mean value V and an additive stationary fluctu-
ating component v(t), assumed to be much smaller than V . Then (7.1) can be linearized
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to [Davenport, 1961; Holmes, 2007]:

W (t) ≈ 1
2
𝜌C[V

2
+ 2V v(t)] (7.2)

where v(t)2 has been ignored. If there is more than one wind velocity component, V and
v(t) should be replaced by vectors in (7.1) and (7.2); when the structure also responds
with a velocity of its own, v(t) would be replaced by the relative velocity. The spectral
density for v(t), which represents the frequency components present in the random pro-
cess v(t), (see Section 6.8), and knowledge of which is required for a spectral analysis,
has been given in different forms by Davenport (1967), Harris (1971) and Kaimal et al.
(1972). Details are outside the scope of this book; readers are urged to consult specialist
literature [e.g. Simiu and Scanlan, 1978; Holmes, 1998].

The output from the spectral analysis, such as the spectrum of forces, or deflections,
is then converted to statistical properties for these quantities as outlined in Section 6.8.

For use with the time-integrated and the discrete time approaches of Sections 6.2 and
6.3, lifetime maximum and annual maximum wind speeds and their probability den-
sity functions are required. These can be derived either directly or indirectly from wind
speed records. Wind speed records of reasonable reliability have, for many areas, been
obtained as part of meteorological data collection.

Wind speed is measured either in terms of the ‘3 s gust’ speed, i.e. the average speed
over a gust of duration of about 3 seconds, or as the ‘fastest-mile wind speed’ (USA)
which is the wind speed averaged over the passage of 1 mile of wind as measured by
the anemometer propeller tips. Clearly the two are not equivalent, particularly at low
wind speeds. These results may be converted to mean hourly wind speeds. Irrespective
of the choice of basis of measurement, it is generally agreed that for non-cyclonic
regions, the annual maximum wind speed as obtained from wind speed records can be
described by an Extreme Value Type I (EV-I) distribution [Simiu et al., 1978; Simiu and
Filliben, 1980; Harris, 1996]. This choice is consistent with the derivation of EV-I as the
asymptotic distribution for maxima with the instantaneous wind speed described by
a Normal process and if wind speed measurement readings are assumed independent
(see Section A.5.11). Other distributions also offer a reasonable, but empirical, fit to
the data, particularly at higher wind speeds. These include the Frechet (extreme value
type II), Rayleigh and Weibull distributions [Thom, 1968; Davenport, 1983; Melbourne,
1977; 1998]. One (theoretical) difficulty is that the EV-I distribution permits negative
V (t) values; this is not the case with the Frechet distribution, which is also considered to
be somewhat more conservative at high V (t) values. However, negative and low values
are of no interest for extreme wind scenarios, and the lower tails of all the distributions,
extreme or otherwise, can be ignored. Only the upper tails of the distributions are of
interest [cf. Galambos, 1987; Castillo and Sarabia, 1992].

The meteorological mechanism for generation of cyclones and hurricanes is entirely
different from that of thunderstorms [Batts et al., 1980]. Data obtained for wind speeds
measured for cyclones and hurricanes therefore represent a different statistical popu-
lation from the data for wind speeds from thunderstorms. It is fundamental in statistic
analysis, including for extreme value analysis, that the population must be homogeneous
and therefore data from these two types of events should not be mixed. Evidence for
the considerable difference in extreme value representation can be seen in some typical
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Figure 7.1 Typical wind gust speeds for cyclones and thunderstorms plotted on a Gumbel (EV) plot
[based on data from Gomes and Vickery, 1976].

recorded data for wind speeds in the Gumbel plot of Figure 7.1. It shows two distinctly
different Gumbel lines.

For the cyclonic wind speed there is some doubt whether long-term predictions can
be made on the basis of the relatively short-term records available. Limited experience
(e.g. El Nino phenomenon and also climate change aspects) suggests that longer-term
atmospheric processes may exist to throw doubt on the usual assumptions that the
processes are sufficiently stationary for application of EV theory. Nevertheless, it has
been proposed that the most suitable model for the annual maximum wind speeds of
cyclonic winds is an EV-I distribution [Russell and Schuëller, 1974; Gomes and Vickery,
1976; Simpson and Riehl, 1981], as indeed Figure 7.1 suggests.

The annual maximum wind speeds for cyclonic and non-cyclonic winds, referred
to above, are suitable for use with the discrete time reliability calculation procedure
(see Section 6.3). The lifetime maximum is also of importance, particularly for the
time-integrated approach of Section 6.2. If FV ( ) denotes the cumulative distribution
function of the velocity V , then, for independent annual maxima, FVL = [FV (v)]L

where L is the lifetime in years. If V has the EV-I distribution, then FVL( ) also will be
EV-I distributed (see Appendix A). Some typical values and parameters are shown in
Table 7.1. It is seen that, for L = 50 years, the ratio of annual mean to 50-year mean
wind speed is roughly 0.7.

The daily maximum wind speed is of interest in determining daily maxi-
mum wind loads. These can be considered to be good approximations for the
‘average-point-in-time’ loadings. Wind speed data of this type can be obtained from
meteorological centres. An EV-I distribution again appears appropriate.

The wind pressure loading W may be obtained from wind speed using the standard
hydrodynamic relationship (7.1), which can be rewritten for particular structures or sur-
faces of structures, as [Holmes, 2007]:

W = kCpV 2 (7.3)

where Cp is the pressure coefficient (which may be a function of V ) and k = cEG is a
‘constant’ for a given structure (c is a ‘constant’, E an exposure coefficient and G the ‘gust
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Table 7.1 Typical average values of mean hourly wind speed data.

Annual maximum 50-year maximum

Mean speed Mean speed

(m/s) (miles/h)
Coefficient
of variation (m/s) (miles/h)

Coefficient
of variation

USAa) 15.5 (34.7) 0.12–0.17 24.1 (18.6) 0.11–0.14
Australiab) 14.9 (33.3) 0.12 24.7 (55.2) 0.12
Cardington, UKc) 15.5 (34.7) 0.24 23 (≈ 52) 0.12

a) Converted from ‘fastest-mile’ wind records [Simiu and Filliben, 1980].
b) Converted from ‘3-sec.’ wind records [Pham et al., 1983].
c) Converted from ‘3-sec.’ wind records [Shellard, 1958].
Mean hourly speeds ≈ 0.77 × fastest-mile speeds
Mean hourly speeds ≈ (1∕1.55 − 1∕1.7) × 3- sec. gust speeds.

factor’, which depends on wind turbulence and the dynamic interaction of the wind and
the structure) [Solari, 1993].

Standard wind engineering texts [e.g. Simiu and Scanlan, 1978; Holmes, 2007] or
recommendations [JCSS, 2001] should be consulted for appropriate mean values for
the above coefficients, which depend on structure size, orientation with respect to wind
direction, structure geometry, surface roughness, etc.

Expression (7.3) may be used directly in a limit state function without formally
deriving the statistical parameters and distribution of W . However, if these are never-
theless required, such as in code calibration work, it must be noted that the probability
distribution for W cannot be obtained in closed form (since the square of EV-I has no
simple distribution). Instead techniques such as Monte Carlo simulation must be used
to determine an appropriate distribution [Dorman, 1983]. With inclusion of the data
for the other parameters, it has been found that the EV-I distribution yields a good
empirical fit for loads greater than the 90 percentile [Ellingwood et al., 1980]. Distri-
butions and data for Cp, G and E must be estimated; however, it is by no means clear
that Cp, for example, is a constant as commonly assumed; a Lognormal distribution
has been suggested. As noted, typically the mean values for these parameters can be
obtained from wind loading codes. Estimates for the coefficients of variation VCp

, V G
and V E are of the order 0.12–0.15, 0.11 and 0.16 respectively [e.g. Ellingwood et al.,
1980; Schuëller et al., 1983; Davenport, 1987]. These results are suitable for use in code
calibration (see Chapter 9).

For dynamically sensitive structures, annual or lifetime maximum probability density
functions for loads are not obtainable directly. Recourse must be made to spectral
analysis to convert instantaneous results to equivalent annual or lifetime maxima
[Simiu and Scanlan, 1978]. Under resonant dynamic response, as may occur, for
example, for bridge decks in suspension bridges, expression (7.3) is not valid. For these
special treatment is required [e.g. Kareem, 1988; Holmes and Pham, 1994].

As noted above, directional effects may be important [Cook, 1983; Wen, 1983, 1984;
Holmes, 2007]. Wind is a turbulent phenomenon and hence will change direction
locally, as well as having an overall direction. Meteorological data can be used for
overall directionality statistics; it is not uncommon to assume a uniform distribution
for wind direction for locations for which records are insignificant.
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Model recommendations for modelling wind loads for code writing purposes are
given in the report by the Joint Committee on Structural Safety (2001).

7.3 Wave Loading

As might be imagined, the determination of statistical descriptions for wave loads has
many features in parallel with that for wind loads, since both involve structure-fluid
interaction. It is not proposed to discuss the physics of the problem in detail here;
reference might be made, for example, to Sarpkaya and Isaacson (1981) for an extensive
treatment of wave forces. Only a very brief account will be given here, with emphasis
on statistical properties [see also Schuëller, 1981].

As a first approximation, the instantaneous velocity U(t) and the acceleration U̇(t) of
a water particle in a wave (see Figure 7.2) can be represented by independent Normal
processes. The velocity has a mean equal to the current [Borgman, 1967]. If records for
U(t) and U̇(t) are available, e.g. from current measurements, 𝜎U and 𝜎U̇ can be estimated
directly. Where this is not the case 𝜇U , 𝜎U and 𝜎U̇ can be calculated from wave theory
and knowledge of the frequency components of wave height (i.e. the wave spectrum).
The latter must be obtained from measurements, but now of wave height, wave period
and wind speed.

Wave loading is of most interest during storm conditions. More generally, loadings
during individual sea-states are of interest. These usually are taken as 3-hour events
during which conditions are assumed constant. During a sea-state or a storm event it
may be assumed that the sea elevation 𝜂(t) is a stationary Normal (Gaussian) stochastic
process, composed of only a small range of frequencies, i.e. it is assumed to be a
‘narrow band’ process (see Section 6.8). These assumptions allow the sea elevations
to be related to the wave spectrum S𝜂(𝜔), where 𝜔 is the wave frequency (𝜔 = 2𝜋∕T ,
where T is the period). The spectrum obviously depends on the local conditions,
such as fetch, for the development of wind-generated waves and water depth. As a
result, various spectra have been proposed. For limited fetch conditions such as occur

wavelength L

wave celerity c

Typical water

particle motion

Tubular

structure

Normal force

Q(t) per unit

length

Water

depth

d

z

x

s

η(t)

H

U(t)

D

Figure 7.2 Schematic representation of water particle motion, wave shape and force exerted on a
tubular structural member.
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in the North Sea, the JONSWAP spectrum has been developed [Hasselmann et al.,
1973]. Pierson and Moskowitz (1964) developed a spectrum for fully developed sea
states. The typical shape of such spectra is shown as SH(𝜔) in Figure 6.29. Typically the
parameters describing the spectrum SH(𝜔) are the significant wave height HZ and the
zero upcrossing period TZ . Because of the assumption of stationary conditions during a
sea-state, these parameters are constant during the sea-state. Usually they are estimated
from observations during a particular sea-state, thereby allowing estimates to be made
of probability distributions for HZ and TZ . Together with the wave spectrum this allows
the statistical properties of the probability distribution of wave height to be estimated.
For sinusoidal waves, the mean is at the mean water depth, so that 𝜇H = 0; the variance
can be estimated from (6.158) as 𝜎2

H = var[𝜂(t)] = ∫
∞
0 S𝜂(𝜔)d𝜔. In principle this means

that, for a fully developed sea, for which independence between successive wave heights
usually is assumed, the Rayleigh distribution (see Section A.5.13) is considered to be
the most appropriate for wave height [Longuet-Higgins, 1952; Holmes et al., 1983].
However, the other extreme value distributions (EV-I and EV-II) (see Sections A.5.11
and A.5.12) also have been proposed as suitable (but empirical) fits to data for different
geographical locations. Note that in all cases these extreme value probability distri-
butions should be considered conditional, in the sense that they apply provided that a
storm event or a particular sea-state occurs. They also may be direction-dependent.

Water particle velocities U(t) are obtained from knowledge of wave height H and wave
length L (see Figure 7.2). Many different theories have been proposed for wave height
[Sarpkaya and Isaacson, 1981] but usually it is sufficient for wave force calculations to
employ the so-called linear theory due to Airy [Lighthill, 1978]. This theory also can be
used easily in spectral calculations.

According to Airy theory, the water surface elevation is given by a sine wave:

𝜂(x, t) = H
2

sin(𝜔t − kx) (7.4)

where 𝜔 = 2𝜋∕T is the wave frequency, T = 2𝜋∕𝜔 is the wave period, t is the time, H
is the wave height, L is the wave length (distance between crests), k = 2𝜋∕L is the wave
number and x is the horizontal distance. The wave celerity is given by c = 𝜔∕k = L∕T
(see Figure 7.2). The horizontal components of velocity U and acceleration U̇ are given
by [e.g. Lighthill, 1978; Weigel, 1964]:

Uh = 𝜔
H
2

cosh[k(z + d)]
sinh(kd)

sin(𝜔t − kx) (7.5a)

U̇h = dU
dt

= 𝜔2 H
2

cosh[k(z + d)]
sinh(kd)

cos(𝜔t − kx) (7.5b)

where d is the water depth and z is the location of U, U̇ below water surface.
The vertical component of velocity has a similar form, with sinh( ) for cosh( ) and cos( )

for sin( ). The acceleration component follows directly.
With known statistical properties for H , those for the components of water particle

velocity U and water particle acceleration U̇ can be determined directly from expres-
sions such as (7.5a) and (7.5b). As noted earlier, usually it is assumed that these may be
represented by a Normal process, with the mean for Uh being the steady (horizontal)
current, and the mean for U̇h being zero.
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Once the water particle velocity and acceleration are known at any depth z (Figure 7.2),
the normal force per unit length exerted at a particular location of a slender cylinder
such as typical in steel offshore structures is given by [Morison et al., 1950]

Q(t) = kdUn|Un| + kmU̇n (7.6)

where Un is the vector of incident water particle velocities normal to the cylinder. This
expression originally was proposed for vertical piles but commonly is assumed to be
valid for any pile orientation and also more generally. The first term in (7.6) relates to
the drag force exerted by the wave on the pile; the second term relates to the influence
of the mass of the water displaced by the cylinder on its oscillatory behaviour. For a
circular cylinder of diameter D, and water of density 𝜌, the coefficients kd and km are
given by

kd =
Cd𝜌D

2
, km =

Cm𝜌𝜋D2

4
(7.7)

where the dimensionless drag and mass coefficients Cd and Cm have been extensively
experimentally investigated, including for oscillating flows of given frequency [e.g.
Morison et al., 1950; Tickell, 1977; Holmes and Tickell, 1979]. The results show a large
degree of scatter, particularly for cylinders not oriented in a vertical direction. Some
typical values are shown in Table 7.2.

The probability density function for Q at a particular location (x, z) can be determined
from (7.6) and the known properties for U and U̇ using convolution or by Monte
Carlo simulation. The mean and variance can be approximated by (A.178) and (A.179)
respectively. Usually it is found that the probability density function for Q has more
extensive upper and lower tails than a Normal distribution with the same mean and
variance, so that approximation by a Normal distribution would be non-conservative
for higher wave load estimation. Nevertheless, a common assumption [Borgman, 1967]
is that the extreme cylinder force is Rayleigh distributed (see Section A.5.13), which
implies the further assumption of a narrow-band process (see Section 6.8). This also
tends to underestimate the probability of occurrence of higher wave loads. Other
probability distributions have been examined for representing the response of the
structure, for example, using Monte Carlo simulation. This suggests that a mixture of
Generalized EV and Generalized Pareto distributions provide an appropriate empirical
fit [e.g. Wang et al. 2013].

The extreme value distribution for Q(t) can be obtained also from calculation of the
upcrossing rate through the use of (6.54). The upcrossing rate can be found, in principle,
from Rice’s formula (6.72). However, this requires the existence of the fourth moment
of the velocity spectrum, a rather restrictive requirement [Borgman, 1967].

Table 7.2 Indicative values for coefficients Cd and Cm for smooth
clean cylinders.

Coefficient Mean Typical range Coefficient of variation

Cd 0.65 0.6–0.75 ≈ 0.25
Cm 1.5 1.2–1.8 ≈ 0.20−0.35
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In most cases ‘jacket’-type offshore structures are sufficiently flexible for
dynamic effects to be important. The usual approach is to employ spectral analysis
(see Section 6.8). The procedure starts from the wave height spectrum SH(𝜔) and
requires linear relationships to convert wave height successively to velocities and
accelerations [(7.4a) and (7.4b)], wave forces and structural load effects (see Figure
6.29). Linearization of Morison’s equation (7.6) in the velocity term is required, a
considerable approximation since the mean of the velocity is either zero or equal
to the (generally small) current, unlike the linearization required for wind velocities
(see Section 7.1). Details of the spectral analysis and the required simplifications are
described in the classic paper by Borgman (1967), where correlation between wave
forces at different locations also is considered.

In general, the resulting load effects are assumed to be Normal distributed, with vari-
ance obtained from the load effect spectrum through (6.158). Mean values must be
obtained from a mean value analysis.

In order to refine the analysis outlined so far, second order wave theory has been
proposed as more suitable to describe wave crest distributions [e.g. Forristall, 2000;
JCSS, 2006]. However, even with such refinement, it is not possible to predict the
so-called ‘rogue’ or ‘freak’ waves that have been observed from time to time [Haver
and Andersen, 2000]. The postulated causes for these extreme waves range from what
are considered to be instabilities in otherwise uniform groups of waves to unusual
meteorological conditions [Bitner-Gregersen and Toffoli, 2011]. It is possible, for
example, to compare this with the differences in the maximum wind speeds caused
by thunderstorms and cyclones (Figure 7.1)—both of which may, in turn, affect wave
height. Clearly, improved understanding of the ‘rogue’ wave height phenomena is
required in order to overcome the considerable theoretical difficulties currently
associated with their prediction [Olagnon and Prevosto, 2008].

7.4 Floor Loading

7.4.1 General

Live loading on floors must be modelled, since long-term records are not available, and
since there are many possible parameters that may influence it. Attention will be con-
fined herein mainly to office live loads, but similar considerations apply to other types of
loading, such as self-weight, domestic and crowd floor loading and also car-park floor
loading [JCSS, 2001].

Originally data used in design consisted of estimates of dense crowd loading. Thus, in
1883, UK floor loads were set at 140 lbf / ft2 (approximately 7 kPa) for domestic dwellings
and 170 - 225 lbf / ft2 (8.3–11.0 kPa) for public areas. This was based on a typical man
(weight, 170 lbf ) occupying about 1 ft2 in a crowd situation. For multi-storey buildings it
is unlikely that all floors will be subject to crowd loading at the same time in correspond-
ing locations. This led to the concept of ‘live load reduction’, a probabilistic concept that
allows a reduction in load per unit area as the area under consideration increases. Such
a rule was already in evidence in New York in the early 1900s.

Later work, directed mainly at setting design loadings rather that complete proba-
bility distributions, identified additional particular features of floor live loading [e.g.
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Figure 7.3 Schematic time histories of typical live loads.

Mitchell and Woodgate, 1971a; Lind and Davenport, 1972; Culver, 1976; Sentler, 1976;
Choi, 1991, 1992]:
(a) typically loading consists of sustained plus short-term transient effects (Figure 7.3);
(b) changes in occupancy produce changes in the sustained loading (Figure 7.3);
(c) variation of loading exists within rooms, see Figures 7.4(a) and 7.4(b);
(d) variation of loading also exists between rooms, but there usually is some correlation;
(e) a degree of correlation usually exists between loadings on different floors

(Figure 7.5);
(f ) different uses of office spaces produces quite different ‘arbitrary-point-in-time’ (e.g.

mean) loadings, which vary somewhat with floor area, see Figure 7.4(c).
In addition, there is the area dependence effect already mentioned (Figure 7.6). Ideally,
all these factors must be accounted for in a model of floor loading. In order to make
progress, sustained loading will be discussed first, followed by transient loads. These
will then be combined using an appropriate load combination procedure.

7.4.2 Sustained Load Representation

The approach adopted below is to derive an expression for the floor load intensity at
some arbitrary location in a building and then to convert this to an equivalent uniformly
distributed loading. This fits in with conventional design loads and simplifies application
in reliability analyses. Allowance is then made for tenancy changes before the complete
probabilistic model is developed.

The ‘arbitrary-point-in-time’ load intensity wij(x, y) on an infinitesimal area ΔA at
location (x, y) on the ith floor of the jth building can be modelled in a simplified way
as [Pier and Cornell, 1973]

wij(x, y) = m + 𝛾bld + 𝛾flr + 𝜀(x, y) (7.8)
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Figure 7.4 (a) Percentage of live load within 600 mm (2 ft) of walls [based on Culver, 1976].
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Davenport, 1972]. (c) Floor load intensity for different usages, showing also the effect of area [based on
data reported in Choi, 1992].
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9.0
200

180

160

140

120

100

80

60

40

20

0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Area (ft.2)

0 20 40 60 80 100

99.9%

Area (m2)

99%

95%

120

L
o

ad

In
te

n
si

ty
 k

P
a

1
b

/s
q

.f
t.

140 160 180 200
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basements and ground floors; after one occupancy only [Mitchell and Woodgate, 1971a]. Reproduced
from Current Paper CP 3/71, Building Research Station, by permission of the Controller, HMSO. Crown
copyright.

where m is the ‘grand’ mean load intensity, 𝛾bld the deviation of floor load intensity from
m for building j, 𝛾flr the deviation of floor load intensity from m for floor i for all buildings
and 𝜀 the spatial uncertainty of floor loading for a given floor (also termed a zero mean
‘random field’ [see Arnold, 1981; Vanmarcke, 1983]).

The parameters 𝛾 and 𝜀 are random variables with zero means and are assumed inde-
pendent, although obviously this is not always the case. The term m + 𝛾bld represents
the variation of average floor load from building to building; survey data such as those
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of Mitchell and Woodgate (1971a) or Choi (1992) would allow 𝛾bld to be evaluated if
the data were sufficiently extensive. A similar argument applies to 𝛾flr . Given the uncer-
tainty in the model, a ‘second-moment’ representation is sufficient, so that the mean wij
is simply 𝜇w = m and its variance is

𝜎2
w = 𝜎2

bld + 𝜎2
flr + 𝜎2

𝜀 (7.9)

In order to use model (7.8), 𝜎bld, 𝜎flr and 𝜎𝜀 must be evaluated. This can be done from
survey data. Consider a floor of given area A, of size a × b. The total load on this area is
given by

L(A) = ∫
a

0 ∫
b

0 w(x, y)dx dy (7.10)

with mean and variance:

E[L(A)] = ∫
a

0 ∫
b

0 E[w(x, y)]dx dy = ∫∫m dx dy = mA (7.11)

var[L(A)] = ∫
a

0 ∫
a

0 ∫
b

0 ∫
b

0 cov[w(x1, y1), w(x2, y2)]dx1 dx2 dy1 dy2

= ∫
a

0 ∫
b

0 ∫
b

0 ∫
b

0 {𝜎
2
bld + 𝜎2

flr + cov[𝜀(x1y1), 𝜀(x2y2)]}dx1 dx2 dy1 dy2

(7.12)

The latter expression can be evaluated if cov[ ] is known [cf . Vanmarcke, 1983]. One
approach is to recognise that the covariance is likely to be inversely proportional to the
distance between two points such as 1 and 2, thus

cov[ ] = 𝜌c𝜎
2
𝜀e−r2∕d (7.13)

where r2 = (x1 − x2)2 + (y1 − y2)2, d is a constant, 𝜌c is a correlation coefficient to allow
for the so-called ‘stacking effect’ vertically between floors (the tendency for occupants
to load floors in a similar pattern) and 𝜎2

𝜀 is the variance in 𝜀.
Clearly r represents a horizontal and 𝜌c a vertical spatial parameter. In general 𝜌c would

vary from location to location, but this is ignored here for simplicity. The constant d and
the parameters 𝜌c and 𝜎2

𝜀 may be evaluated from observations. For one floor, 𝜌c = 1, and
hence (7.12) may be shown to reduce to [Pier and Cornell, 1973]

var[L(A)] = (𝜎2
bld + 𝜎2

flr)A
2 + A𝜋d 𝜎2

𝜀K(A) (7.14)

where

K(A) =

[
erf

(A
d

)1∕2
−
(

d
A𝜋

)1∕2

(1 − exp(−A∕d))

]2

and erf( ) is the error function.
The load L(A) can be converted to an average load per unit area by dividing through

by A, so that L(A)∕A ≡ U(A), with mean E[U(A)] = m and variance

var[U(A)] = 𝜎2
bld + 𝜎2

flr + 𝜋 d𝜎2
𝜀

K(A)
A

(7.15)
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Figure 7.7 Variation of loading intensity probabilities with tributary area; floors other than lowest
basements and ground floors; after 12 occupancies [Mitchell and Woodgate, 1971a]. Reproduced from
Current Paper CP 3/71, Building Research Station, by permission of the Controller, HMSO. Crown
copyright.

For n floors of equal area A the variance becomes

var[U(nA)] = 𝜎2
bld +

𝜎2
flr

n
+ 𝜋 d𝜎2

𝜀

K(A)
nA

+ 𝜌c𝜎
2
𝜀

(n − 1)K(A)
nA

(7.16)

Survey data such as those shown in Figures 7.5–7.7 [Mitchell and Woodgate, 1971a]
now may be used to estimate the parameters in (7.15) and (7.16). For example 𝜎2

bld + 𝜎2
flr ,

𝜎2
𝜀 and d may be obtained from the relationship between the coefficient of variation

{var[U(A)]}1/2/m and area A, while 𝜌c and 𝜎2
bld may be obtained from the relationship

between the coefficient of variation for the column load {var[U(A)]}1/2/m and n, the
number of storeys supported [Pier and Cornell, 1973].

7.4.3 Equivalent Uniformly Distributed Load

With the estimation of the variances in (7.9), the load intensity w(x, y) given by (7.8)
is defined completely (in second-moment terms). However, often it is the equivalent
uniformly distributed load (EUDL) which produces the same particular internal action
(or load effect) as w(x, y) that is desired. This is the type of loading specified in structural
design codes. The fact that most loading codes also specify pattern loading, with alter-
nate bays loaded and unloaded to somehow represent a worst condition, will be ignored
in the discussion to follow. Clearly, to take it into account will require probabilistic
considerations and the notion of an equivalent pattern load (EPL) [Reid, 1997].

A typical ‘realization’ of the actual loading w(x) along the length x of a beam is
shown in Figure 7.8(a). What is sought is the equivalent uniformly distributed load
(EUDL), shown in Figure 7.8(c), such that, for example, the reaction R is estimated
correctly.
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Figure 7.8 Equivalent uniformly distributed load EUDL related to actual load realization.

To proceed, let use be made of the influence line I(x) shown in Figure 7.8(b). The
reaction R can then be given both in terms of w(x) and in terms of EUDL as

R = ∫
2L

0 w(x) I(x) dx = ∫
2L

0 (EUDL) I(x) dx (7.17)

but, since (EUDL) is not a function of x,

(EUDL) =
∫

2L

0 w(x) I(x) dx

∫
2L

0 I(x) dx
(7.18)

By using other appropriate influence lines, similar expressions can be derived for other
actions (or load effects) while, in two dimensions, influence surfaces take the place of
influence lines. By direct analogy, for a EUDL over an area

(EUDL) = L =
∫AI
∫w(x, y) I(x, y) dx dy

∫AI
∫I(x, y) dx dy

(7.19)

where AI is the so-called ‘influence area’. It corresponds directly to the total beam length,
or ‘influence length’ 2L in Figure 7.8, which is seen to be twice that of the tributary length
(equal to L), for a reaction (half-span length for each span). Similarly, the influence area
AI is not, in general, identical with the tributary area AT commonly used with live load
reduction formulae for floor loadings in structural design codes. Some typical influence
lines and surfaces are shown in Figure 7.9.

It follows readily that the mean for L is E(L) = m and is unchanged from the
arbitrary-point-in-time value, but the variance becomes larger:

var(L) =
∫AI
∫∫AI

∫I(x1, y1)I(x2, y2)cov[w(x1, y1), w(x2, y2)]dx1 dy1 dx2 dy2[
∫AI
∫I(x, y) dx dy

]2

(7.20)
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(g) Midspan moment (h) Single storey column load

Influence area = 2l × 2w Influence area = 2l × 2w

l

w

l l l

w

w

w

Figure 7.9 Typical influence lines (in plane frames) and typical influence surfaces [Reproduced from
McGuire and Cornell (1974) by permission of the American Society of Civil Engineers].

Expression (7.20) can be bounded by assuming, conservatively, that the w(x, y) are
independent, from which it may be shown, using (7.15), that:

var(L) ≤ 𝜎2
bld + 𝜎2

flr + 𝜋d𝜎2
𝜀

K(A)
A

k (7.21a)

where

k =
∫AI
∫I2(x, y) dx dy[

∫AI
∫I(x, y) dx dy

]2 (7.21b)

Provided that appropriate influence areas AI are used, the value of the equivalent
uniformly distributed load L is relatively insensitive to the action being considered.
This can be seen in the value k in (7.21) [McGuire and Cornell, 1974; Ellingwood and
Culver, 1977]:
end moments in beams: k = 2.04
column loads: k = 2.2
midspan beam moments: k = 2.76

It follows that, in general, the variances of calculated EUDL will be approximately
similar if both the influence areas are approximately similar and the influence surface
shapes are approximately similar. The only exception is the EUDL value for mid-span
shear, which, as expected, becomes comparable only if half the influence area is used
[McGuire and Cornell, 1974].

Expressions (7.14–7.16 and 7.21) can be simplified further by assuming that the spatial
correlation between loadings at different points on a floor is completely random, that is,
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it is uncorrelated for any finite distance apart (also known as assuming the correlation is
governed by ‘white-noise’). Then K(A) becomes a constant and (7.21a) is now given by:

var(L) ≤ 𝜎2
bld + 𝜎2

flr +
𝜎2

S k
A

(7.22)

where the parameter 𝜎2
S is a constant obtained from fitting to observations [cf. Elling-

wood and Culver, 1977; McGuire and Cornell, 1974].

7.4.4 Distribution of Equivalent Uniformly Distributed Load

By taking live load survey data and converting them directly to EUDL, it is possible
to produce histograms showing the relative occurrence of different levels of equivalent
loadings. This is shown in Figure 7.10 for increasing floor areas [Pier and Cornell, 1973].

As expected, the probability density function required to model these results changes
from highly skewed to approximately Normal as the contributing floor area is increased
(see Section A.5.8). An appropriate model is the Gamma distribution:

fL(x) =
𝜆(𝜆x)ke−𝜆x

Γ(k)
x ≥ 0 (7.23)
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Figure 7.10 Histograms of floor load intensity as modelled by distribution functions. Reproduced
from Pier and Cornell (1973) by permission of the American Society of Civil Engineers.
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The parameters 𝜆 and k can be obtained from the mean and variance of L
(see Section A.5.6). The Gamma distribution (7.23) appears to fit the observed
data better than the Normal distribution or the Lognormal distribution in the > 90
percentile range [Corotis and Doshi, 1977]. The Extreme Value type I distribution
is another possibility and is appropriate on physical grounds since the EUDL value
reflects the maximum loading for a time interval.

As already noted in Section 6.5.1.6, it would be expected that for any structure there
will be periods of zero live load and hence the probability density function strictly should
have a probability ‘spike’ at the origin (see Figure 6.13). However, this is often (conser-
vatively) ignored in modelling live loading.

The fact that the value of the EUDL is relatively insensitive to the type of internal
action (stress resultant) is illustrated by plotting the load values at a given percentile
of, say, the Gamma distribution against the influence area. A typical plot is given in
Figure 7.11 in terms of the 90% fractiles (‘design’ values) for maximum sustained load
(see Section 7.4.5) and maximum total load (see Section 7.4.7).

Typical values of parameters for arbitrary-point-in-time sustained floor loads are
given in Table 7.3 for various floor loading types, including, for comparison, one set
of information for domestic floors, one for retail spaces and one for car park floors
(see also JCSS, 2001, 2006]. The differences in the mean m for office loads have been
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Figure 7.11 Single-storey beam and column fractiles as function of influence areas. Reproduced from
McGuire and Cornell (1974) by permission of the American Society of Civil Engineers.
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Table 7.3 Typical parameters for sustained floor loads (arbitrary-point-in-time values).

Occupancy
Mean
m (kPa) 𝝈2

bld + 𝝈2
flr 𝝈2

S

Mean
occupancy
T years Reference

Office UK 0.60 0.053 1.57 8 Mitchel and Woodgate (1971a)
Office USA 0.53 ≈ 0.06 1.39 8 Chalk and Corotis (1980)
Office Australia 0.52 0.133 0.8 14.8 Choi (1992)
Office Sweden 0.364 0.038 0.29 10 Sentler (1974)
Apartments Sweden 0.285 0.001 0.28 5 Sentler (1976)
Domestic UK 0.59 0.077 0.635 10 Mitchell and Woodgate (1977)
Retail UK 0.75 0.249 0.458 7 Mitchell and Woodgate (1971b)
Carpark UK 0.66 – 1.61 0.000 8 Konig et al. (1985)

attributed (Choi, 1992) to differences in survey methodology, with, for example, room
partitions etc. not being included in the US survey data. This accounts for about
0.04 kPa. Further, the Australian survey was performed some 10–20 years after the US
and UK studies and includes (paper) filing and other storage areas. This is thought to
account for the greater variation (𝜎2

bld + 𝜎2
flr) evident in the Australian results. The low

variability of floor loads in apartments has been attributed to the quite consistent way
people use domestic apartments, resulting in only minor variations in floor loading
(Sentler, 1975). This is unlike offices in more recent times for which (paper file) storage
areas and equipment adds significantly to the variability. Data for open-plan office
spaces and large areas with light-weight computer equipment and little or no paper
storage appear not yet available. However, the older values are conservative.

7.4.5 Maximum (Lifetime) Sustained Load

For conventional structural design code work and when the time-integrated approach
to structural reliability is used (see Section 6.2), it is desired to know the distribution of
the lifetime maximum sustained load LS. This is the maximum load that can be expected
to act during the life of the structure.

It is clear from Figure 7.3 that LS will depend on the changes in the occupancy and/or
use of the floor during its lifetime. In formulating a model for LS, let it be assumed that
the loadings relevant to each occupancy are independent. Thus the maximum sustained
load LS during the lifetime tL of the structure is

LS = max
t
[L(t)], 0 < t < tL (7.24)

where the cumulative distribution function of LS is given by FLS
(x) = P(LS ≤ x), also

given in terms of the level crossing concept (Section 6.5.3) by

FLS
(x) = P[L(0) ≤ x]P[no ‘upcrossing’ by L(t) of x, in 0 ≤ t ≤ tL] (7.25)

Here P[L(0) ≤ x], which is equal to FL(x), denotes the probability that the initial sus-
tained load is less than or equal to x. It is assumed in (7.25) that the maximum sustained
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load is not caused by the first time the structure is loaded (as, for example, by the first
tenant) and therefore the probability P[L(0) > x] has been ignored. Subsequent changes
in loading, as likely to be caused by a change in occupancy, could cause the occurrence of
an ‘upcrossing’ event (Section 6.1) for the floor being considered (Figure 7.3). However,
a change of occupancy need not always cause an upcrossing event. To model this, data
[Mitchell and Woodgate, 1971a; Harris et al., 1981] suggest that changes of occupancy
can be approximately (and asymptotically) represented by a Poisson counting process
(cf. Section 6.5.1.2). This means the cumulative distribution function for LS is:

FLS
(x) = FL(x)e−vxt (7.26)

where vx is the average rate of upcrossings. It is now necessary to relate the rate of
upcrossings to the rate of occupancy changes. During a small interval of time Δt, the
probability that an upcrossing occurs is given by

vxΔt = P(one upcrossing in time t to t + Δt)
= P(upcrossing in this Δt |occupancy change in this Δt)vo

(7.27)

where vo is the rate of occupancy changes. Expression (7.27) may be written also as

vxΔt = P{[L(t) < x] ∩ [L(t + Δt) ≥ x] occupancy change in this Δt}vo Δt (7.27a)

Cancelling Δt, and assuming that successive loads L are independent, leaves
(cf . Sections 6.5.1.4 and 6.5.3)

vx = FL(x)[1 − FL(x)]vo (7.28)

Substituting into (7.26) produces the cumulative distribution function for LS in terms of
that for the arbitrary-point-in-time load L as

FLS
(x) = FL(x) exp{−FL(x)[1 − FL(x)]vot} (7.29)

For extreme loads, FL(x) → 1 so that (7.29) may be approximated as

FLS
(x) ≈ exp{−vot[1 − FL(x)]} (7.30)

Survey data suggest that there is a large degree of uncertainty about the rate of occu-
pancy changes vo. This is shown in Table 7.3 where T denotes the mean duration of
occupancy. Assuming ergodicity (see Section 6.4.4) it follows that for typical US or UK
office occupancy, vo = 1∕T = 0.125.

The magnitude of the maximum lifetime sustained load LS is well described by either
the Type I Extreme Value distribution or the Gamma distribution in the region of high
load values. Methods for selecting the distribution and for fitting the distributions
are available in the extreme value literature (e.g. Harris et al., 1981; Galambos, 1987;
Castillo, 2012).

With multiple zones (floors, bays, etc.) contributing to the total load effect, such as
in column loads, it is unlikely that all zones change tenancy at the same time [Chalk
and Corotis, 1980]. However, data for the necessary correlation does not appear to be
available. Ignoring this effect is obviously conservative.
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7.4.6 Extraordinary Live Loads

Extraordinary live loads are those resulting from groups of people and from crowds.
Such loads may result also from furniture stacking, repair work and emergency
crowding. Usually they are not considered in live load surveys. For obvious reasons it is
difficult to collect data about extraordinary live loads. Most available information has
been gathered using questionnaires. It follows that there is considerable uncertainty
about such ‘data’ and hence about the derived extraordinary loading.

Extraordinary live loads may be modelled as clusters of loads (e.g. persons) acting
within a series of load cells randomly distributed over the floor area of interest. If a
single occurrence of an extraordinary live load is denoted by E1, then a plausible model
might be [McGuire and Cornell, 1974; Ellingwood and Culver, 1977]

E1 = QN𝜆 (7.31)

where Q is the weight of a single person, (typically𝜇Q = 0.67 kN or 150 lbf, 𝜎Q ≈ 0.11 kN
or 25 lbf, N is the number of loads (i.e. persons) per cell and 𝜆 is the mean number of
cells per specific area A.

For offices and retail spaces typical values for N are 𝜇N ≈ 4 and 𝜎N ≈ 2 while for
domestic situations, Madsen and Turkstra (1979) suggested 𝜇N ≈ 1 and 𝜎N ≈ 0.67. For
car parks extraordinary live loads probably can be ignored.

The load E1 reasonably may be assumed to be EV-I or Gamma distributed. Using
second-moment concepts, the equivalent uniformly distributed load denoted Le1, has
mean and variance given by (A.167) and (A.169):

𝜇e1 = 𝜇Q 𝜇N
𝜆

A
(7.32)

and

𝜎2
e1 = (𝜇2

Q𝜎
2
N + 𝜇2

N𝜎
2
Q + 𝜎2

Q𝜎
2
N )

𝜆k
A2 (7.33)

The parameter k is the influence area parameter given by (7.22) and has here been
assumed to be identical for each load Q; this needed not be so in general.

The maximum extraordinary live load will consist of the contribution of a number
of extraordinary loads (perhaps of different types). Typically there will be a random
number of such occurrences of these loads during a given (reference) period tL. Since
the detailed probability distributions for each of these various types of extraordinary
live loads is not generally available, let the probability distribution Fe1( ) for the instan-
taneous extraordinary live load be used as a surrogate for all these various load effects.
Further, it is reasonable to assume that the arrival of each extraordinary live load is gov-
erned by a Poisson counting process (cf . Section 6.5.1.2). Then, following a derivation
parallel to that for expression (7.30), the cumulative probability distribution function for
the maximum extraordinary live load acting over a period tL may be approximated by:

FLe
(x) ≈ exp{−vetL[1 − Fe1(x)]} (7.34)

Although data are scarce, it seems reasonable to assume that ve, the average rate of
extraordinary live load arrivals, is about one per year, and that 𝜆 which is a function
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Table 7.4 Typical parameters for (multiple) extraordinary live loadsa).

Occupancy
𝝁Q
kPa

𝝈Q
kPa 𝝁N 𝝈N

T
years Reference

Office US Harris et al. (1981)
• normal crowding 0.67 0.11 4 2 2.5
• emergency crowding 0.67 0.11 10 5 50
• remodelling 2.27 0.68 1 1 4

Retail US 0.67 0.11 4 2 Madsen and Turkstra (1979)
Domestic US 0.67 0.11 1 0.67 Madsen and Turkstra (1979)
Officeb)Australia Choi (1991)

• normal crowding 0.66 0.11 17.2 23 1
• emergency crowding 0.66 0.11 30.2 33.1 50
• remodelling 9.42 9.66 1 0 5

a) These parameters are closely similar for single loads (cf. McGuire and Cornell, 1974; Ellingwood and
Culver, 1977).

b) The values for N are higher due to Choi’s use of a greater cell area (mean 23.8 m2 cf. 16 m2).

of area A, lies in the range 2 cells per 17 m2 for ‘small’ areas, to an average of 1 cell
per 17 m2 for ‘large’ areas, with a ‘small’ area defined as 17 m2 (180 ft2). An empirical
relationship 𝜆 = (1.72A − 24.6)1∕2, A > 14.4 m2 (or 𝜆 = (0.16A − 24.6)1∕2, A > 155 ft2)
has been suggested to relate 𝜆 to the total floor area A [McGuire and Cornell, 1974].
Table 7.4 summarizes some typical data for extraordinary live loading as obtained from
several surveys.

7.4.7 Total Live Load

To obtain a total live load it is necessary to consider the combined effect of the
component loadings. The combination of a sustained live load modelled, for example,
as a Poisson square wave process and an extraordinary live load modelled as, say, a
Poisson spike process is not necessarily an easy matter, as noted in Chapter 6. However,
some progress can be made with a simplified time-integrated approach, developed
specifically for floor live loads and verified against field data. As described briefly below,
it is based on earlier work in which the main emphasis was placed on deriving design
loadings (i.e. upper fractiles) rather than complete probability distributions [McGuire
and Cornell, 1974].

In accordance with Turkstra’s rule (6.155), the total live load Lt during the lifetime of
the structure can be considered as Lt = max

i
(Lti). Intuitive argument suggests that the

Lti terms are likely to be one of the following:

Case I: Lt1 = LS + Le1 (7.35a)
Case II: Lt2 = L + Le (7.35b)
Case III: Lt3 = LS + Le (7.35c)

Here L and LS are interpreted as the arbitrary-point-in-time sustained live load and
the maximum lifetime live load respectively, Le as the maximum lifetime extraordinary
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live load and Le1 as the maximum extraordinary live load during one sustained loading
period. Each case therefore consists of a maximum load and an arbitrary-point-in-time
load (cf . 6.155). In each case the loads are equivalent uniformly distributed loads.
Although Turkstra’s rule assumes that each load case is independent, simulation has
shown that often case I and case II provide similar Lti values and occur together. Case
III was found to have a small probability of occurrence. The probability that a maximum
total load occurs when neither component load process is at a lifetime maximum was
found to be negligible [McGuire and Cornell, 1974; Chalk and Corotis, 1980].

With this method of load combination, a probability distribution for Lt can be derived
only at the expense of some (conservative) simplifications. Thus, case II can be simpli-
fied by assuming that L is given approximately by the deterministic mean value m of
sustained load in (7.8) and that 𝜎t2 ≈ 𝜎e, since Le >> L in general. Further, if E(𝜏) is the
average or expected duration of LS, and tL is the expected structural lifetime, then the
probability that LS and Le do not occur at the same time is p = [tL − E(𝜏)]∕tL. Assuming
now that cases I and II are independent, the cumulative distribution function of the total
load is given approximately by

FLt
(x) = P(Lt < x) ≈ P(LS + Le1 < x) P(m + Le < x) p + P(LS + Le < x)(1 − p) (7.36)

Since both case I and case III represent lifetime maxima, it is reasonable to model them
by Extreme Value type I distributions. For case II, Le was already represented by the
Extreme Value type I distribution. With these representations (7.36) becomes [Chalk
and Corotis, 1980]:

FLt
(x) = exp[− exp(−w1)] exp[− exp(−w2)]p + exp[− exp(−w3)](1 − p) (7.37)

where the wi = 𝛼i(x − 𝛽i) represent the reduced variate forms for the Extreme Value type
I distribution. Here i = 1, i = 2, i = 3 correspond to cases I, II and III respectively. The
parameters 𝛼i and 𝛽 i as used here are distribution parameters (cf . Appendix A). Hence
the cumulative distribution function FLt

( ) can be determined if the moments of each
term in (7.36) are known.

A summary of some basic load parameters, load process statistics based on the
models given above and the relative importance of cases I–III [see (7.35) above] is given
in Table 7.5 for office floor loading. It is based on data reported by Corotis and Doshi
(1977), Chalk and Corotis (1980) and Harris et al. (1981). For the maximum sustained
load and the lifetime maximum extraordinary load the theoretically derived values are
closely similar to results obtained by simulation (Monte Carlo) analysis. Parallel results
are available for other occupancy classes.

7.4.8 Permanent and Construction Loads

Permanent loads are those that do not vary significantly through the life of the structure,
even though their actual value may be uncertain. Dead loads are typically of this type.
They result from the self-weights of the materials used in construction and from
permanent installations. Because these individual permanent loadings are additive,
the variability of the total permanent load is less than that of the individual items (as
measured by the variance); it also suggests that the central limit theorem applies. Hence
dead loads commonly are assumed approximated closely by the Normal distribution,
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Table 7.5 Example of typical basic loads for office floors, the parameters derived for the load models
and the results of load combinations (see text).

Basic Loading Parameters Unit kPa lbf / ft2

• Typical influence area (m2) AI 20
• Typical design life (years) T 50

Typical instantaneous uniformly distributed
sustained load (arbitrary-point-in-time load)

L

• Mean 𝜇L 0.53 10.9
• Standard deviation 𝜎L 0.37 7.6
• Average number of occupancy changes per year vo 0.125
• Expected occupancy duration (years) E(𝜏) = 1∕vo 8

Typical instantaneous uniformly distributed
extraordinary live load

Le1

• Mean 𝜇e1 0.39 8
• Standard deviation 𝜎e1 0.40 8.2
• Average number of extraordinary live load

occurrences per year
ve 1

Derived (simulated) Loads and Load Parameters

Maximum sustained load Ls LS

• Mean 𝜇LS
1.21 24.9

• Standard deviation 𝜎LS
0.33 6.9

Lifetime maximum extraordinary load Le

• Mean 𝜇Le
1.79 36.7

• Standard deviation 𝜎Le
0.41 8.4

Simulated values for combinations
• Case I LS + Le1 (occurrence rate, 30%) Mean 2.50 51.2
• Case II L + Le (occurrence rate, 41%) Mean 2.40 49.1
• Case III LS + Le (occurrence rate, 17%) Mean 2.79 57.2
• Other (occurrence rate, 12%) Mean 2.15 44.2

1 kPa ≡ 1 kN∕m2 ≈ 20.5 lbf∕ft2.

typically with a mean equal to the nominal load, and a coefficient of variation of
0.05–0.10. However, there is some evidence that dead loads are underestimated
[Ellingwood et al., 1980] and a mean somewhat greater (say 5%) than the nominal may
be appropriate. The variability in total dead load often appears to be due mainly to
non-structural claddings, services and permanent installations rather than to the vari-
ability of the load-bearing materials themselves. A Lognormal distribution also has been
suggested as appropriate [Pham, 1985]. A comprehensive summary of loads generated
by self-weight of a wide range of materials is available [JCSS, 2001, section 2.1]. Gener-
ally the mean values are similar to the nominal values and the coefficients of variation
small, < 0.1 for steel, 0.01–0.03 for most high-quality concretes, and 0.1 for various
timbers.
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Loads acting on a structure during construction have had little attention from
a probabilistic point of view. Such loads include the placing of high-density loads
temporarily on the structure (e.g. cranes, building materials such as bricks) and
also formwork loads including loads due to freshly placed concrete. Due to obvious
difficulties in data collection, the data that have been published typically show rather
high variability because many different construction techniques are involved [Stewart,
2001; Juocevicius and Kadzys, 2009]. For example, for construction loads placed
on newly-cast concrete slabs, the loading includes the live loads due to workmen,
equipment and machinery and material storage. Survey results show large areas of slab
with very little or zero loads and others with high loading intensity. This suggests a
mixed distribution for the EUDL load (see Figure 6.13). For this, the mean value was
estimated at 0.3 kPa (6.3lb / ft2) with a standard deviation of 1.65 kPa (34.4lb / ft2). A
Gamma or Weibull distribution was found adequate to describe the non-zero part of
the distribution [Karshenas and Ayoub, 1994].

7.5 Conclusion

Three different types of loading were discussed in this chapter, mainly to indicate the
thinking involved in their modelling. If observations over a suitably long time period are
available, load statistics may be deduced directly such as was outlined for wind loading
(perhaps through a hydrodynamic relationship and/or a spectral analysis). Wave, snow
and earthquake loadings are often considered to be in this category, depending on the
geographical location.

Floor loading is of a special nature since it is influenced by many factors including the
possibility of human intervention. This, and the fact that relatively few observations are
available, tends to produce greater uncertainty than typical for most natural loadings.

In principle, the concepts and methodology used for modelling floor loading could
be applied also to other man-imposed loads. In practice the modelling approaches
adopted have attempted to deal with the unique features of the load being considered.
For example, for traffic loads on bridges, the modelling approaches used include
numerical simulation of moving traffic flows using observed data as a starting point, in
a manner analogous to stream flow generation [e.g. Vrouwenvelder and Waarts, 1992;
Crespo-Minguillon and Casas, 1997], simulation of static traffic configurations [e.g.
Nowak, 1993; Reid and Caprani, 2014] and more theoretical approaches using stochas-
tic process theory, including Markov models [e.g. Ghosn and Moses, 1985a]. Overall,
it should be clear that the study of load modelling has become rather specialized, and
reference to the appropriate literature is recommended.
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8

Resistance Modelling

8.1 Introduction

The uncertainties associated with strength properties (and some stiffness properties)
will be considered in this chapter to complement the discussion of loading given in the
previous chapter.

To describe adequately the resistance properties of structural elements, information
about the following is required:

(1) statistical properties for material strength and stiffness;
(2) statistical properties for dimensions;
(3) rules for the combination of various properties (as in reinforced concrete members);
(4) influence of time (e.g. size changes, strength changes, deterioration mechanisms

such as fatigue, corrosion, erosion, weathering, marine growth effects);
(5) effect of ‘proof loading’, i.e. the increase in confidence resulting from prior successful

loading;
(6) influence of fabrication methods on element and structural strength and stiffness

(and perhaps other properties);
(7) influence of quality control measures such as construction inspection and in-service

inspection;
(8) correlation effects between different properties and between different locations of

members and structure.

Only relatively little information is available in statistical terms, mostly for items
(1)–(3). Time-independent statistical properties for structural steel, reinforcing steel,
concrete, masonry and timber have been summarized [Ellingwood et al., 1980; JCSS,
2000]. Because of space limitations, and to illustrate the essential ideas, the present
chapter will be confirmed mainly to a review of the statistical properties of structural
steel and reinforced concrete.

8.2 Basic Properties of Hot-Rolled Steel Members

8.2.1 Steel Material Properties

Steel material properties data have long been available from tests taken on billets
produced at steel mills [e.g. Johnston and Opila, 1941; Julian, 1957; Alpsten, 1972] and

Structural Reliability Analysis and Prediction, Third Edition. Robert E. Melchers and André T. Beck.
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from more recent test programs [e.g. Simões da Silva, et al. 2009]. There are also data
from more specialist individual research projects such as those conducted for naval
and marine applications [e.g. Dandola and Basar, 1980].

The applicability of such data in reliability assessment must be evaluated. Thus mill
test data are often considered unsuitable since the tests are performed at a loading rate
greater than that likely in real structures. Further, the steel tested is not necessarily
typical of the ‘as supplied’ steel. It is a practice, in some cases, to sell rejected higher
grade steel as the next lower grade, and this tends to cause a possible second peak in
the probability density function for the yield strength. This is clearly observed in the
probability densities for the data reported by Simões da Silva et al. (2009), in some cases
with a considerable peak at steel strengths much higher than the nominal strength. A
further difficulty is that mill test samples are commonly taken from the webs of rolled
sections, whereas in practice the (usually lower strength) properties of the (thicker)
flanges are of more interest. Finally, there is evidence that (probably unintentioned)
bias is present in mill test results as a result of the effect of different mills [Lay, 1979].
For steel weight and plate thickness it has been noted that steel plate supplied by
manufacturers may be biased toward the higher limit in thickness if paid for by weight
and biased towards the lower limit on thickness if paid for by piece supplied. Also a
slight bias may be introduced by the technique employed to measure plate thickness
[Hess et al. 2002].

8.2.2 Yield Strength

The strength of steel is dependent on the material properties of the alloy, and hence
statistical properties must be related closely to the specified steel type. It is normal
practice to sample each billet of steel and only if a specified minimum strength is
achieved is the steel accepted for further processing. The data so obtained are extensive
but, as already noted, have certain flaws if they are to be used for statistical properties
of complete steel members.

Older, typical summaries of mill test data for steel hot-rolled shapes and derived from
about 4000 samples are given in Table 8.1 for ATSM A7 steel from US mills. Both sets of
data cover a number of steel mills, many shapes of section and a time span of more
than 40 years prior to 1957. The specified yield strength of these steels varied from
200–275 MPa (30–40 ksi), but the bias ratios and COVs given in Table 8.1 are typical.
There is no overlap between these data sets [Galambos and Ravindra, 1978].

Table 8.1 US yield stress Fy data.

Steel type
Nominal Fy
(MPa)

Mean mill Fy

specified Fy

Est. mean static Fy

specified Fy COV Reference

ASTM A7* 200–275 1.21 1.09 0.087 Julian (1957)
ASTM A7* 200–275 1.21 1.09 0.078 Tall and Alpsten (1969)
Ordinary grade 230 1.3 0.124 Hess et al. (2002)
HSLA** 550 1.19 0.083 Hess et al. (2002)

* Data apply to samples taken from webs of hot-rolled sections.
** High-strength low alloy steels.
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Table 8.2 British yield stress Fy data [Adapted from Baker, 1969].

Type of steel

Plate
thickness
(mm) Mill

Mean mill Fy

specified Fy

Estimated mean static Fy

specified Fy

Coefficient of
variation

Structural 10–13 Y 1.15 1.04 0.09
carbon steel 10–13 W 1.14 1.03 0.05
plates 37–50 Y 1.03 0.92 0.12

37–50 W 1.07 0.96 0.05

High-strength 10–13 M 1.11 1.03 0.08
steel plates 10–13 K 1.11 1.03 0.04

37–50 M 1.06 0.98 0.06
37–50 L 1.15 1.17 0.05

Structural 10–13 Q 1.20 1.09 0.05
carbon steel 16–20 L 1.19 1.10 0.12
webs of shapes
High-strength 6–10 N 1.19 1.11 0.06
steel 37–50 L 1.06 0.98 0.05
webs of shapes

Structural 3.7 -- 1.27 1.16 0.05
carbon steel 6.4 -- 1.32 1.21 0.08
tubes
High-strength 5.9 -- 1.18 1.10 0.05
steel tubes 6.4 -- 1.15 1.07 0.08

Nominal Fy: structural, 250 MPa (36 ksi); high-strength, 360 MPa (50 ksi).
Note: 25.4 mm = 1.0 in.

Table 8.2 summarises British mill test data given by Baker (1969) for both plates and
structural sections to BS 15 and BS 968. A summary of Swedish mill test data is given in
Table 8.3. More recent analyses [Hess. et al. 2002; Simões da Silva et al, 2009] based on
much larger sample sizes from several different sources that include samples from rolled
and from welded sectional shapes and from shipbuilding steels, show slightly higher bias
and generally comparable COVs.

As noted, mill tests are invariably conducted at a higher strain rate than is usual for
conventional ‘quasi-static’ loads on structures. This leads to an overestimate of the yield
strength. An empirical correlation factor to obtain a static stress Fy from a test producing
a higher strain rate stress Fyh is given by [Rao et al., 1966]

Fyh − Fy = 22 + 6900𝜀 (MPa)
= 3.2 + 1000𝜀 (ksi) (8.1)
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Table 8.3 Swedish yield stress Fy data [Adapted from Alpsten, 1972].

Nominal Fy
(MPa)

Mean mill Fy

specified Fy

Estimated mean static Fy

specified Fy

Coefficient of
variation

Number of
samples

220 1.234 1.11 0.103 19 857
260 1.174 1.06 0.099 19 217
360 1.108 1.03 0.057 11 170
400 1.092 1.02 0.054 2 447

Note: 1.0 MPa = 1.0N∕mm2 = 0.145 ksi.

where 𝜀 is the strain per second, with 0.0002 ≤ 𝜀 ≤ 0.0016. The difference Fyh − Fy is
approximately Normal distributed with a mean of about 24 MPa (3.5 ksi) and coefficient
of variation of 0.13 [Mirza and MacGregor, 1979b]. This information allows mill test data
to be converted to static stress values.

Using an upper range value for 𝜀, Galambos and Ravindra (1978) suggested that, as
a first approximation, the mill Fy can be reduced by 28 MPa (4 ksi). The effect on the
coefficient of variation might be ignored. Where required, this approach has been used
to obtain the adjusted ratios Fy/Fy specified given in the tables above. The resulting values
can be compared with those given in Table 8.4 obtained by Galambos and Ravindra
(1978) for individual components rather than mill sample data, from limited numbers
of experimental projects. It is seen that there is reasonable agreement for corresponding
sample types. Generally similar COVs have been reported for data including shipbuild-
ing steels [Hess et al., 2002] but with slightly higher range in bias factors (1.03–1.2).

The early work of Alpsten (1972) and Baker (1969) suggested that the Extreme Value
Type I distribution, the Lognormal distribution, and, to a lesser degree, the truncated
Normal distribution all fit the experimental data (see Figure 8.1). More recent reviews
suggest the Lognormal distribution more often fits the data [Hess et al. 2002]. These
distributions are all positively skewed as would be expected since the minimum value of
the yield strength is zero and the distribution would be affected in the lower (left) tail by
rejection of steel which does not pass mill tests. The distribution types that fit the data
do not appear to be affected by mill or testing laboratory, nor by whether the tensile or
compressive yield strength is considered [Johnston and Opila, 1941].

Table 8.4 Static yield stress data [Adapted from Galambos and Ravindra, 1978].

Location
Specified Fy
(MPa)

Estimated mean static Fy

specified Fy

Coefficient of
variation

Number of
samples

Flange 228 1.00 0.12 34
Flange 345 1.08 0.08 13
Flange 24, 345, 448 1.08 0.09 6
Web and flange 379 1.00 0.05 24
Web 238 1.05 0.13 36
Box 248 1.06 0.07 80

Note: 1.0 MPa = 1.0 N∕mm2 = 0.145 ksi.
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Figure 8.1 Typical histogram for yield strength of mild steel plates and shapes together with three
fitted probability density functions [Adapted from Alpsten (1972) with permission from ASCE].

8.2.3 Moduli of Elasticity

A summary of collated data for the elastic moduli E (elastic modulus in tension or
compression), 𝜐 (Poisson’s ratio) and G (shear modulus) is given in Table 8.5. The
older data cover a period of more than 20 years and had at least 2 different (US) steel
mills involved. The number of specimens tested did not permit estimation of the best
probability distribution. However, for E the more recent, extensive, data suggest a
Normal distribution [Hess et al. 2002]. This more recent work did not consider 𝜈 or G.

Table 8.5 Elastic moduli of structural steel.

Property
Mean /
Specified

Coefficient of
variation

Number of
tests Type of test Reference

E 1.01 0.010 7 Tension coupon Lyse and Keyser (1934)
E 1.02 0.014 56 Tension coupon Rao, et al. (1966)
E 1.02 0.01 67 Tension coupon Julian (1957)a)

E 1.02 0.01 67 Compression coupon Julian (1957)a)

E 1.03 0.038 50 Tension and
compression coupon

Johnston and Opila (1941)

E 1.08 0.060 94 Tension coupon and
stub column

Tall and Alpsten (1969)

E 0.99 0.076 many Tension coupon Hess et al. (2002)
𝜈 0.99 0.026 57 Tension coupon Julian (1957)a)

𝜈 0.99 0.021 48 Compression coupon Julian (1957)a)

G 1.08 0.042 5 Torsion coupon Lyse and Keyser (1934)

Typical specified values: E = 200000 MPa (≈ 29000 ksi); 𝜈 = 0.03; G∕E = 0.385.
a) As attributed by Galambos and Ravindra (1978), but no data are given in report as published.
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8.2.4 Strain-Hardening Properties

For reasons discussed by Alpsten (1972) the strain-hardening properties for steel,
and thus the determination of their uncertainty, is difficult and has had relatively
little attention, perhaps because it is seldom used for conventional design purposes.
Investigations by Doane, quoted in Galambos and Ravindra (1978), suggest a value
of the strain-hardening modulus EST = 3900 MPa (570 ksi) in tension and 4600 MPa
(670 ksi) in compression, and that a coefficient of variation of 0.25 might be assumed.

8.2.5 Size Variation

Typical distributions of the cross-sectional dimensions of hot-rolled section shapes are
given in Figure 8.2 [Alpsten, 1972]. Height and width variation appear to be quite small,
typically with a coefficient of variation of 0.002. There is somewhat greater (but still
small) variation in member and in plate thickness, with COVs typically around 0.02
[Hess et al. 2002].

Of somewhat more importance for strength is the variation in section properties
such as cross-sectional area A, second moments of area I, weight W per unit length
and elastic section modulus Z (S in US terminology). Some typical histograms are
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Figure 8.2 Typical histograms of cross-sectional dimensions for hot-rolled sections [Adapted from
Alpsten (1972) with permission from ASCE].
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Figure 8.3 Typical histograms for section properties for hot-rolled mild steel sections [Adapted from
Alpsten (1972) with permission from ASCE].

shown in Figure 8.3 [Alpsten, 1972]. Most of the variation is due to flange thickness
variation. Overall, a value of unity for the ratio of mean/specified geometric properties
is considered appropriate, with an average COV around 0.05 [Ellingwood et al., 1980].
For different and more modern data sets both for general and for marine grade steels,
that included several Japanese steel grades [Dandola and Basar, 1980], generally similar
values are appropriate [Hess et al., 2002].

8.2.6 Properties for Reliability Assessment

Some of the material and dimensional properties described above relate to ‘as-milled’
properties from a number of mills in aggregate (e.g. Table 8.1) while other data appear to
cover results from just one mill (e.g. Table 8.2). It would be expected that there is greater
variability in results as the data included in the database expands from:

(1) a billet of steel;
(2) all billets from one grade of steel and one mill;
(3) several mills;
(4) steel delivered to site, without guarantee that it is from one mill;
(5) steel of different sizes and strength grades.

For a reliability assessment, appropriate statistical properties must be used. This
implies knowledge of sources of material supplies, and their quality. If such knowledge
is not available or is limited to national or regional averages, rather conservative
estimates for the coefficient of variation (and perhaps the probability density functions)
must be made. Such a situation applies, for example, to structural code calibration
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activities. Care must be taken, however, that data are from what can be considered to
be homogeneous sources for the analysis at hand. For example, with good controls and
supply from one source, items (1) and (2) might be appropriate. When data are from
different disparate sources, such as when item (3) also applies, or when considerably
different quality controls and quality assurance are involved, the COV is likely to
be much higher. It follows that a reliability analysis must consider not just typical
strength and related properties but also the quality assurance and related matters
(cf. section 2.2.8).

8.3 Properties of Steel Reinforcing Bars

The sources of variability and the physical properties of interest for reinforcing bars are
generally similar to those for hot-rolled steel shapes. The statistics for these properties
have been overviewed by Mirza and MacGregor (1979b) and also by Bournonville et al.
(2004).

There is negligible variation of yield or ultimate strength within the length of a
typical reinforcing bar. Thus strength correlation can be taken as unity. For bars of
the same size and in the same job lot it is likely that the bars will originate from the
same (but unknown) steel mill, in which case the coefficient of variation is about
1–4% and the correlation coefficient between yield strengths of individual bars is
around 0.9 (Rackwitz, 1996). Overall variability (COV) for bars from different sources
and in different locations in the structure is likely to be around 4–7%.

Variability of bar sizes typically is small, with the ratio of actual area to nominal area
having a mean of 1.00 and a COV of around 2%. There is an effect on yield and ultimate
strength resulting from the rate of specimen testing, similar to that noted for structural
steel.

After adjustment for rate of testing, and after allowing for nominal cross-section areas
of bars, the probability density function for the yield strength of steel has variously been
assumed to follow a Normal, Lognormal or Extreme value distribution [Alpsten, 1972;
Mirza and MacGregor, 1979b] but none appears to be a particularly good fit away from
the mean region. Mirza and McGregor (1979b) suggested the use of the Beta distribution
for the yield strength:

fFY
= A

(Fy − a
c

)B(b − Fy

c

)C

(8.2)

where the constants (A, B, C, a, b, c) were obtained from fitting the distribution to the
available data. Table 8.6 shows typical data for 300 and 410 MPa steels, in each case with
a range of validity a ≤ Fy ≤ b. Generally similar values apply for high-strength reinforc-
ing steels (e.g. 500MPA (75ksi) yield strength). Typically for these the COV is similar to
those in Table 8.6 but reducing with increase in bar diameter (Mirza and MacGregor,
1979b, Bournonville, et al. 2004).

Generally similar results have been obtained for the statistical properties and
probability distributions for the ultimate strength of reinforcing bars, their elongation
and the cross-sectional areas of the bars (Bournonville et al., 2004). As noted for steels,
the modulus of elasticity is very similar for all steels and tends to have very low variability,
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Table 8.6 Coefficients for probability density function for yield strength of various grades of
reinforcing bars [based on Mirza and McGregor, 1979b and Bournonville, et al., 2004].

Grade Units Mean COV A B C a b c

300 MPa ≈ 310 ≈ 0.11 4.106 2.21 3.82 228 428 200
40 ksi ≈ 45 33 62 29

410 MPa 461 ≈ 0.08 7.587 2.02 6.95 372 703 331
60 ksi 66.8 54 102 48

500 MPA ≈ 560 0.04-0.11* 4.61 2.34 6.95 606 1150 545
75 ksi ≈ 80 88 167 79

∗Reduces with increase in bar diameter.

and the expected value is close to the nominal value. Similarly, for steel reinforcing bars
the expected value usually is very close to E = 2.01 × 105 MPa (≈ 29000 ksi) with a low
coefficient of variation of 0.033.

8.4 Concrete Statistical Properties

Although the statistical distribution of concrete compressive strength has been of
interest for a long time [e.g. Julian, 1957; Freudenthal, 1956] it often has a much smaller
influence on structural strength and behaviour than do reinforcement properties. This
is due entirely to the conventional design philosophy of attempting to achieve ductility
in the structure. Nevertheless, it is important for estimating reliability of reinforced
columns and for serviceability investigations [e.g. Stewart, 1997].

Based on many test results for cast ‘on-site’ concrete test (or control) cylinders
and cubes [e.g. Entroy, 1960; Murdock, 1953; Rüsch et al., 1969; Mirza et al., 1979],
the values of the coefficient of variation or standard deviation given in Table 8.7 are
appropriate for between-batch variation (i.e. considering concretes from all sources)
for medium-strength concretes.

For these the bias (mean/nominal strength) is around 1.0. For high-strength concretes
the COV is roughly halved, but the bias is greater [Tabsh and Aswad, 1995; Hueste et al.,

Table 8.7 Variation of ’on-site’ concrete compressive strength for control cylinders and cubes
(between-batch).

Concrete Control Bias

Coefficient of
variation
(F ′

c < 28 MPa)

Standard
deviation
(28 ≤ F ′

c ≤ 45 MPa)

Normal (< 45 MPa) Excellent ≈ 1 0.07–0.10 2.8 MPa
Average ≈ 1 0.15 4.2 MPa
Poor ≈ 1 0.20 5.6 MPa

High-strength (55 MPa) Good ≈ 1.3 0.09
High-strength (70 MPa) Good ≈ 1.1 0.09

Note: 28 MPa ≈ 4 ksi.
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2003; Nowak et al., 2012] – see Table 8.7. Similar results have been observed for modern
light-weight concretes [Rakoczy and Nowak, 2012]. It appears that the lower COVs can
be attributed to better quality control for the more modern concretes.

The coefficients of variation are roughly halved for within-batch variation (i.e. for
concrete from one source). As before, it is evident that quality control is an important
parameter (cf. section 2.2.8).

The above investigations confirmed that a Normal distribution is appropriate for
the compressive strength of good quality, medium-strength, concrete. The Lognormal
distribution and the Gumbel distribution also have been proposed [Drysdale, 1973;
Silvestri et al., 2008], but it is clear the data are only slightly (positively) skewed and
there is little to distinguish between the three distributions, except, and importantly, in
the extreme tails, particularly the right (high-strength) tail. It has been suggested that
the (slightly skewed) non-Normal distributions are more appropriate where concrete
control is poor [Drysdale, 1973]. On the other hand, limited data for the strength of
high strength (45 + MPa) concretes shows a distribution skewed towards the right
(negative skew), better represented by a Beta distribution [Kolisko, et al. 2012].

In the assessment of existing structures and for reliability assessments, the in-situ con-
crete strengths are of most interest, rather than the results for field (control) cylinders.
For concrete compressive strength the relationship between in-situ strength f cis and
the characteristic (or specified design) strength F ′

c may be taken as [Mirza, et al., 1979]:

f cis = 0.675F ′
c + 7.7 ≤ 1.15F ′

c MPa (8.3)

V 2
cis = V 2

c cyl + 0.0084 (8.4)

where f cis is the mean in-situ strength, V ccyl is the coefficient of variation for results for
control cylinders taken on-site and the constant 0.0084 arises from variation between
control cylinder strength and in-situ strength and from variation within cylinder tests.

Relationships (8.3) and (8.4) can be broken down by examining the influences
between F ′

c and the in-situ strength. Based on Canadian field investigations, Bartlett
and McGregor (1996) suggested that (8.3) and (8.4) should be modified to:

f ′cis = F2 ⋅ F1 ⋅ Fc
′ (8.5)

V 2
cis = V 2

F2
+ V 2

F1
(8.6)

where F1 ⋅ F ′
c is the strength of concrete f ′ccyl (as measured by standard cylinders

under laboratory control—‘control cylinders’) produced by concrete manufacturers.
It allows for variation in materials, batching etc. and depends on the manufacturer’s
willingness to risk having low-strength concrete rejected. Typically, for cast in-situ con-
crete, F1 = 1.25 and 𝜎F1

= 0.13 while for precast concrete these become F1 = 1.19 and
𝜎F1

= 0.06 respectively. Both Normal and Lognormal distributions have been considered
suitable.

The factor F2 converts the control cylinder strength to the average in-place concrete
strength. At 28 days it has a mean value of 0.95 for elements less than 450mm deep
and 1.03 for deeper elements. At one year, these values are about 25% greater. The
coefficient of variation in all cases is about 0.14. A Lognormal distribution appears
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Table 8.8 Statistical parameters for kcp and kcr [Stewart, 1997].

kcr for minimum curing times:

kcp 3 days 7 days

Performance Mean COV Mean COV Mean COV

Poor 0.80 0.06 0.66 0.05 0.66 0.05
Fair 0.87 0.06 0.84 0.05 1.00 0.00
Good 1.00 0.00 1.00 0.00 1.00 0.00

to be the best probabilistic description for F2. Using earlier published data, generally
similar observations were made by Stewart (1995).

The strength estimate for control cylinders given by f ′ccyl = F1 ⋅ F ′
c can be considered

in more detail, noting that it is a function of curing (kcr) and compaction (kcp) of the
concrete [Stewart, 1995]:

f ′ccyl = kcp ⋅ kcr(F ′
c + 1.65 𝜎cyl) (8.7)

where the term (F ′
c + 1.65 𝜎cyl) represents the mean compressive strength of perfect

control cylinders, 𝜎cyl is the standard deviation of the between-batch concrete strengths
(see Table 8.6) and kcp and kcr are the compaction and the curing coefficients respec-
tively. They are functions of workmanship and quality control, shown as ‘performance’
in Table 8.8.

The spatial variation of strength within a given structure, that is, the variation from
point to point, also is of interest. For Canadian practice it was found to have a coefficient
of variation of about 7% for one member cast from a single batch of concrete to about
13% for many members cast from a number of concrete batches. The coefficient for
in-situ concrete strength, for yet-to-be-placed concrete (e.g. the design estimate of
uncertainty), was estimated at about 23% [Barlett and McGregor, 1996].

The tensile strength of concrete and its modulus of elasticity have had some attention
[Mirza et al., 1979], while probabilistic descriptions of creep and shrinkage properties
have been discussed by Madsen and Bazant (1983).

Of particular interest in reinforced concrete construction is dimensional variability
[Mirza and MacGregor, 1979a]. In most cases it has been found that the actual thickness
of slabs is greater than the nominal thickness by ratios varying up to about 1.06, with a
coefficient of variation up to about 0.08, but with corresponding values 1.005 and 0.02
for high quality bridge decks [Hueste et al., 2003; Nowak et al., 2012]. Similar values
apply to precast slabs [Rakoczy and Nowak, 2012].

In contrast, the effective depth to the reinforcement for in-situ slabs appears to be
generally less than specified, in the range (actual/nominal) 0.93–0.99 with a coefficient
of variation of around 0.08. There is some evidence that these values are considerably
better in good-quality work and that in precast slabs the deviation and variability is
almost negligible [Mirza and MacGregor, 1979a]. Considerably fewer data are available
for other concrete elements.
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8.5 Statistical Properties of Structural Members

8.5.1 Introduction

The probabilistic description for the strength or other properties of structural members
depends on the probabilistic description of component properties for the member(s),
such as the cross-sectional dimensions and material strengths. When probabilistic
properties for the members are derived using mathematical relationships, differences
between the derived result(s) and field or experimental results would be expected. In
part this is due to inherent variability in experimental techniques and observations.
The greater part of the difference, however, is the result of the simplification(s)
introduced by the mathematical model used to relate material and geometric param-
eters to structural element behaviour. For example, in deriving an expression for the
ultimate moment capacity of a reinforced concrete beam section, it is well known
that assumptions are made about the concrete compressive stress distribution, about
the form of the stress–strain relationships for the reinforcement, about the concrete
tensile strength, etc. These assumptions usually are conservative. However, they add a
degree of uncertainty to the transition from individual parameters to member strength.
This variability is known variously as the ‘modelling’ uncertainty or the ‘professional
factor’ (see also Chapter 2). It does not arise, of course, if the statistical properties of a
structural member are obtained directly from ‘extensive’ experimental observations on
the member itself. However, such tests are not always practical, and recourse may have
to be made to modelling the member behaviour mathematically and using as input data
information about the material and geometric probabilistic properties. These aspects
are discussed further below.

8.5.2 Methods of Analysis

Let R represent the random variable strength of a structural member. It can be expressed
in terms of material and geometric properties as a functional relationship:

R = fn(P,D,Rm) (8.8)

where Rm is a vector of random variable material strengths, D a vector of random
variable dimensions, cross-sectional areas, etc. (including those due to workmanship)
and P is a so-called ‘professional’ or ‘modelling’ factor, a random variable which
accounts for the accuracy of the model (expression) used to predict the actual strength
from experimental observations, etc. If the relationship (8.8) is known explicitly and
is of simple form, R can be evaluated rather easily using second-moment techniques.
Otherwise simulation might be necessary to obtain the probability distribution of R.
These approaches are outlined below.

8.5.3 Second-moment Analysis

In converting from parameter to member statistical properties, second-moment analy-
sis can be used if the relationship between member strength and parameter properties
is of simple form. For steel members, for example, this is the case for a number of
important resistance properties. Thus, relationship (8.8) between test strength R and

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

Resistance Modelling 285

nominal strength Rn (as determined from a code rule, say) can be expressed in a simple
multiplicative form made up of random variables [Cornell, 1969a]:

R = P.M.F.Rn (8.9)

where P is the professional factor as before but now used to allow for the difference
between the actual strength and the nominal strength, M represents the material
properties, such as yield strength, and F is the so-called ‘fabrication’ factor, representing
sectional properties such as area and section moduli and including the effect of
fabrication variability. The relationship between R and Rn will depend on how Rn is
defined. The modelling factor P can account for this, but only if the multiplicative form
of (8.9) is reasonably closely representative of reality. This is likely to be the case, for
example, for beam bending but unlikely for columns subject to bending (see Section
8.4.5).

Typically, P, M and F are ratios of actual to nominal values and will have their
own distributional properties. If it is assumed that each can be represented in
second-moment format, then it follows that the estimated mean and coefficient of
variation of R are (see A.166 and A.169):

R ≈ P.M.F.Rn (8.10)

and

V 2
R ≈ V 2

P + V 2
M + V 2

F (8.11)

where ( ) denotes the mean of the quantity and the V i are coefficients of variation.
The nominal resistance Rn can be obtained directly from codes of practice, while the

distributional properties of M and F have been discussed in the previous sections. The
second-moment representation (8.10) and (8.11) usually is not strictly valid to represent
all member properties, but it may be an acceptable approach, even for more complex
member behaviour.

To apply the simplified approach of expressions (8.9)–(8.10), information is required
about the professional or modelling factor P. For example, for the tensile strength of an
element, no modelling error term is needed as this situation corresponds directly to the
experimental observations used to derive the probability distribution for the material
strength. On the other hand, for compact beam sections, with adequate lateral bracing,
the resistance is given by the plastic stress and the modelling factor. The latter can be
obtained directly from tests on beams for which simple plastic theory [Heyman, 1971]
was the basis for analysis [e.g. Yura et al., 1978]. For example, in direct correspondence
to (8.10):

Rtest =
(

test capacity
nominal capacity

)
mean

Fy

Fyn

S
Sn

Rn (8.12)

where S is the mean plastic section modulus, Fy is the mean yield stress, and Sn and
Fyn are the corresponding nominal values. Rn is the nominal plastic moment. Typically,
F = S∕Sn = 1.0, VF = 0.05, M = Fy∕Fyn = 1.05 and VM = 0.10 (see Tables 8.2–8.4).
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Table 8.9 Typical ratios (of test to nominal resistance) for beams in the plastic range
[Yura et al., 1978].

Beam type and
moment type

Mean of test / nominal

resistance: P
Coefficient of
variation: VP

Number
of tests

Determinate; uniform 1.02 0.06 33
Determinate; gradient 1.24 0.10 43
Indeterminate (also frames) 1.06 0.07 41

Table 8.10 Modelling statistics (Professional factor P) [Ellingwood et al., 1980].

Element type P VP Remark

Tension member 1.00 0 00
Compact wide flange beams

Uniform moment 1.02 0.06
Continuous beams 1.06 0.07 mechanism

Wide flange beams
Elastic lateral torsional buckling 1.03 0.09
Inelastic lateral torsional buckling 1.06 0.09

Beam-columns 1.02 0.10 SSRCa) column curves

a) Structural Stability Research Council.

Beam test results show that resistance depends, among other things, on the moment
gradient; typical values of P can be obtained from the ratio of mean test resistance to
nominal resistance as shown in Table 8.9. The coefficients of variation V P calculated
from these ratios also are shown in Table 8.9. The value of V P was obtained using (8.11)
with V R known from the scatter in the test results.

Generally similar but rather more complex analyses can be performed for beams
laterally unsupported (for which elastic or inelastic buckling load is critical) for
beam-columns, for plate girders, etc. The models that could be used in conjunction
with the present approach to predict actual strength and the relevant model errors
have been described in the literature [e.g. Yura et al., 1978; Bjorhovde et al., 1978;
Cooper et al., 1978], including using more modern models for strength properties
[e.g. Nowak et al., 2012]. Ideally these are then calibrated against actual detailed
observations, such as described by Byfield and Nethercot (1998) for steel members
subject to lateral-torsional buckling, a case of member behaviour not readily built up
from more elemental information. Some typical values for P and V P are shown in
Table 8.10 [Ellingwood et al., 1980].

The main limitation of the above approach is that a purely second-moment interpre-
tation is taken of all the parameters. As shown earlier, this is not necessarily sufficient
for properly modelling steel yield strength or for modelling other parameters. Further,
the probability distribution of the modelling or professional factor is not necessarily well
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described simply in second-moment terms, and separable as in equation (8.9). For these
and other reasons it may be necessary to turn to simulation.

8.5.4 Simulation

For the derivation of member properties from (non-Normal) dimensional and material
properties or when there are complex relationships between them, simulation may be
the only viable approach. Consider, for example, the strength of reinforced concrete
beam-columns. It is well known that according to ultimate strength theory the strength
of a beam-column can be represented in terms of a locus of points in the N − M plane,
where N represents axial thrust and M bending moment. The implicit relationship
between N , M and various parameters is given, in conventional reinforced concrete
theory notation, by [Ellingwood, 1977]:

N = M
e

= 0.85 f ′C b(𝛽1c) + A′
S( f ′S − 0.85 f ′C) − AS fS (8.13a)

M = 0.85 f ′C b(𝛽1c)
(

h
2
− 1

2
𝛽1c

)
+ A′

S( f ′S − 0.85 f ′C)
(

h
2
− d′

)
+ AS fS

(
d − h

2

)
(8.13b)

where e is the eccentricity measured from the centroid, c is the depth to neutral axis, 𝛽1c
is the depth to the resultant of compression stress ‘block’, h is the depth of the section, b
is the breadth of section, d and d′ are the concrete covers for the tensile and compressive
reinforcements, AS and A′

S are the areas of the tensile and compressive reinforcements,
and f S and f ′S are the stresses in tensile and compressive reinforcement respectively.

Because there are two strength terms, N and M, the resistance of a beam-column may
be expressed in a variety of ways including:

(1) fixed N ;
(2) fixed M;
(3) fixed eccentricity e;
(4) any other combination with variable N and M.

Approach (1) may be appropriate for earthquake-type situations, whereas approach (3)
is probably appropriate for the usual design situation where axial thrust and moment
increase roughly in proportion owing to the nature of the applied loading. For any
particular analysis it is necessary to make the most appropriate choice consistent with
the expected desired outcomes [Frangopol et al., 1997a]. Since the aims of a design
or an analysis depend in part on the characteristics of each individual project or case,
the choice may be difficult in code calibration work. Approach (4) may be relevant in
complex structures but may not always be tractable or even feasible (cf. Section 5.1).

With known statistical properties for each of the variables in (8.13), conventional
Monte Carlo simulation can be used to generate a sample distribution of resistance val-
ues. A typical result is shown in Figure 8.4 for the case of fixed eccentricity [Ellingwood,
1977]. The simulation procedure is shown schematically in Figure 8.5; it is evident that
since the distribution of the resistance is desired with most interest over the whole
region rather than only the tails, relatively few Monte Carlo simulations are required
to obtain reasonable results, typically 100–500. However, simulation may need to be
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Figure 8.4 Typical member strength simulation results for reinforced concrete beam-columns
[reproduced from Ellingwood (1977) by permission of American Society of Civil Engineers].

Input:
Statistical properties
of variables

Select a random
value for each
variable

Calculate member
performance

Repeat many
times

Output:
Values of member
performance plus
statistical analysis

Relationship between
variables and member
performance

Figure 8.5 Simulation procedure for member strength statistical properties.

more extensive if good-quality modelling of the tails is required, such as is typical in
reliability calculations.

Unfortunately, Expressions (8.13) do not predict the actual (or experimental) strength
of beam-columns very accurately since they are nominal relationships used for code (or
nominal) strength determination. If strengths predicted by (8.13) are compared with
experimental data, it would be possible to obtain the ratio of test strength to calculated
strength for each Monte Carlo sample and hence the mean and standard deviation for
this ratio. Thus the ‘professional’ factor of the previous section would be found. However,
owing to the poor predictability of (8.13), there would be much scatter in the ratio, i.e. its
coefficient of variation would be high. If it is desired to get good prediction of expected
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strength, better-quality relationships describing material and structural behaviour are
necessary.

For example, a better relationship between N , M and e can be obtained by integrating
the stress-strain curves for the steel and concrete to obtain the moment-curvature
relationships for a given N and hence noting that failure occurs at the peak of the curve.
This is a standard procedure for calculating beam-column strength [e.g. Tall, 1964;
Frangopol et al., 1997b] and generally has been found to agree reasonably well with
experimental observations. Grant et al., (1978) found that for reinforced beam-columns
the theoretical approach slightly underestimated the available test data. The mean value
of the ratio RT /RS (i.e. test strength to simulated strength) was found to be 1.007 with
a coefficient of variation of 0.064. This factor can be further subdivided into:

(1) error due to the theory used to find the simulated strength;
(2) errors due to the test procedures used to determine the test strength;
(3) errors due to in-batch variability of concrete strength, of reinforcement strength and

of dimensional variability.

For simplicity, the relationship might be expressed as

RT

RS
= CT∕S = CmodelCtestingCin−batch (8.14)

and, if a second-moment approach is used [see(A.169)],

V 2
T∕S ≈ V 2

model + V 2
testing + V 2

in−batch (8.15)

From these expressions Cmodel and V model can be determined if estimates for the other
correction factors are available. Typically V testing is in the range 0.02–0.04 and Vin−batch is
about 0.04. (These could be determined experimentally or by Monte Carlo simulation.)
The respective means are approximately unity. It follows readily that CT/S has a mean
of approximately 1.00 and a coefficient of variation V T/S of 0.03–0.046, the latter value
corresponding to good-quality testing (Vtesting = 0.02) [Mirza, 1996]. A general similar
correction factor was found to be appropriate for other reinforced (and prestressed)
concrete elements, such as beams [Allen, 1970; Ellingwood et al., 1980].

With an accurate procedure to predict actual (i.e. test) results, the ratio of actual
to nominal strength, for an element, can be determined. For this, the nominal values
of all the various parameters (stresses, dimensions, etc.) are substituted into the code
rules to obtain a nominal resistance. Then by using Monte Carlo simulation, and
the probability distributions for each parameter, accurate theoretical predictions of
strength are obtained, each of which is then modified by the correction factor, CT/S, to
predict actual strengths. The ratio RT /Rn (i.e. test strength to nominal strength) is found
for each prediction, and, after a sufficient number of Monte Carlo trials, the mean and
coefficient of variation are determined. Hence R∕Rn and V R are available. Note that, by
directly determining predicted test strength and nominal strength, no explicit mention
need be made of the ‘professional factor’ of Section 8.5.3. Some typical values of R∕Rn
and V R for normal reinforced concrete elements are given in Table 8.11 based on US
data and design codes [Ellingwood et al., 1980].
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Table 8.11 Typical resistance statistics for reinforced concrete elements (F ′
C = 34 MPa ≈ 4800 ksi).

Action Description R∕Rn COV = VR

Bending Continuous one-way slabs 1.22 0.15
Bending Two-way slabs 1.12-1.16 0.14
Bending Beams 1.05-1.16 0.08-0.14
Bending and axial Short columns, compression failure 0.95 0.14
Bending and axial Short columns, tension failure 1.05 0.12
Axial load Slender columns, compression failure 1.10 0.17
Axial load Slender columns, tension failure 0.95 0.12
Shear No stirrups 0.93 0.21
Shear Minimum stirrups 1.00 0.19

For steel structures similar analyses can be performed [e.g. Nadolski and Sykora, 2015]
and calibrated against detailed test results and comparisons to models [e.g. Byfield and
Nethercot, 1998; Rebelo et al., 2009].

8.6 Connections

The data available for structural connections in both steel and reinforced concrete
construction are rather limited [Nadolski and Sykora, 2015]. Data quoted by Fisher
et al. (1978) for fillet welds in tension, in which the welding electrodes were matched
to the parent steel, indicate that the actual strength is on average about 1.05 of that
specified, with a coefficient of variation of 0.04.

For fillet welds in shear, the ratio of fillet weld shear strength to weld electrode
tensile strength typically is about 0.84, with a standard deviation of 0.09 and coefficient
of variation of 0.10 (whichever is maximum). The ratio of fillet weld shear strength
to specified strength is then 0.84 × 1.05 = 0.88, with a coefficient of variation given
by V = (0.12 + 0.042)1∕2 = 0.11. For this simple situation, there is little need to have
a factor to account for modelling. However, fabrication of the weld will produce
additional variability. VF = 0.15 has been suggested [cf. Fisher et al., 1978].

Butt or ‘groove’ welds may be considered to develop the strength of the parent metal
provided that they are adequately fabricated and correctly specified [Fisher et al., 1978].

Data and probabilistic models for the strength of high-strength bolts in tension, in
shear and in friction grip configuration have been described by Fisher and Struik (1974)
and Fisher et al. (1978).

8.7 Incorporation of Member Strength in Design

Because rolled steel sections and reinforcing bars are available only in discrete sizes,
generally it will be the case that a greater section, or more bars, is provided at the end
of the design process than strictly is required according to the calculations. Therefore
the actual resistance of elements usually will be greater than that determined thus far.
Occasionally designers will select downwards, for example if the error is less than, say,
about 5%, but generally an upward selection to the next largest section of next whole
number of bars is made. Thus the ratio of strength provided to strength required,@Seismicisolation@Seismicisolation
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called the ‘discretization factor’, would be expected to have a mean greater than 1.0 and
the corresponding probability distribution function would be expected to be skewed.
Figure 8.6 shows a typical relationship for reinforced concrete columns [Mirza and
MacGregor, 1979a]; similar graphs can be drawn for structural steel sections.

A typical probability density function obtained by simulation and not limiting
over-design, is shown in Figure 8.7. Table 8.12 indicates a size effect for the discretiza-
tion factor for reinforced concrete elements; this is greatest for flexural reinforcement
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Figure 8.6 Effect of discrete sizes on actual strength provided for reinforced concrete columns [based
on Mirza and MacGregor (1979a) with permission from ASCE].
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Table 8.12 Typical statistical properties for discretization.

Element
Size
mm × mm (in × in)

Mean of
(provided/required)

Coefficient of
variation Remarks

Flexural reinforcement in 250 × 375 (10 × 30) 1.04 0.07 LN: c = 0.94
reinforced concrete beams 500 × 750 (20 × 30) 1.00 0.03 LN: c = 0.90
Stirrups (reinforced) 1.03 0.06 LN: c = 0.93
Vertical steel 300 × 300 (12 × 12) 1.03 0.06 LN: c = 0.93
Reinforced concrete columns 900 × 900 (36 × 36) 1.01 0.04 LN: c = 0.91
Steel beam-columns* 1.05 0.07

LN = modified Lognormal distribution in which [log(provided∕required) − c] is normally distributed.
Source: Mirza and MacGregor (1979a), * Lind (1976a).

in beams for the parts of the probability distribution away from the lower tail. Since the
lower tail of strengths usually is of interest in reliability calculations, size effects often
may be ignored. For reinforced concrete design generally, however, a discretization
factor with modified Lognormal distribution, c = 0.91, a mean of 1.01 and coefficient
of variation of 0.04 appears a reasonable choice.

It is important to note that the discretization factor does not take into account possible
human error in the design process, nor does it consider self-checking or other checking.
It is based entirely on assumptions of reasonable under-design (and over-) design.

8.8 Conclusion

Typical resistance properties for use in a structural reliability analysis were reviewed in
this chapter, with particular reference to properties for steel members, concrete strength
properties and structural element dimensions.

Usually the properties for structural members as distinct from those for samples are
required for a reliability analysis. These can be obtained directly from experiments but
also from the combination of the statistical properties of material strength, dimensions
and design models. This combination can be done using a second-moment or a Monte
Carlo analysis and thus to arrive at the member statistical properties and hence
plausible probabilistic models for member behaviour. Comments on connections and
on systematic overdesign due to discrete sizing close this chapter.
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9

Codes and Structural Reliability

9.1 Introduction

The design of structures using a structural design code, or an equivalent regulation,
may be described as ‘structural proportioning by delegated professional authority’
[Lind, 1969]. All designers required to use a particular design code are forced to
follow one algorithm (usually) to achieve ‘their’ design. Key steps in the structural
proportioning process have been predetermined for the designer by the rules in the
design code. Thus any structural design for which a particular code was used reflects
the ‘design’ of the code itself. It follows that the formulation of a structural design code
directly influences the bulk detailed proportioning of all structures that will be designed
using that code. The individual designer is left free to model the structure and to
determine layout, main dimensions, connection types, support and loading conditions,
etc., largely independent of the structural design code, but once such decisions have
been made, the detail design in most cases is prescribed by code rules. Of course, where
(parts of ) the design code is not applicable or when there are no relevant code rules or
one or more rules are known to be incorrect, designers have no choice but to use their
discretion, guided by the best available practice and understanding at the time. This
chapter is not concerned with these latter situations but only with the application of
probability notions for the development of the rules in structural design codes.

The objective of structural engineering design may be taken, reasonably, to be the
maximization of the total expected utility of the structure, given a prescribed reference
data set and availability of materials and labour. There are then two complementary
aspects of the design task that must be considered:

(a) optimization of the total expected utility of the structure (by the designer);
(b) optimization of the structural design code (by code-writing committee).

The aim of the main part of this chapter will be to consider item (b), i.e. how a code
should be formulated to be optimum for the range of structures for which it is likely to
be used. In particular, attention will be confined to:

(1) safety-checking rules in code theory;
(2) likely formats for so-called limit state design codes;
(3) relationship of these codes to the theoretical reliability concepts introduced in the

previous chapters.

Structural Reliability Analysis and Prediction, Third Edition. Robert E. Melchers and André T. Beck.
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Practical matters such as proper wording of requirements, interpretation, etc., will not
be discussed. It will be assumed that physical models, such as those describing column
strength, etc., are given and not subject to optimization, although clearly that would be
a possibility. Fundamental aspects of code-writing philosophy have been discussed by
Lind (1969, 1972), Legerer (1970), Veneziano (1976), Turkstra (1970), Ditlevsen (1997)
and Brown et al. (2008). An overview of the earlier developments in design code formu-
lation and the challenges in code writing is available [Ellingwood, 1994].

The dates on the above references span the period during which there was most inter-
est in design code development underpinned by probability arguments and structural
reliability theory. Most subsequent developments of practical national and international
structural design codes are based on these principles and have followed similar trends.
For this reason much of the remainder of this chapter is focussed on the principles
involved in design code development rather than attempting to account for the current
state of play of code development in various countries and by international groups.

9.2 Structural Design Codes

A structural design code can be viewed as a predictive tool, in the sense that the designer,
having followed the requirements of the code, expects, like others such as his client(s),
that the resulting structure to be sufficiently safe and sufficiently serviceable during the
period of its expected life. However, at the design stage, some matters are not known
with any degree of certainty and can only be predicted (see Section 2.2). The way that a
code is structured to allow for these uncertainties will affect the expected utility of any
structure designed using it.

The degree of optimality of the expected utility of a code will depend on the interests
of those affected by it. The various requirements a particular structure is expected to
satisfy will depend on whose viewpoint is considered. Interested parties usually include
the builder, the owner, the eventual user and various regulatory authorities. Since these
parties are unlikely to have identical requirements the structure must meet, there is the
potential for conflict (see below).

Regulatory authorities and structural engineers tend to rate structural safety as a very
important requirement. However, from the point of view of the other parties, safety
might be seen as ‘necessary but not sufficient’ [Bosshard, 1979]; other matters such as
serviceability and costs also are important. Mostly, in countries with well-established
rules and traditions and a legacy of successful engineering, structural safety for other
than major or unusual structures is seldom the governing criterion, even though
it superficially may appear to be so in the rules given in a structural design code.
Other requirements such as serviceability and performance often are hidden behind
what appear to be safety requirements. The reason is that generally it is difficult to
write specific performance and serviceability requirements or codified rules, despite
increasing interest in so doing. It should be clear that the role of structural design
codes is rather more complex than simply addressing structural safety. Their overall
role might better be seen as one in terms of national economic competitiveness and
structural decision-making.

A further complication is that structural design codes must be applicable to whole
families of structures, each with details and with requirements at which a code-writing
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committee can only guess on the basis of the experience of its members and advisors.
Again, prediction is involved. It is unlikely that in a single Code the differing require-
ments of the many structures and the many interested parties within its scope can be
reconciled completely. It follows, intuitively, that a code is likely to be more suited or
optimal for some types of structures than it is for others (cf. Ditlevsen, 1997). As a
result, it is very unlikely that theoretical notions of optimisation of a code ab initio will
be successful.

The practical, alternative approach used by code committees is:

(1) recognise that many structural design codes have been in existence for some
considerable time;

(2) assume that these codes represent the collective wisdom of the profession and reflect
a degree of consensus arrived at over many years;

(3) unless there is contrary evidence accept that the existing design code rules have
produced satisfactory outcomes including by implication the expectations of
society; and

(4) develop the new generation codes and code rules around the implied safety and
serviceability of previous generation codes.

Following through this process can be viewed as representing an alternative form of code
optimization, now through refinement, or the gradual improvement of code provisions
(and, perhaps, their presentation and complexity) through accumulated experience and
trade-offs.

It follows that changes to a design code should be introduced only gradually. Not all
possible direct and side-effects of a change may be apparent, except in the long term.
Changes also should be sufficiently small so as not to cause uncertainty and anxiety to
code-writing committees, to code users and to other interested parties within the scope
of the code. It has been proposed that code revisions resulting in safety-level changes
greater than about 10% are likely to alarm practitioners [Sexsmith and Lind, 1977].

Code changes that do not involve safety levels also should be treated carefully. Even
without technical changes, the complexity of a code may be perceived to have increased
with the introduction of changes of philosophy (e.g. change in format from permissible
stress to limit state design without significant changes to safety levels). Complexity also
can be perceived to increase with the introduction of more comprehensive rules. At one
time such changes were made in Britain’s CP110 reinforced concrete code at the same
time as the change of measurement units, with the result that ‘limit state design’, rather
than all the changes combined, was commonly held to be responsible for making design
much more complex.

The major inconsistency in traditional (allowable stress or non–limit state design)
codes was in dealing with safety checking, particularly as expressed in the rules for load
combinations. For a long time it has been typical for there to be different structural
design codes, each dealing with only one material or form of construction, such as steel,
reinforced concrete, prestressed concrete and timber structures. Traditionally, each of
these codes had a different set of load combination requirements. These were seldom
consistent between codes.

The overall aim of design code reformulation has been to reduce or eliminate incon-
sistencies, to try to achieve uniformity for structural code safety levels, and to employ
more rational rules for safety and serviceability checking. Such rules should require the
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designer to check all relevant limit states explicitly (rather than implicitly as was the
case in many older, allowable stress codes). A further, and important, aim is to make all
code requirements as clear as possible to the code user, so that it is obvious which limit
state is actually being checked and the logic behind that checking rule.

Finally, it is noted that while codes usually are labelled ‘design’ codes, in fact they
are seldom suited for direct design. Instead they consist of rules for checking whether
a proposed design complies with accepted rules. Strictly, therefore, the discussion
here is about the format of rules for checking the expected safety (and performance)
of proposed structures against standards that have been accepted by experienced
structural engineering professionals (and by implication accepted by society).

9.3 Safety-Checking Formats

9.3.1 Probability-Based Code Rules

In principle, structural ‘design’ codes could employ refined probabilistic approaches to
design checking, based on Level 3 procedures (see Table 2.11). Such codes might be
termed ‘probabilistic’ codes. At first sight this might appear to be a natural, fundamental
choice, if only designers had sufficient background and experience with them. However,
there are some interesting matters to be addressed to make such codes acceptable in
practice.

As noted in Chapter 2, the choice of probability distributions can affect the estimated
probability of failure (see Section 2.3.5). If this choice is left to individual designers,
quite different outcomes might result from the use of some particular part of the code
(e.g. checking rules for reinforced concrete columns) by different individuals. This
would not be a satisfactory outcome. Evidently, there is need for consensus about
the probability density functions to be adopted. This applies for all loads and for all
structural properties. It applies also to the formulation of limit state functions and even
the various design conditions to be considered and checked.

Further, in developing a probabilistic design code, consensus is needed on the accep-
tance criteria applicable to different structural failure conditions. Thus the criterion
for beam bending failure might be different from that for beam shear failure, simply
because for most beams impending bending failure usually involves a degree of warning
whereas shear failure does not, and these two scenarios are likely to have different
consequences. Clearly, structural failure has economic and social consequences, and
these cannot be isolated from acceptance criteria (see also Chapter 2). Further, as
international trade in engineering services grows, it is becoming increasingly desirable,
including economically, that there be greater consensus in structural design code rules
and requirements across regional areas and national boundaries. Major efforts in this
direction have been made within (and around) the European Community by the Joint
Committee on Structural Safety (Vrouwenvelder, 1997; JCSS, 2008).

Existing safety-checking formats for use in practical structural design largely are
developments of existing deterministic formulations, rather that having been developed
from fully probabilistic codes. They are all at Level 1 (see Table 2.11), involve no obvious
probability calculations for the code user (although some selection of a nominal ‘return
period’ might be required) and are essentially similar in appearance to the traditional
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safety-checking formats long used for reinforced concrete design. The only difference
is that the partial factors (and capacity reduction factors) are derived from probabilistic
data rather than being selected (perhaps rather arbitrarily) by a code committee.
A number of possible safety-checking formats have been proposed. These are outlined
in the sections to follow.

In principle it should be possible to relate the Level 1 safety-checking formats to
the fully probabilistic codes when they are developed. This aspect is discussed briefly
in Section 9.4. Rather more attention is devoted to the relationship between nominal
probability of failure (Level 2) and Level 1 safety-checking formats. Sections 9.5 and 9.6
deal with the selection of safety levels and the concept of code calibration, that is, the
process of relating the Level 1 safety-checking format to the implied safety of previously,
perhaps already long-existing, older design rules. Section 9.7 gives an example of code
calibration. This is followed, in Sections 9.8 and 9.9, by discussion of some of the
fundamental and applied issues. Finally it is noted here that much of the development
outlined below took place in the period 1970–1985 and that therefore there is a certain
historical flavour to the presentation. Since that time there has been much application
of the principles established in that period but little new theoretical development.

9.3.2 Partial Factors Code Format

The Partial Factors code format is the one adopted for European structural design
codes. It was developed from earlier code formats. It is formulated in the space of the
load effects (stress resultants) and has the following general form [CEB, 1976]:

gR

( fk

𝛾m1𝛾m2𝛾m3

)
≥ gS(𝛾f 1𝛾f 2𝛾f 3Qk) (9.1)

where gR and gS are resistance and load effect functions that convert the ( ) terms to resis-
tance and load effects respectively, f k and Qk are characteristic material strengths and
loads respectively (see Section 1.4.4), and 𝛾mi and 𝛾fi are the respective partial factors.

The partial factors 𝛾mi, on material strength, take account of the following possibilities
[CEB, 1976]:

(a) unfavourable deviations of the strengths of materials or elements from the specified
characteristic value;

(b) differences between the strength of the material or element in the structure from
that derived from control test specimens;

(c) local weaknesses in the structural material or element arising principally from, or
in, the construction process;

(d) inaccurate assessment of the resistance of elements derived from the strength
of materials, including the variations of the dimensional accuracy achieved in
construction as they affect the element resistance.

The partial factors 𝛾fi on actions take account of the following possibilities:

𝛾 f 1 deviation of actions from their characteristic values;
𝛾 f 2 reduced probability that all actions are at their characteristic value (see load

combination factor below);
𝛾 f 3 inaccurate assessment of the action effects, including dimensional inaccuracies.
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In addition, either 𝛾m or 𝛾 f may be modified to allow for low consequences of failure
and/or the possibility of brittle failure.

A particular form of (9.1) adopted by CEB (1976) is

gR

( fk1

𝛾m1
,

fk2

𝛾m2
,…

)
≥ gS

[
𝛾f 1max

𝛾f 3

∑
Qmax + 𝛾f 1min

𝛾f 3

∑
Qmin + 𝛾f 1mean

𝛾f 3

∑
Qmean

+ 𝛾f 1𝛾f 3

(
𝜓p1Qk1 +

n∑
1=2

𝜓piQki

)]
(9.2)

where 𝜓pi ≤ 1 are load combination factors with 𝜓p1Qk1 denoting the most
unfavourable loading. Up to three load combination factors 𝜓pi ≤ 1 (i = 1, 2, 3) may be
involved.

The 𝜓pi may be considered as the ratio of the arbitrary-point-in-time loading
(see Chapter 7) to the characteristic value of that loading. Here Qmax and Qmin denote
the dead load action (and other permanent actions) acting in the most unfavourable
manner for the limit state being considered. Values for the parameters in (9.2) for
various limit states are given in Tables 9.1 and 9.2. In this particular implementation,
𝛾 f 3 has been incorporated into 𝛾 f 1.

Table 9.1 Partial factors for CEB code format (CEB, 1976).

Partial factors in limit state

Limit state Load 𝜸f 1 max 𝜸f 1 min 𝜸f 1 mean 𝜸f 1 𝝍p1 𝝍pi, i ≥ 2

Ultimate Fundamental 1.2 0.9 0 1.4 1.0 A
Accidental 1.0 1.0 0 1.0 B C

Serviceability Infrequent 0 0 1.0 1.0 1.0 B
Quasi-permanent 0 0 1.0 1.0 C C
Frequent 0 0 1.0 1.0 B C

Note: table shows the coefficients for each limit state equation.

Table 9.2 Load combination factors for CEB code format.

Load combination factors𝝍p

A B C

Domestic buildings 0.5 0.7 0.4
Office buildings 0.5 0.8 0.4
Retail premises 0.5 0.9 0.4
Parking garages 0.6 0.7 0.6
Wind 0.55 0.2 0
Snow 0.55
Wind and snow 0.55 and 0.4

Source: CEB, 1976.
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Values for the material partial factors 𝛾mi are fixed by the code committee dealing
with that specific material. For reinforced concrete, for example, typical values are
𝛾m = 1.5 for concrete and 𝛾m = 1.15 for steel reinforcement, given normal control,
average inspection and ‘normal’ consequences of failure.

The characteristic values of the loads and resistances are considered as their 95 or 5
percentile values as appropriate, or as their currently accepted code values in lieu.

9.3.3 Simplified Partial Factors Code Format

A somewhat less complex safety-checking format is that adopted for use in Canadian
building codes [NRCC (1977); CSA (1974); Allen (1975)]. It takes the form

𝜙R ≥ gS[𝛾DDn + 𝜓(𝛾LLn + 𝛾W Wn + 𝛾T Tn +…)] (9.3)

The left-hand side represents factored resistance, composed of a single resistance R,
derived from characteristic strengths and characteristic material properties, dimen-
sions, etc., and a single partial factor 𝜙. The right-hand side consists of (a number of )
factored load effect(s), where the function gS[ ] converts the loads to load effects.

The partial factors 𝛾D, 𝛾L, 𝛾W and 𝛾T apply to the nominal dead load Dn, live load Ln,
wind load W n, etc. The partial factors are related to an ‘importance factor’ 𝛾 I which is a
measure of the consequences of failure. For most ordinary structures, 𝛾I = 1.0. For struc-
tures, such as hospitals, which must survive a natural or other disaster 𝛾 I is set at greater
than unity. The partial factors are then related to 𝛾 I , e.g. 𝛾D = 1.25 𝛾I normally, and 0.85
𝛾 I when Dn counteracts Ln, etc. For structures of lesser importance, or for structures
subject mainly to dead load, 𝛾 I is in the range 0.8–1.0.

The load combination factor 𝜓 accounts for the reduced probability that Ln, W n and
Tn reach their nominal values simultaneously. Typically 𝜓 takes on values 1.0, 0.7 and
0.6 respectively for one, two or three loadings to which it applies acting concurrently.

The NBC safety-checking format is derived from the earlier (non-probabilistic-based)
safety-checking format of the American Concrete Institute (ACI) [e.g. MacGregor,
1976]. It is similar to the CEB format for load combinations, although the numerical
values are somewhat different. However, the major difference lies in the treatment
of resistance calculations. Whereas the CEB format uses factored material strengths,
factored dimensions, etc., to allow for the possibility that the material, dimensions,
etc., may be less than anticipated, the NBC format (and the LRFD format of Section
9.3.4) combines all the member understrength and geometrical error terms into the
factor 𝜙. This factor is intended to reflect the probability that the member as a whole is
understrength.

The main disadvantage of the NBC safety-checking format is that it does not always
allow adequately for the strength variance of members composed of different materials.
If the axial load and moment are calculated for a given eccentrically loaded column using
a Monte Carlo approach, a spread of results will be obtained [Grant et al., 1978]. As
can be seen from Figure 8.5, the spread of results is much smaller for columns failing in
tension. This could be predicted using the CEB safety-checking format, but not the NBC
format (or LRFD format). Other examples, indicating that partial factors on material
strengths are preferable to those on member strength, have been given by Allen (1981b).
However, the major advantage of the NBC safety-checking format is that of simplicity,
i.e. 𝜙 needs to be considered only once in calculations.
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9.3.4 Load and Resistance Factor Code Format

A slightly simpler code format is the ‘load and resistance factor’ design safety-checking
format adopted for use in US codes (Ravindra and Galambos, 1978). It has a compact
form:

𝜙Rn ≥

i∑
k=1

𝛾kSkm (9.4)

where𝜙 and Rn are the ‘resistance factor’ and ‘nominal resistance’ as used conventionally
in US practice, such as in the earlier (non-probabilistic) ACI safety-checking format, the
𝛾k are the ‘load factors’ or partial factors, and Skm denotes the ‘mean load effects’. Note
that compared with (9.3), this format combines the load effects rather than the loads
themselves. Where the relationship between loading and load effect is linear, such forms
are, of course, equivalent.

From a series of calibration exercises involving only simple second-moment concepts
(see also Section 9.6) it was found that four specific versions of (9.4) were sufficient for
most design situations, i.e. only four load combinations need be examined [Ravindra
and Galambos, 1978]. These are

𝜙Rn ≥ 𝛾D D + 𝛾L L (9.5a)

𝜙Rn ≥ 𝛾DD + 𝛾aptLapt + 𝛾W W (9.5b)

𝜙Rn ≥ 𝛾DD + 𝛾aptLapt + 𝛾SS (9.5c)

𝜙Rn ≥ 𝛾W W − 𝛾DD (9.5d)

where D is the load effect due to the mean dead load, and L, W and S are the means of the
maximum lifetime live load, maximum lifetime wind load and maximum lifetime snow
load respectively; 𝛾D, 𝛾L, 𝛾W and 𝛾S (each > 1.0) are the corresponding load factors, and
( )apt represents the arbitrary-point-in-time value (or ‘sustained’ values; see Chapter 7).
The load factor 𝛾D < 1.0 refers to the minimum dead load effect D.

Expression (9.5b) is equivalent to the CEB format with 𝛾apt Lapt equivalent to gs(𝛾 f 1
𝛾 f 3 ΨpiQki) in (9.2) for the case of wind and live and dead load, except that Qki refers
to the characteristic load (a ‘maximum’), whereas Lapt is in the nature of a mean load.
Similar comparisons can also be made for the other formulations [Ellingwood et al.,
1980]. Compared with the CEB format (9.1, 9.2), the LRFD format has the advantage
of being very similar to safety-checking formats previously in use in many countries, as
well as having fewer load combinations that need to be considered. Thus, for a situation
with dead, live, wind and snow loading, the CEB safety-checking format (9.1) requires
checking of 32 load combinations, the simplified (NBC) format (9.3) requires 14 and the
LRFD format requires 4 (including in each case load reversal due to wind uplift).

9.3.5 Some Observations

The safety-checking formats sketched above show different complexities; this implies
that code-writers have considerable freedom in choosing a format. If too many partial
factors are chosen, it may not be possible to derive consistent values for them all; in
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theory the ideal number of variables (in this case the number of partial factors) is equal
to the number of degrees of freedom of the problem. Conversely, if for simplicity and
practicality only a few partial factors are used, it must be expected that they will not be an
ideal fit and thus not constant over all design situations. In this case the safety-checking
format has to apply to too great a range of possibilities. In effect, each partial factor now
includes a number of sources of uncertainty or variability. The net effect of simplicity is
that conservative values for partial factors must be used in order to cover all likely design
situations. While this may simplify the mechanics of the design-checking process, it is
possible also that there may be an associated structural cost penalty in some situations.

As noted, it is usually considered desirable to have the same safety-checking format for
all codes across all materials, in particular in terms of load combinations. In principle,
therefore, the safety-checking format should be independent of the material used for the
structure. Variation in material strength and behaviour would then be included in the 𝜙
or 𝛾mi factors only.

9.4 Relationship Between Level 1 and Level 2
Safety Measures

Traditionally safety factors were selected largely on the basis of intuition and experience
[e.g. Pugsley et al., 1955]. However, the availability of Level 2 probability methods (see
Table 2.11) has made it possible to relate probabilistic safety measures such as pfN or 𝛽
to the partial factors of the Level 1 safety-checking formats, provided that some simpli-
fications and approximations are accepted. The relationships developed below are not
strictly necessary for practical code calibration, but they are useful in illustrating that
there is a reasonable link between Level 1 and Level 2 safety measures.

The discussion to follow will be in terms of the time-integrated approach of
Section 6.2. This means that specific reference to time-dependent behaviour of loads
and resistances, etc., may be neglected provided that the appropriate (extreme value)
probability distributions are used for the variables, and an appropriate load combination
rule is employed.

Also, as noted earlier, reliability assessments for code work are made without detailed
knowledge of the specific loads, materials and workmanship likely to apply or to be used
in the actual project. Thus all such properties are predictions of some possible future
implementation. This means that reasonably conservative parameters and probability
density functions should be used. In turn, this means that the nominal failure proba-
bility and the corresponding safety index so calculated do not necessarily bear a close
relationship to the nominal failure probability and safety index that would be obtained
on the basis of data for the completed structure. This is an important matter for the
safety checking of existing structures as distinct from safety checking for proposed (new)
structures.

In order to keep in mind that it is a predicted value on the basis of quite uncertain
information, the nominal failure probability and the corresponding safety index used in
this chapter for code calibration will be denoted pfC and 𝛽C respectively. The distinction
between pfN and pfC (and 𝛽 and 𝛽C) normally is not made in the structural reliability
literature. However, it might clarify the difference in the nominal failure probability as
used in code work and that used more generally—see also Sections 2.5.
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9.4.1 Derivation from FOSM / FOR Theory

Recall from Chapter 4 that a vector of basic (Normal) random variables X can be
standardized to Y through (4.3) or yi = (xi − 𝜇Xi

)∕𝜎Xi
. Also, the coordinates of the

checking point Y∗
i in Y space are given by y∗i = −𝛼i𝛽 (see 4.6) with 𝛼i defined in (4.5).

From these two expressions it follows that the coordinates of the checking point in X
space are x∗

i = 𝜇Xi
− 𝛼i𝛽𝜎Xi

(i = 1,… , n). When the X space is non-Normal, expression
(4.44) must be used instead. Hence

x∗
i = F−1

xi
[Φ(y∗i )] = 𝜇Xi

(1 − 𝛼i𝛽CVXi
) (9.6)

with the second equality applying only for Normal random variables and with the sign
convention as adopted in Chapter 4. Similarly, the limit state function evaluated at the
checking point x∗ is

G(x∗) = G{F−1
X [Φ(y∗)]} = G[𝜇Xi

(1 − 𝛼i𝛽CVXi
)i=1,…,n] = 0 (9.7)

This limit state function in the basic variables (e.g. material strengths, dimensions,
loads) must be compatible with the appropriate safety-checking format chosen.

Let the subset Xi, i = 1,… ,m be the resistance basic variables. Converting from
means to characteristic values by the use of (1.24), the second part of (9.6), for FOSM,
becomes

x∗
i = 𝜇Xi

(1 − 𝛼i𝛽CVXi
) =

1 − 𝛼i𝛽CVXi

1 − kXi
VXi

xki (9.8)

where kXi
represents the appropriate coefficient corresponding to the characteristic frac-

tile of the Normal distribution (e.g. Table 1.3). Equation (9.8) may be written also as

x∗
i = 𝜇Xi

(1 − 𝛼i𝛽CVXi
) =

xki

𝛾mi
(9.9)

where 1∕𝛾mi = (1 − 𝛼i𝛽CVXi
)∕(1 − kXi

VXi
) = x∗

i ∕xki is defined as the partial factor on the
resistance random variables.

Similarly, let Xi, i = m + 1,… , n represent loading basic variables. Then, using (1.25):

x∗
i = 𝜇Xi

(1 − 𝛼i𝛽CVXi
) =

1 − 𝛼i𝛽CVXi

1 + kXi
VXi

xki (9.10)

= 𝛾fixki (9.11)

where 𝛾fi = x∗
i ∕xki is defined as the partial factor on the load random variables.

The limit state equation (9.7) now becomes

G
( xki

𝛾mi
,… , 𝛾fjxkj,…

)
= 0, i = 1,… ,m, j = m + 1,… , n (9.12)

This expression contains the partial factors 𝛾kj. It is in a format similar to that of the
various limit state design safety-checking formats described above.
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Since (9.12) is also given by G(x∗) = 0, it follows directly that the general expressions
for 𝛾 i are

𝛾mi =
xkj

x∗
j
=

xkj

F−1
Xi
[Φ(y∗i )]

(9.13a)

𝛾fj =
x∗

j

xkj
=

F−1
Xj
[Φ(y∗j )]

xkj
(9.13b)

with, as is easily verified, the second equality being applicable when X consists of
non-Normal random variables.

It is important to note that the 𝛾 i values are not necessarily unique. In reduced
variable space, selection of a point y(1) different from the checking point y∗ (see Section
4.2) will lead to different 𝛼i and hence to different 𝛾 i values. Selecting different mean
values for the basic variables (but leaving 𝜎Xi

unchanged) will give, in general, a new
set y(1) for the checking point in the Y space. As a result, the set {𝛾} will not necessarily
be constant but may be a function of the mean or characteristic values selected for
the basic variables. (Such a set of values is called a ‘calibration point’ below). This is an
important observation and highlights the need for clear definition and consistency in
code calibration work.

9.4.2 Special Case: Linear Limit State Function

If the limit state function is linear, and attention is confined to just one load case, the
above results are much simplified. In the notation of Section 1.4.3, the limit state func-
tion is now

G(X) = Z = R − S (9.14)

with

𝜇Z = 𝜇R − 𝜇S (9.15)

and

𝜎Z = (𝜎2
R + 𝜎2

S )
1∕2 (9.16)

The latter can be linearized, approximately, to [Ravindra et al., 1969]:

𝜎Z ≈ 𝛼(𝜎R + 𝜎S) (9.17)

where 𝛼, the ‘separation’ function, is approximately constant, with a value 𝛼 = 0.75 ±
0.06 for 1

3
≤ 𝜎R∕𝜎S ≤ 3 and with an error < 10% (Figure 9.1). From (1.22) it follows that

𝜇R − 𝜇S = 𝛽(𝜎2
R + 𝜎2

S )
1∕2 so that using (9.17) yields

𝜇Z = 𝜇R − 𝜇S ≥ 𝛼𝛽C(𝜇R VR + 𝜇S VS) (9.18)

The ‘central’ safety factor 𝜆0 (see Section 1.4.4) is obtained by rearranging (9.18):

𝜆0 =
𝜇R

𝜇S
≥

1 + 𝛼𝛽CVS

1 − 𝛼𝛽CVR
(9.19)
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α
1

0.75

0 1/3 1 2 3

A/B

A/B + 1

(A2/B2 + 1)1/2

Figure 9.1 Variation in separation function 𝛼.

Using (1.24), (1.25) and (1.26) the ‘characteristic’ safety factor is then

𝜆k =
Rk

Sk
=

𝜇R(1 − kRVR)
𝜇S(1 + kSVS)

(9.20)

so that
Rk

Sk
≥

(1 − kRVR)
(1 − 𝛼𝛽CVR)

(1 + 𝛼𝛽CVS)
(1 + kSVS)

(9.21)

or
Rk ≥ 𝛾R𝛾SSk (9.22)

Evidently, (9.22) is in a partial factor format, and comparing with (9.20) and (9.21) it
is seen that 𝛾R = (1 − kRVR)∕(1 − 𝛼𝛽CVR) is the partial factor for resistance, and that
𝛾S = (1 + 𝛼𝛽CVS)∕(1 + kSVS) is the partial factor for load effect. Comparing with the load
and resistance factor format (9.4) it is seen immediately that 𝜙 = 1∕𝛾R.

The partial factors 𝛾 may be assigned values by noting that, for agreed percentiles for
the nominal (or ‘design’) resistance and the nominal (or ‘design’) loads, the values of kR
and kS are known. It then remains to fix 𝛽C to obtain 𝛾R and 𝛾S. The selection of an
appropriate 𝛽C value (or pfC) is therefore central to the derivation of partial factors.

It will be seen that (9.9) and (9.11) for the resistance and loading partial factors
respectively, are identical with the forms given in (9.21) when it is recognized that the
separation function 𝛼 (see 9.17) is a special case of the direction cosines (or sensitivity
factors) 𝛼i for the reliability problem with two basic variables. In fact, for two basic
variables, X1 = R, X2 = S with G( ) = R − S = 0, it is not difficult to show that 𝛼R = 𝛼

and −𝛼S = 𝛼. [The sign change is necessary since (𝛼R, 𝛼S) = 𝛼 defined in Figure 4.2 is a
vector, whereas 𝛼 in (9.17) is a simple variable.]

9.5 Selection of Code Safety Levels

The selection of an appropriate value of 𝛽C (or pfC) in (9.21) is not an easy matter. As
discussed in Chapter 2, appropriate a priori values for the structural probability of failure
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either over the planned life span, or per annum, are not readily available. Moreover, for
codified safety-checking rules, it is not some external acceptable failure probability that
is particularly relevant, for the reasons discussed in Chapter 2, but the notional failure
probability pfC (and the corresponding safety index 𝛽C). As noted, this may bear very
little relationship to any real or imputed pf .

As discussed in Section 9.2, the approach usually adopted is that codes should be
‘calibrated’ against existing practice. This means they are calibrated against the implied
accepted levels of structural safety. Thus, provided the safety levels implicit in existing
design codes are perceived to be adequate, any new generation code should be framed
in such a way that, for particular design situations, it has average safety levels not
significantly different from those implicit in the previous generation code. Of course,
there will be variation of 𝛽C across different design situations, both in the existing code
rules and in any new set of code rules. Such variation is likely to be somewhat different
between generations of codes. In any case, a reasonable target is to design a new code so
as to attempt to obtain a reasonably constant value of 𝛽C across the code requirements
most representative of practical design, and with relatively low variability.

The calibration approach to (structural) safety requirements outlined above has its
limitations, particularly in the way it accounts for the probability of failure due to
human variability and human error (Section 2.5). However, even without the presence
of human error and variability it would be expected that 𝛽C need not be constant over
all designs, since, as also discussed in Chapter 2, a complete analysis should consider
the risk and consequences of failure. Thus a cheap but critical component should have
a relatively higher 𝛽C value. In contrast, a load combination having very low probability
of occurrence could have a relatively lower 𝛽C value. Such allowances are difficult to
consider and make in a rational manner owing to the impossibility of predicting the
consequences of failure for every application of the structural design code rules. It
could be expected that, in principle, codes can be written to allow a trade-off between
expected consequences of failure and partial factors, but this appears to have been done
so far only to a very limited extent (e.g. lower load factors for farm buildings, higher
load factors for buildings with post-disaster functions).

9.6 Code Calibration Procedure

There is broad agreement on the procedure to be followed for code calibration, and
this was used in a number of pioneering calibration efforts [e.g. Allen, 1975; Baker,
1976; CIRIA, 1977; Hawrenek and Rackwitz, 1976; Guiffre and Pinto, 1976; Skov, 1976;
and Ravindra and Galambos, 1978]. However, probably the most influential document
in practical and illustrative terms was the work for the American National Standard
A58 (Minimum Design Loads in Buildings) [Ellingwood et al., 1980]. Most subsequent
probabilistically-based code calibration work has followed a generally similar approach.
The essential steps in the calibration process are [Lind, 1976b; Baker, 1976; Ellingwood
et al., 1980]:

Step 1: Define Scope Since it is unrealistic to expect one structural design code format
to represent all design situations, it is convenient to limit the scope of the code to be
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calibrated. Thus the material may be prescribed (e.g. steel structures), the structural
type may be prescribed (e.g. building structures), etc.

Step 2: Select Calibration Points A design space, consisting of all basic variables, such as
beam lengths, cross-sectional areas and properties, nominal permitted yield stresses,
range of applied loads and loading types, continuity conditions, etc. is chosen. This is
then divided into a set of approximately equal discrete zones (e.g. a simply supported
5m mild steel beam, supporting 25 m2 precast concrete flooring of given dead load and
to be designed for normal office loading). The resulting discrete valued points are used
to calculate 𝛽C values for the safety-checking format of the existing code (see below).

It is important that the effect of changes in the code format be considered for all
possible designs for which the code will be used. This means that a range of realistic
calibration points must be selected.

Step 3: Existing Design Code The existing structural design code(s) is now used to design
the element (i.e. the 5 m beam). This is repeated for all appropriate combinations of
calibration points within each discrete zone.

Step 4: Define Limit States Limit state functions are defined for each limit state, usually
corresponding with those already explicit (or implicit) in existing codes. For example,
in the case of steel beams, this might include limit states for bending strength, shear
strength, local buckling, web buckling, flexural-torsional buckling, etc. Each of these
limit states must be expressed in terms of the basic variables.

The definition of limit states may involve the use of appropriate strength models of the
type described in Chapter 8 to convert strength basic variables to member strength, etc.
These models should be realistic rather than code-based conservative approximations.
See also the discussion in Section 8.5.

The definition of the limit states also requires a decision about the load combination
model(s) to be employed (cf. Chapter 7). For most practical code calibration efforts to
date, a simple load combination model, such as Turkstra’s rule (6.144), has been used.

Step 5: Determine Statistical Properties Appropriate statistical properties (distributions,
means, variances, average-point-in-time values) for each of the basic variables are
required for the determination of 𝛽C . Data such as given in Chapter 7 for loads and
Chapter 8 for resistances can be used.

Step 6: Apply Method of Reliability Analysis Using an appropriate method of reliability
analysis, assumed here to be the FOSM method, together with the limit state functions
(Step 4) and the statistical data (Step 5), each of the designs obtained in Step 3 is
analysed to determine 𝛽C for each calibration point within each zone. The results could
be arranged such that the applied loading becomes the chief independent parameter.
Typical results, obtained for the American National Standard A58 (Minimum Design
Loads in Buildings Code) [Ellingwood et al., 1980], using the FOSM/FOR algorithm
(Section 4.4.4), are shown in Figures 9.2 and 9.3. For a given floor area supported
(AT = 37m2) both different material combinations and loading situations are illustrated.

Figure 9.3 shows clearly that the existing code(s) safety-checking rules do not produce
uniform 𝛽C values even in the one design situation [e.g. reinforced concrete (RC) beam
bending].
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Figure 9.2 𝛽 index for steel and reinforced concrete beams in the existing code: gravity loads
[Ellingwood et al., 1980].
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Figure 9.3 𝛽 index for steel beams in the existing code: gravity plus wind loads
[Ellingwood et al., 1980].

As noted earlier, the 𝛽C values obtained in this process depend very much on the prob-
ability models and the parameters chosen for the basic variables, and other calibration
exercises may find 𝛽C values considerably different from those shown in Figures 9.2 and
9.3. Provided the data used to obtain 𝛽C are used consistently throughout the whole
calibration process this should not be of concern (see Section 9.2).

Step 7: Select Target 𝜷C Value From repeated analyses such as Step 6 above, the variation
of 𝛽C in the existing design practice becomes evident. In a purely internally consistent
calibration exercise (i.e. developing a new code on the basis of the acceptable general
level of safety of the old code) it would be appropriate to use this information to
determine a weighted-average 𝛽C . This would then be used as the target safety index 𝛽T .
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In principle, some allowance could be made for consequences of failure, with higher
𝛽T values for high-consequence failures. In practice, this is seldom feasible, owing to the
lack of appropriate information. One approach is simply to note the complexity of the
issue and for the code committee to select 𝛽T values semi-intuitively, such as on the basis
of ‘experience’. For example, for the ANS A58 work, 𝛽T = 3 was selected for dead and
live load (snow load) combinations, 𝛽T = 2.5 for dead, live and wind and 𝛽T = 1.75 under
earthquake loads [Ellingwood et al., 1980]. These appear to correspond reasonably well
with the range of values obtained from analysing the then existing (US) design codes,
as illustrated in Figures 9.2 and 9.3. Exceptions are masonry structures, for which 𝛽C
ranges from 4 to 8, and for glue-laminated timber members, for which 𝛽C ranges from
2.0 to 3.0 with a strong mean of 2.5. These divergences could (and should) be dealt with
most appropriately by means of the partial factor(s) on material strength or resistance
(e.g. through the 𝜙 factor).

For load combinations involving earthquake loading, 𝛽T typically is significantly
lower than for the more common load combinations. Although the consequences of
structural failure caused by earthquakes usually are high, the forces involved in high
reliability earthquake-resistant design are also high, suggesting that the value of 𝛽T
in this case reflects a trade-off between cost of initial construction and cost of failure
consequences. As noted in Section 2.5, this is a complex issue, both for code calibration
and philosophically.

Step 8: Observe Partial Factor Format Implicit in Existing Code Although not essential, it
is often useful to be able to see how the safety-checking format of the existing code
converts to the partial factors in the safety-checking format of the new code, given that
the 𝛽T value has been set. The process to obtain these partial factors is essentially the
reverse of the process of Step 7. For a given calibration point, the 𝛽C value is calculated
for a given limit state, using the existing code safety-checking format to determine
the resistance. If 𝛽C < 𝛽T the required resistance is suitably increased until 𝛽C = 𝛽T is
obtained. The checking point as well as the direction cosines 𝛼i (of second moment
theory) are then calculated. From these, the partial factors 𝛾 i can be computed from
(9.8) and (9.9). This process is then repeated for different calibration points and the
variation in partial factors noted. Obviously, the partial factors would not be expected
to be constant over all calibration points since 𝛽C generally is not constant. For the
revision of the A58 code, typical results are shown in Figure 9.4. Evidently, the 𝜙 factor
(on resistances) is relatively constant over a wide range of Ln/Dn and W n/Dn for a given
material. (It is also rather insensitive to differences in material.) Although somewhat
lower 𝜙 values occur for low Ln/Dn or W n/Dn values, these are not in the design range
commonly employed. Associated with these lower 𝜙 values are significant changes in
𝛾L and 𝛾W , although 𝛾D is much more uniform for wide ranges in applied loading.

It should be clear, therefore, that it is reasonable to uncouple the resistance and the
loading partial factors as shown in Equation (9.22) and as discussed in Section 9.4.

The values of 𝛾D obtained from analysing US standards in this way are rather lower
than expected, being around 1.1. In part, this is a result of the relatively lower vari-
ability in dead load. Further, the value of 𝛾L in Figure 9.4 is low since it applies to the
average-point-in-time value of the live-load Lapt (cf. Chapter 7).

Step 9: Select Partial Factors As seen above, the partial factors are not constant for a given
code safety-checking format and given value of 𝛽T . For normal design it is convenient for
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Figure 9.4 Variation of 𝛾 and 𝜙 factors for new safety-checking format for steel beam bending in the
existing code rules [Ellingwood et al., 1980].

the partial factors in the code safety-checking format to be constant, at least over large
groups of design-checking situations. To achieve this some deviation from 𝛽T is to be
expected. Hence, the selection of appropriate partial factors involves a certain amount
of subjective judgement.

For a given range 1,…, m of calibration points, the partial factors that best approx-
imate the uniform target reliability can be obtained, in principle, by minimising the
value of a measure of ‘closeness’ to the target reliability. In principle the approach that
should be adopted is to minimize the weighted least-squares error in 𝛽T :

S =
m∑

i=1
(𝛽T − 𝛽Ci)2wi (9.23)

where pfCi = Φ(−𝛽Ci) is the nominal probability of failure for a given calibration point
i, pfT = Φ(−𝛽T ) is the target value and wi is a weighting factor to account for the
importance of the calibration point relative to design practice. The weighting factors

sometimes must be selected subjectively but obviously
m∑
i

wi = 1. In some cases log pfC

rather than 𝛽C has been proposed for use in (9.23) in an attempt to make S relatively
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Figure 9.5 Flow chart for calibration of code safety-checking format.

more sensitive to very low values of the nominal failure probability. In principle,
maximization of the socio-economic criterion using decision theory (see Section 2.4.2)
would require that the most logical measure to use is pf (or its surrogate pfC ≈ pfN )
since only pf is compatible with costs [cf. Ditlevsen, 1997]. In addition, an upper limit
such as S ≤ 0.25 might be imposed so as to limit the deviation between target and
calibration values.

To determine the partial factors for the new design code-checking format, trial values
of the partial factors are used with the new generation code format to calculate 𝛽C for
each calibration point (cf. Steps 3–6 above). This result is substituted into (9.23). By
repeated trial and error, and perhaps by (arbitrarily) assigning values to one or more
partial factors, the set of partial factors minimizing (9.23) can be obtained. These values
will then be the partial factors in the new generation code safety-checking format. The
complete process for calibration is summarised in Figure 9.5.

9.7 Example of Code Calibration

To illustrate the calibration process, consider the following example for steel beam
bending. This defines the scope (Step 1) for calibration. For simplicity, let it be
assumed that the calibration is to be done in the load space and that no allowance
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for live load reduction will be made. Also only dead load plus live load is considered
and wind loading is ignored. Let the existing code safety-checking format for this
situation be

Rn = (LF)(Dn + Ln) (9.24)

where (LF) = 1.7 is the load factor, and all values are nominal values. By expressing
Ln in terms of Dn, it will not be necessary to deal specifically with beam size, length,
area supported, etc. Hence the calibration points have been selected. Equation (9.24)
specifies the required resistance, given the nominal loads Ln and Dn which the
resistance rules of the code must satisfy. In general, Rn will be a function of material
and geometric properties as well as the resistance modelling rules selected by code
committees.

Let the new code format be of the load and resistance factor design (LRFD) type
(Section 9.3.4) given by 𝜙Rn = 𝛾DDn + 𝛾LLn and let it be assumed, for simplicity, that
the specification of Dn, Ln and Rn is not changed. This means that the code calibration
exercise reduces essentially to one of finding a new load combination rule(s). It is now
required to determine𝜙, 𝛾D and 𝛾L such that 𝛽C is approximately constant and consistent
with the existing code.

For beam bending, the limit state function formulated in the load space is (Step 4)

G(x) = R − D − L = 0 (9.25)

where R is determined from codified beam-bending rules.
For Step 5, statistical properties for D, L and R are given in Chapters 7 and 8. For the

present example let it be assumed that [cf. Ellingwood et al., 1980]
𝜇R

Rn
= 1.18 (beam bending), VR = 0.13

𝜇D

Dn
= 1.05, VD = 0.10

𝜇L

Ln
= 1.00, VL = 0.25

where, as before, the subscript n refers to ‘nominal’ values, i.e. values in the existing
loading and resistance (or material) codes. These values correspond approximately to
‘characteristic’ values. For purposes of illustration in this example, each variable will be
assumed Normal distributed. Of course, more generally R is often Lognormal, and L
is extreme value type I; this can be treated easily using the first-order reliability (FOR)
method but would destroy the simplicity of the example given here.

The reliability analysis, Step 6, may be performed using the FOSM method. Working
in the original basic variable space (since (9.25) is linear):

𝛽C =
G(𝜇X)
𝜎G

where

G(𝜇X) = 𝜇R − 𝜇D − 𝜇L = 1.18 Rn − 1.05 Dn − 1.0 Ln
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and from (9.24)

Rn = (LF)
(

1 +
Ln

Dn

)
Dn

so that

G(𝜇X) = 1.18(LF)
(

1 +
Ln

Dn

)
Dn − 1.05 Dn −

Ln

Dn
Dn (9.26a)

Further

𝜎2
G = (𝜇RVR)2 + (𝜇DVD)2 + (𝜇LVL)2

=
[

1.18(LF)
(

1 +
Ln

Dn

)
Dn × 0.13

]2

+ (1.05 Dn × 0.1)2 +
(

0.25
Ln

Dn
Dn

)2

= D2
n

{[
0.153(LF)

(
1 +

Ln

Dn

)]2

+ (0.105)2 +
(0.25 Ln

Dn

)2
}

(9.26b)

Consider now the case Ln∕Dn = 1.0; then

𝛽C = 2.36 (LF) − 2.05
[(0.306(LF))2 + 0.0735]1∕2 (9.27)

and if (LF) = 1.7 (the existing code value), then 𝛽 = 3.34. The above process now may
be repeated for a number of other Ln/Dn values (i.e. calibration points). A plot similar
to Figure 9.2 would be obtained. On this basis, a target safety index can be selected
(Step 7). Let this be 𝛽T = 3.0 for purposes of illustration.

The partial factors implicit in the existing code formulation (9.24) may be determined
as follows (Step 8). For Ln∕Dn = 1.0 and for 𝛽T = 3.0 it follows from (9.26) that, by trial
and error, (LF) = 1.7.

Let the variables R, D and L be transformed to the ‘reduced’ variable space defined by
(cf. Chapter 4)

r =
R − 𝜇R

𝜎R
=

R − 1.18(LF)(1 + Ln∕Dn)Dn

1.18(LF)(1 + Ln∕Dn)DnVR

so that
R

Dn
= 0.482r + 3.705

d =
D − 𝜇D

𝜎D
=

D − 1.05Dn

1.05DnVD

giving

D
Dn

= 0.105d + 1.05

l =
L − 𝜇L

𝜎L
=

L − Ln

LnVL
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or
L

Dn
= 0.25l + 1.0

In reduced space the limit state equation G(x) = R − D − L now becomes

g(y) = (0.482 r − 0.105 d − 0.25l + 3.705 − 1.05 − 1.0)Dn

The direction cosines 𝛼i follow from (4.5):

cr =
𝜕g
𝜕r

= 0.482 Dn

cd =
𝜕g
𝜕d

= −0.105 Dn

cl =
𝜕g
𝜕l

= −0.25 Dn

and

l =

[∑
i

(
𝜕g
𝜕yi

)2
]1∕2

= 0.553 Dn

so that

𝛼r =
0.482
0.533

= 0.872

𝛼d = −0.105
0.533

= −0.190

𝛼l = − 0.25
0.533

= −0.452

The partial factor for resistance is given by (9.9):

𝜙 = 1
𝛾i

=
(1 − 𝛼i𝛽CVXi

)
(1 − kXi

VXi
)

=
x∗

i

xki

or

𝜙 = 1
𝛾i

= (1 − 𝛼i𝛽CVXi
)
𝜇X

xki

where xk is the ‘characteristic’ value. This corresponds to the nominal value here.
Substituting for R,

𝜙 = 1
𝛾R

= [1 − 0.872(3)(0.13)](1.18) = 0.779

For loads the partial factors are given by (9.10) and substituting in a similar manner:

𝛾i =
x∗

i

xki
=

(1 − 𝛼i𝛽CVXi
)

(1 + kXi
VXi

)
= (1 − 𝛼i𝛽CVXi

)
𝜇X

xki
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so that

𝛾D = [1 + 0.19(3)(0.10)](1.05) = 1.11
𝛾L = [1 + 0.452(3)(0.25)](1.0) = 1.34

Hence the partial factor format at Ln∕Dn = 1 for 𝛽T = 3, corresponding to the existing
code format and the data given above, is

0.78 Rn ≥ 1.11 Dn + 1.34 Ln

i.e. 𝜙 = 0.78, 𝛾D = 1.11 and 𝛾L = 1.34. Again, the above process may be repeated for
a number of other values of Ln/Dn (i.e. calibration points) and the results graphed
(cf. Figure 9.4).

For purposes of illustration, let it now be decided that, for the adopted code format
𝜙 Rn = 𝛾D Dn + 𝛾L Ln, the values for 𝜙 and 𝛾D are selected (arbitrarily) at 𝜙 = 0.80 and
𝛾D = 1.2. The remaining 𝛾L is sought. A trial-and-error procedure is required.

Let the first trial be 𝛾L = 1.4. Then

Rn = 1
0.8

(1.2Dn + 1.4Ln)

so that, using (9.26a), the mean value of the limit state function is given by:

G(𝜇X) = 𝜇G = 1.18
0.8

(
1.2 + 1.4

Ln

Dn

)
Dn − 1.05Dn −

Ln

Dn
Dn

and the variance is given by (see 9.26b):

𝜎2
G =

[
1.18
0.8

(
1.2 + 1.4

Ln

Dn

)
Dn × 0.13

]2

+ (1.05Dn × 0.1)2 +
( Ln

Dn
× 0.25

)2

D2
n

It follows that

𝛽C =
𝜇G

𝜎G
=

1.77(1 + 1.167Ln∕Dn) − 1.05 − Ln∕Dn

[0.053(1 + 1.167Ln∕Dn)2 + 0.011 + 0.0625(Ln∕Dn)2]1∕2 (9.28)

The solution of (9.28) in terms of 𝛽C and pfC values is given in Table 9.3 for various values
of Ln/Dn (calibration points), together with an illustrative set of weighting factors and
the calculation of S (Equation 9.23) using the log p version.

Table 9.3 Parameters for sample code calibration.

Ln∕Dn 𝜷C pfC log pfC wi S = (log pfT − log pfC)2wi

1 3.14 0.84 × 10−3 −3.07 0.2 0.0080
2 3.09 1.00 × 10−3 −3.00 0.4 0.0068
3 3.05 1.14 × 10−3 −2.94 0.3 0.0015
4 3.02 1.26 × 10−3 −2.90 0.1 0.0001

𝛽C = 3.0 1.35 × 10−3 −2.87
∑

= 1 S = 0.0164
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These calculations can be repeated for other trial values of 𝛾L; say 𝛾L = 1.3. In the
expression for 𝛽C the constant 1.167 is then replaced by 1.083 and a new value for S can
be determined. Trial values for 𝛾L are chosen until the minimum value of S is found.
The corresponding 𝛾L would be the value most consistent with 𝛽T = 3.0. Naturally, the
procedure could be repeated also for the partial factors 𝜙 and 𝛾D if desired.

9.8 Observations

9.8.1 Applications

The principles outlined above have been applied successfully for determining par-
tial factor safety-checking formats for codes dealing with the design of the various
elements of building structures. For these, many of the required statistical data have
been collected and the necessary theoretical models constructed. However, most
structures are more than the collection of their elements, and it is well known that
there is considerable reserve capacity in many framed structures (see also Chapter 5).
However, for various reasons, as indicated in Section 5.6, the application of probability
and reliability analysis to structural systems has not yet been developed to the same
intensity as for structural elements. The matter is largely unresolved and remains a
challenge for research.

Calibration concepts for elements have been applied not only to building structure
codes but also to bridge design codes [e.g. Nowak and Lind, 1979; Flint et al., 1981;
Ghosn and Moses, 1985b]. The task appears to be more difficult owing to the nature of
bridge loading, the influence of fatigue and the need to consider stability limit states, all
of which are important for bridges. These phenomena also have been more difficult to
quantify in probabilistic terms and, in some cases, do not easily allow the resistance to
be separated from the load effects.

The application of code calibration has been extended also to other materials. It
has been largely completed in various countries for timber structures [Ritter and
Nowak, 1994; Mettem and Tietz 1999; Gauther, 2010] and for structural brickwork
[e.g. Glanville, et al., 1996; Laird, et al., 2005] but also has raised some new issues to be
resolved. Calibration exercises have revealed quite high, but varied, values for the safety
index implied by current design codes. For example, for timber design, it is generally
the case that the ratio 𝜇R/Rn (mean to nominal resistance) is much higher than for
steel or reinforced concrete members. This appears to be due to the conservatism of
existing timber design strength rules, largely to allow for the high variability in material
properties and to allow for member and material imperfections [Ellingwood, 1977]. As
a result, when reasonable target reliabilities are used with accepted loads for calibration
purposes, the 𝜙 factor tends to be greater than unity (as Rn is so low). This is not a
desirable result, and adjustment of the strength rules (i.e. Rn) to achieve 𝜙 ≈ 0.8 would
be desirable. The 𝜙 factor can then be used as a parameter to express workmanship and
quality of construction. An essentially similar situation exists for masonry structures.

The calibration referred to so far has been phrased in terms of ‘ultimate’ limit states.
In principle, the calibration concept is also applicable to ‘serviceability’ (or any other)
limit states. Serviceability limit states might include short- and long-term deflection,
vibration, cracking and crack size. However, the situation is somewhat complicated
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by the need to consider the implications or consequences of serviceability limit
state violation and how this may influence the definition of serviceability failure. For
example, in the case of deflection, there may be damage to other parts of the building,
to partitions and to operating parts (e.g. lifts). There may be also a visual aspect (e.g.
visible sag of floor) and a sensory aspect (e.g. sliding or unevenness of furniture). Thus,
although criteria for maximum deflections have been set in many structural design
codes, it is unclear how these relate to actual serviceability failure defined (Leicester
and Beresford, 1977; Galambos and Ellingwood, 1986).

Despite these comments, the principal ideas of serviceability limit states are clear
enough. For example, the limit state for deflection might be written as

G[𝛿L,Δ(t)] = 𝛿L − Δ(t) (9.29)

where 𝛿L is an allowable deflection limit andΔ(t) is the deflection at time t due to applied
loading. Here Δ(t) can be obtained directly from structural analysis. Usually elastic
analysis is sufficient. It would be an uncertain quantity as the loading (and the structural
behaviour) is uncertain. However, since models for serviceability behaviour tend to be
less developed than those for strength, the uncertainty in Δ(t) is likely to be higher.

The deflection criterion 𝛿L might be a constant or an uncertain quantity. The latter
is possible since there are considerable difficulties with specification of serviceability
criteria. This is because they are associated with subjective human reactions. Relatively
few data are available in this area; in any case the variability is likely to be high, with
coefficients of variation in the range 0.2–0.5.

As noted above, there are difficulties in defining appropriate criteria for the limit
states for serviceability, as there is likely to be dependence between the criteria and
the consequences of limit state violation. Some attempts have been made for simple
systems such as simply supported reinforced concrete or steel beams in office and
car-park construction (e.g. Stewart, 1996a,b).

The reference period for maximum sustained loading (see Section 7.4.5) for
serviceability considerations typically is much lower than that for ultimate strength
conditions and might be taken as one year if the serviceability state is recoverable
(i.e. no permanent damage after removal of the load). Similarly, the target reliability
index is likely to be lower than for ultimate strength. Values of 𝛽C = 1.6 to 2.0 for
an 8-hour reference period were obtained by Galambos and Ellingwood (1986) and
𝛽C = 2.0 was used by Philpot et al. (1993) for timber beams. It has been suggested that
the probability of serviceability failure typically should not exceed 0.10 during any one
tenancy for irreversible damage and annually for reversible damage. This is roughly
equivalent to 𝛽C = 1.28 (Ellingwood, 1983).

9.8.2 Some Theoretical Issues

From the example given in Section 9.7 it should be clear that code calibration is by no
means an objective exercise. The selection of the safety-checking format, the range of
points used for calibration, the probability distributions employed for the variables in
the calibration, the degree of linearization of the safety margin over the design space,
the choice of minimum acceptable safety indices for various load combinations and
materials, and the choice of minimum acceptable partial factors all require subjective
assessment and choice.
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Because the number of partial factors is limited even though the safety-checking
format must cater for a wide range of structures, it is to be expected that the new code
rules will be more conservative for some structural designs than for others and may
even be un-conservative for some. This is clear from the minimization performed with
expression (9.23). Moreover, if it is found that the residual S in (9.23) cannot be reduced
to a sufficiently low value, it is likely that (i) the safety-checking format is too simple
and will need more variables (partial factors), (ii) the range of structures or failure
conditions being covered is too great or (iii) the range of the basic variables covered by
the safety-checking format is too great. In principle, it is desired that the format chosen
for safety checking be one that allows the smallest possible value of S to be obtained
in calibration. Of course, in practice the safety-checking formats have been chosen for
apparent convenience of designers and to minimize changes from existing practice.
This is clear from the discussion in Section 9.3.

It follows from the above and also from the discussion of ‘tail sensitivity’ (Section 2.3.5)
that comparison between 𝛽C values obtained from different calibration exercises is
meaningless without definition of the assumptions made in each calibration process.
This applies also to a completely probabilistic code format.

Finally, philosophically the minimization of S only has meaning if it can be related
to some over-riding optimization principle [e.g. Ditlevsen, 1997]. As discussed in
Chapter 2, socio-economic optimization using net present value is widely accepted
as appropriate. It then follows that S must relate to this criterion. As noted already in
passing in Section 9.6, this can be the case only if pf or its surrogate pfC is used in (9.23).

9.9 Performance-Based Design

As noted in the earlier sections, robust methods for structural and other reliability anal-
ysis and estimation are available, together with a body of organized knowledge for load-
ings and resistances. This has opened up the possibility of adding other requirements,
such as structural and other performance requirements, when probabilistic notions are
used in a design process. This has been termed Performance-Based Design [SEAOC,
1995; Ghobarah, 2001; Augusti and Ciampoli, 2008; Ciampoli et al., 2011].

In Chapter 1 (cf. Section 1.1) it was noted that performance requirements for struc-
tures include limit states such as safety, functionality and comfort. More generally, the
design of a structure must meet a broader range of requirements. These can be meeting
damage measures such as loss of occupant comfort and damage to structural and
nonstructural components in a building, due to excessive vibration or displacements.
The likely number of casualties, economic losses or some threshold that represents the
collapse or loss of serviceability during a hazard event also may be included.

To date the performance-based design concept has been used mostly for earthquake
and wind engineering but is extending more widely. This has interesting implications.
For traditional Codes, most decisions about the design specifications are made by indi-
viduals selected to sit on Code committees. However, since performance-based design
focuses on wider issues, in principle many others (‘stakeholders’) could be involved.

The overall concept for performance-based design is shown, schematically, in
Figure 9.6. The final design, say g(d), can be considered to be a function of a vector of
design or decision variables (d) that have to meet, at some level of probability, a specified
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Figure 9.6 Schematic relationship between variables in performance-based design.

Table 9.4 Overview of variables and parameters in performance-based design.

Variable
Simple
description Examples

Performance-based
design terminology

d Design variables sizes, heights, areas,
location

Decision variables DV

C Consequential damage costs and other
consequences of
damage

Damage measures DM

E Structural responses deflections, stresses,
accelerations,
inter-story drift

Engineering demand
parameters EDP

P Parameters aerodynamic
coefficients (e.g. drag,
inertia coefficients)

Interaction parameters IP

Q Loads mean wind velocity,
turbulence intensity,
direction, etc.

Intensity measures IM

R Resistances materials, strengths,
geometry

structural parameters SP

set d∗. Let this be denoted P(d > d∗) > 𝛿, a predefined probability of acceptance. In
principle, 𝛿 must be decided prior to the performance-based design process. Table 9.4
shows the variables that are involved in d and gives typical examples for each variable.
The (conditional) dependency structure between the variables is shown in Figure 9.6.
Table 9.4 also shows the terminology used in the more specialized treatments of the
subject [SEAOC, 1995].
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The main steps in the performance-based design process [Petrini and Ciampoli, 2012]
are to select the relevant parameters as in Table 9.4 followed by the design process. The
first step is to use structural mechanics to determine the structural responses and then
assess whether the design constraints d∗ are met. If not, the process is to refine the
design through modification of some or all of the parameters and to repeat the process.
This can be done, for example, using an optimization algorithm to do most or all of the
repetitive work (Chapter 11). It is possible also to integrate the outcomes of the process
as a set of conditional steps, as follows:

g(d) = P(d > d∗)

=∭∬g(d|C)f (C|E)f (E|P,Q,R)f (P|Q,R)f (R)f (Q)dC dE dP dR dQ (9.30)

The above integral looks complex, and it is indeed difficult to evaluate in practical prob-
lems. However, it conveys the main ideas of performance-based design. Starting from
the outer integral, the idea is that the response of interest g(d) is integrated over:

1. the whole spectra of random load intensities (Q), instead of being computed only for
one or two nominal values, corresponding to one or two mean return periods;

2. the uncertain parameters affecting structural resistance (R);
3. the uncertain interaction parameters (P), which depend on load intensity and

structural (resistance) variables;
4. the whole spectra of structural responses (E), instead of just a serviceability and

an ultimate limit state, as usual; this leads to a continuous transition between fully
functional and completely failed;

5. the whole spectra of failure consequences (C) associated to structural responses (E).

Finally, it is noted that structural reliability analysis is concerned with whether the struc-
tural responses meet a given risk criterion. In probabilistic design the emphasis is on
determining the structure (shape, sizes) to comply with a pre-set probabilistic criterion.
This is discussed in more detail in Chapter 11.

9.10 Conclusion

This chapter has been concerned with applying the methods of reliability analysis
outlined in the previous chapters to derive rational non-probabilistic safety-checking
rules for use in so-called ‘limit state design’ codes. The format of the safety-checking
rules adopted for such codes usually is of the partial factor format. This format was
shown in Chapter 1 to be not necessarily mechanically invariant. However, provided
that the method of application of the safety-checking rules is clearly set out in the
structural design code, the problem of lack of invariance of the safety measure can be
largely ignored.

To illustrate the code calibration procedure, the present chapter confined attention to
the nominal failure probability for purposes of sizing structural members. Some of the
justification for so doing was discussed by reference to Chapter 2. Further, a distinction
was made between the nominal failure probability pfN used elsewhere and pfC used in the
present chapter. This was considered to be appropriate because the latter probability is
obtained to a large extent from predicted information. It therefore is likely to be subject
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to a considerable amount of uncertainty. Also, it was noted, again, that the nominal
failure probability implicit in the code-calibration work cannot be compared in a wholly
rational manner with observed rates of failure of structures.

Finally, some brief remarks were made about performance-based design as a general-
ization of the traditional code based design approach. It allows a more general definition
of what is required from the design process for a structure. This can have a direct input
to optimization using a more direct application of a probabilistic framework rather
than the traditional use of partial factors (see Chapter 11).
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10

Probabilistic Evaluation of Existing Structures

10.1 Introduction

Once a structure has been designed, constructed and placed in service and perhaps has
been in use for a long period of time, and perhaps suffered from deterioration, occa-
sional overload, or misuse, the question may arise ‘how safe is the structure?’ It should
be evident that this is quite a different question to that faced by designers of a new struc-
ture. Checking the structure against the code to which it was designed originally (or
some more recent code) is not necessarily helpful since a design code needs to allow
for uncertainties in the design and construction processes and these uncertainties will
have been realized (i.e. they have been fully determined) in the finished structure. They
are no longer uncertainties. However, determining what the actual values of various
parameters might be for an existing, perhaps deteriorated, structure is not necessar-
ily straightforward, and can introduce uncertainties of its own. An introduction to this
matter is given in this chapter, together with a brief discussion of the criteria that might
be used for decisions about the acceptability of an existing structure.

That the problem of assessment of existing structures is a major issue can be seen in
some statistics. In 1996 it was estimated that, in the UK alone, more than 100,000 road
bridges and some 25,000 railway under-bridges would need to be assessed, eventually,
for remaining life and for load capacity [Menzies, 1996]. At about the same time, it was
estimated that in the US about 50% of then-existing bridges were over 50 years old and
that more than 100,000 bridges were rated as structurally deficient, and some 150–200
needed urgent attention each year [Dunker and Rabbat, 1993; Baboian, 1995]. These
statistics have not changed much over the last few years, with the state (and safety) of
national infrastructure increasingly causing concern. In 2013, of the more than 600,000
bridges in the US, with average age about 40 years, some 10% were considered likely to
be structurally deficient. To bring them to satisfactory conditions will need an annual
investment of some $US20 billion [ASCE, 2013]. Importantly, structures associated
with buildings, ports, harbours and industrial facilities are not even included in these
statistics.

Assessments of existing structures may be conducted for any one or more of the
following reasons (Ellingwood, 1996):

(1) change of tenancy or use, including increased load requirements;
(2) concern about design or construction errors;
(3) concern about quality of building materials or workmanship;

Structural Reliability Analysis and Prediction, Third Edition. Robert E. Melchers and André T. Beck.
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(4) evaluation of effects of deterioration;
(5) assessment of damage following an extreme loading event (such as a wind storm or

earthquake);
(6) concern about serviceability.

For buildings, changes of tenancy could bring about the need to support higher floor
loadings. Thus increased ultimate strength and serviceability requirements must be met.
For road and railway bridges there continues to be a world-wide demand for the limits
on maximum bridge loading to be increased [Frangopol and Hearn, 1996].

In regions where the seismic risk is relatively high, there is pressure for older, exist-
ing structures to be up-graded to meet the higher seismic resistances demanded by
newer-generation structural design codes. There may be very serious economic and
social implications. Although less common, structural assessment of partially completed
or existing buildings may be needed when there is concern about some aspect of the
design or construction, including the quality of the materials used.

Many structural systems will have undergone some degree of deterioration. From a
structural strength point of view, fatigue and corrosion are the main concerns. Spalling,
cracking and changed appearance of concrete surfaces, while often superficial, also may
indicate deterioration and require careful interpretation. For example, they may be due
to corrosion of reinforcement, to sulphate attack or to microbiological attack. Similarly,
the condition on steel structures with protective coatings such as paints or galvanizing
tends to indicate the level of corrosion of the steel. Other indicators of possible dete-
rioration include changes in natural frequency or damping and increased permanent
deformations.

Deterioration effects are likely to be structure- and site-specific. For corrosion this is
due to local climatic conditions, geographic features and structural form and orientation
having an influence on deterioration agents such as rain, temperature and ultraviolet
radiation. Similarly, environmental loading effects such as seismic loading also may have
a degree of site specificity since ground-shaking may be amplified by local soil condi-
tions. Thus structural assessments tend to be unique to the structure being considered.
Although rather different approaches have been employed for structural assessments,
there are some principal ideas involved.

The next section (10.2) provides a review of the assessment procedures for existing
structures, including the use of proof loading and any knowledge of service perfor-
mance. This shows that there are considerable uncertainties associated with assessment
procedures, directly suggesting that probabilistic techniques are appropriate. The fol-
lowing section (10.3) describes how Bayes’ rule (A.7) can be used to update an a priori
(i.e. the already known, or computed) estimate of the probability of failure of a structure
given additional information, irrespective of whether this is subjective or not. The pri-
mary focus is the effect of additional information gained through proof loading or the
satisfactory service behaviour of a structure. The use of proof loading to gain information
raises the question of the trade-off between the information gained and the possibility
of damage caused by the proof loading and it effect on the probability of failure.

A more profound use of Bayes’ rule is in up-dating the a priori probability density
functions for the basic variables describing the structural reliability problem. This is
described in Section 10.4. These can then be used in a reliability analysis to estimate the
up-dated structural reliability.
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A different approach for the assessment of existing structures is to employ analytical
modelling of the structure, including any modification of the probability density
functions describing the random variables and including any deterioration effects and
to re-assess its probability of limit state violation. It is similar to the analyses described
in earlier chapters except for updated distributions and the inclusion of deterioration
effects. Thus Monte Carlo analyses with different (i.e. updated) input variables and
with sensitivity analysis can be used as well as the simplified methods of Chapter 4. In
some cases more detailed modelling may be required for specific structural aspects, for
example, a more detailed finite element analysis might be required in some area of the
structure. In many respects this is the most comprehensive approach to dealing with
existing structures. However, it may be feasible, in practice, only for complex structural
systems with high consequential costs should failure occur. Section 10.5 provides an
outline of these matters.

As noted earlier, the risk acceptance criteria for existing, service-proven, structures
should not, in principle, be the same as those for the design of new structures. Con-
servatism in design rules for new structures generally incurs only a very small (and
usually unknown) cost penalty in terms of structural costs. However, conservatism in
acceptance criteria for an existing structure can have a major impact, with demolition
(and possibly rebuilding), major repairs or upgrading or loss of business being the
outcome of failure to meet criteria. This has resulted in strong pressures (commercial,
social, heritage and others) to reduce the criteria where the socio-economic impact
is likely to be severe. Section 10.6 discusses acceptance criteria for existing structural
systems and also decision-theoretic applications, similar to those for new structures
discussed in Chapter 2.

10.2 Assessment Procedures

10.2.1 Overall Procedure

Typically the assessment process for an existing structure will consist of the following
steps:
(1) preliminary on-site inspection (to ascertain location, condition, loadings, environ-

mental influences, special features, necessity for further testing);
(2) recovery and review of all relevant documentation, including loading history,

maintenance and repair and alterations;
(3) specific on-site testing and measurements, including, perhaps, proof loading;
(4) analysis of collected data to refine (or ‘up-date’) the probability of failure estimate

using Bayes’ rule, or refining the probabilistic models for structural resistance (and
perhaps loading) for analytical analysis;

(5) decision analysis to consider whether and how much extra data should be collected
to achieve a cost-effective overall outcome.

Some of these are described in more detail below. At this stage attention will be confined
to items (1)–(3). The first step is important in setting the framework for the subse-
quent analysis. It would determine the testing necessary to be carried out and the details
desirable for performing the reliability analysis.

Information about the structure being assessed ought to be available, in principle,
from the owner of the structure, its designer and local or state authorities charged with
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approval processes. In practice, design information such as calculations and drawings
often has been lost or cannot be traced, particularly for older structures. Thus a complete
survey of the existing structure may be required, together with an analysis of member
and system design strengths.

Almost certainly design code requirements for older buildings were different from
those currently in force. Although there has been a general trend towards relaxing design
code requirements [Ellingwood, 1996] concomitant with greater detail design needs,
there are areas where design code requirements have become much more specific and
older buildings are found not to comply, even for matters not specifically under scrutiny.
Although the design and loading codes that would have applied to the original structure
often are still available in archives, information about material specifications specific
to the structure tends to cause the greatest difficulty, particularly for materials such as
older concretes and wrought iron.

A further complication, particularly for older buildings, is that modifications may have
been made to them and often these are poorly documented. Sometimes such modi-
fications can have a negative influence on structural integrity or may hide significant
defects. Similarly, maintenance practices are not always recorded. One area that can
cause concern, for example for reinforced concrete structures, is the effectiveness of
cathodic protection systems that have failed some (unknown) time in the past, leaving
doubt about the actual state of reinforcement.

In the investigation of an existing structure, particularly for structural capacity, it is
desirable to have as little negative influence caused by the investigation process. Thus
the preference should be for the minimum of invasive techniques and, where possible
and economic, non-invasive techniques. These include non-destructive techniques for
material properties (e.g. rebound hammer, ultrasonic pulse techniques, deep penetra-
tion X-rays) and for element dimensions (e.g. electromagnetic cover meters, ultrasonics)
as well as to detect defects (e.g. impact-echo techniques for large voids or delamina-
tions) and for corrosion and deterioration (e.g. half-cell potential and resistivity mea-
surements). Typically, such measurements provide only a partial and rather uncertain
indication of the state of the structure [e.g. Silk et al., 1987; Paik and Melchers, 2008a].

Often the structural members requiring assessment are not accessible. Safety-critical
structural members or components may be hidden by architectural finishes, by other
structural components or by fire proofing materials or be otherwise inaccessible for
inspection and testing. For these situations many of the existing non-destructive tech-
niques are not wholly adequate—this remains an area in which further advances are
urgently needed.

Probably the greatest challenge facing those assessing an existing structure is deciding
what is to be assessed, where and how, and the extent and intensity of the assessment
required to achieve sufficient confidence in the outcomes.

The most elementary level of assessment and decision consists of subjective classi-
fication systems, perhaps feeding into a condition matrix, from which subjective con-
clusions and recommendations can be made [e.g. Frangopol and Hearn, 1996]. More
detailed assessments would supplement this approach with structural re-analyses and
reference to existing design codes, or to codes for existing structures, if available. The
latter have been developed in some specific cases but in general as yet without the ben-
efit of a structural reliability code framework such as discussed in Chapter 9. These
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simplified approaches are not the central focus of the present chapter. The discussion
to follow will assume that some level of probabilistic assessment is of interest.

10.2.2 Service-Proven Structures

If a structure has been in service for a medium to a long period of time, and has not
been altered or modified or deteriorated significantly during that time, and has per-
formed satisfactorily during that time, it is likely that it remains satisfactory and, also, in
most cases, safe. It can be said to be ‘service-proven’. To some extent satisfactory per-
formance may be an indicator also of adequate safety and of likely continuing safety,
provided there is no evidence of significant on-going deterioration and the loadings are
expected to remain substantially the same. Thus if a building is, say, 100 years old, this
usually provides good evidence of satisfactory safety for dead and variable loads, pro-
vided these are not significantly different from those in the past. The reason is the general
approach to structural design is to ensure sufficient structural and member ductility so
as to provide sufficient resilience and gradual rather than sudden failures (Section 1.1).
This means that for most structural systems, any unacceptable deformation, vibration,
or local damage would have become evident to the users during normal operational ser-
vice. This is irrespective of the details of serviceability criteria or safety requirements
specified by a design code.

In using past service behaviour as an indicator of behaviour for assessing existing
structures, attention must be given also to requirements that may exist or have existed
on the structure during its service life, such as load limits for bridges. These may have
the effect of modifying the upper (high load) tail(s) of the probability density function
for applied loading (Figure 10.1). In this case there is a clustering of loadings just below
the legal limit and a few rogue loadings beyond the legal limit. The precise distribution
now depends also on the load limit enforcement regime and how this may or may not
have varied over the service life.

Where loading events are infrequent, such as due to earthquake-induced ground
motion, satisfactory past performance may not be a good indicator, since the infrequent
loading event may not (yet) have occurred. A similar situation can apply for younger
buildings and crowd loading (which is only very rarely applied to the magnitude
specified in design codes).

In a sense service proof is better than a proof load test (see next section) in that the
whole structure is ‘tested’ rather than some specific part of it and because the load-
ings are site-specific [Allen, 1991]. However, it is clear also that relying solely on past
performance generally will not be sufficient (see comments in previous section).

Nominal Maximum
Load Limit

Load

Probability Load Probability
Density Function

'Rogue' and
Overlimit Loads

Clostering of high Loads
within legal limit

Figure 10.1 Schematic representation of the effect of legal limits and enforcement on the upper tail
of the probability density function for applied bridge loading [Melchers, 2008a].
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There are ‘engineering’ approaches to using satisfactory past performance in the
evaluation of existing structures [ISE, 1980; OHBDC, 1983; Allen, 1991]. There also
are efforts to formulate the concept in the context of structural reliability–based tech-
niques. Hall (1988) proposed a Bayesian-based approach and Stewart and Val (1998)
a simulation-based approach, including the effect also of structural deterioration.
It should be clear that unless there is a high likelihood that the service period has
included significant load levels, service-proof is less likely to be as informative as a
proof-load test.

A special case of service-proof arises in relation to phenomenological uncertainty
(see Section 2.2.2. For structural (and other) systems for which the critical limit state
conditions perhaps are not fully understood or even known, phenomenological uncer-
tainty may be an issue and an unrecognized and unformulated limit state may exist.
Service-proof can increase the confidence that such a limit state is not critical, if it exists.
The theory follows directly from Bayes’ theorem (see above) [Riera and Rocha, 1997].

10.2.3 Proof Loading

The notion that further testing can provide additional information about a structure
or its components is not new [e.g. Hall and Tsai, 1989]. In a sense proof-loading of an
existing, in-service structure is the ultimate test of its performance, but what does such
a test actually reveal about the structure?

If the proof load is highly correlated to the phenomenon of interest, such as measur-
ing stiffness to make inferences about ultimate strength for reinforced concrete beams,
a proof load test can be useful [Veneziano et al., 1984; Moses et al., 1994]. Also a proof
load test can determine the minimum strength or capacity of a component, such as a
reinforced concrete floor. The load supported by the floor then can be applied to the
probability density function for its strength to truncate it below the proof load (see
Figure 10.2). Typically, this increases the reliability index [Fujino and Lind, 1977; Fu
and Tang, 1995; Moses, 1996]. But the test itself may (i) damage the structure or the
material(s) of which it is composed [Kameda and Koike, 1975] and/or (ii) fail the struc-
ture. Generally, only higher levels of proof load have a significant effect on the predicted
reliability, as is illustrated in Example 10.1 later in this chapter.

f

r

Updated resistance
 f"R

Initial resistance
f'R

Proof load

Figure 10.2 Truncation effect on structural resistance.
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A typical proof load test consists of the following steps:

(1) slow application of loading in several approximately equal increments, allowing suf-
ficient time between increments for the structural response to become reasonably
steady (say about one hour);

(2) continued application of load steps until code specified proof load level is reached,
provided that at each stage it is considered safe to continue loading;

(3) measurement of deformations at each stage and noting of cracking patterns and
other signs of possible distress;

(4) at maximum load level holding the load for, say, 24 hours and continuing to monitor
structural behaviour;

(5) slow unloading of the structure, monitoring deformations.

For steel and reinforced concrete structures the proof load test often is considered suc-
cessful if the eventual deformations of the structure are less than about 25% of the max-
imum deformations expected under ultimate load, suggesting that inelastic behaviour
of this magnitude is tolerable for the types of steel used. For reinforced concrete
elements made with reinforcing steels that have less pronounced or short yield plateaus
this may be optimistic. Importantly, the proof-load test says nothing about how close
the proof-load might have been to the ultimate capacity of the structure, how much
ductility remains, and whether structural or material damage has been caused by
the proof test. Also, a proof load test result supplies little information about how the
structure compares with the requirements of the relevant design code.

Load tests have been used also to estimate more accurately individual member forces,
as demonstrated, for example, for truss bridges [Nowak and Tharmabala, 1988]. This is
helpful in improving the theoretical analysis of a structure, such as through taking into
account structural behaviour normally neglected by conventional analysis [Faber et al.,
2000].

Most existing structural design codes provide only rather general guidelines for load
testing. Typically, they require satisfactory performance under the test loads, and some
specifications for what is deemed satisfactory behaviour. The test loads themselves typi-
cally correspond to the factored loads for gradual (bending) failure and to slightly higher
load levels (e.g. 10% higher) for shear (brittle) failure [Allen, 1991].

10.3 Updating Probabilistic Information

10.3.1 Bayes Theorem

When additional information has been gathered about an existing structure or its com-
ponents, the knowledge implicit in that information might be applied to improve any
previous (‘prior’) estimate of the structural reliability of that structure. The framework
for doing this is Bayesian statistics, which uses Bayes theorem (see Section A.2.2.4,
Eqn. (A.7)):

P(A ||Ec ) =
P(A ∩ Ec)

P(Ec)
(A.7a)
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where event A is conditional on event Ec. As noted in Appendix A, the latter can be
expanded to the case where there are several conditioning events Ei, i = 1, 2,… , n. Then
(A.7a) becomes

P(A ||E1 ∩ E2 ∩ E3 …En ) =
P(A ∩ E1 ∩ E2 ∩ E3 …En)

P(E1 ∩ E2 ∩ E3 …En)

=
P(E1 ∩ E2 ∩ E3 …En|A)P(A)

P(E1 ∩ E2 ∩ E3 …En)
(A.7b)

where the second equality shows the conditioning events Ei now being conditional on
the original event A. To apply (A.7b) to a structural reliability problem, let the event A be
the failure event G(x) < 0 with, as before, the limit state function described by G(x) = 0.

10.3.2 Updating Failure Probabilities for Proof Loads

A special case of (A.7b) is where the additional data available are the result of a single
proof load applied to the structure. In this case n = 1. Let the structural limit state func-
tion for the proof load be denoted H = 0 and H < 0 denote failure under the proof load.
Thus H > 0 denotes that the structure survived the proof load test. Then the updated
probability of failure given that the structure survived under the proof loading can be
expressed as [Madsen, 1987]:

pfU = P[G(X) < 0 |H > 0] = P[G(X) < 0 ∩ H > 0]
P[H > 0]

(10.1)

In this expression the numerator on the right represents the probability of the structure
failing even after it has survived the proof loading. It can be evaluated by the methods
discussed in Chapters 3 and 4 and in Appendix C. The denominator represents the prob-
ability estimate of the structure surviving under the application of the proof load. This
also can be estimated using the methods of Chapters 3 and 4. If required, the concept
can be extended easily for multiple proof loads using (A7.b).

10.3.3 Updating Probability Density Functions

Instead of simply updating the estimate of the probability of failure with the use of one
(or more) proof load tests (or information from service performance), Bayes’ rule can
be used to update probability density functions, provided sufficient extra (homogeneous
and consistent) data is collected.

Consider first the concept of updating a probability density function. The idea is illus-
trated in Figure 10.3. If f ′R(r) represents the (a priori) conditional probability density
function (pdf) of, say, structural resistance R, and f V( ) represents the (conditional) pdf
of some new data (marked as the likelihood function), then the updated (posteriori) pdf
f ′′R ( ) is likely as shown. Evidently, if the data has a lot of scatter, (i.e. if the likelihood func-
tion f V( ) has a large variance, and thus has a flatter probability density function than
that shown), it does not contain much information (i.e. it is ‘non-informative’). Hence it
does little to help in refining the original pdf. Conversely, if the data has very little scatter,
then f V( ) will be narrow, is highly ‘informative’ and will have a significant influence on
f ′′R ( ). Similarly, if there is little understanding of the variable being considered, its a pri-
ori distribution f ′R( ) is highly uncertain (i.e. flat) and can be said to be ‘non-informative’.
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prior f'R
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r

Figure 10.3 Known (a priori) pdf for resistance f ′R(r) as modified by new information fV( ) (likelihood
function) and modified (posteriori) pdf f ′′R ( ).

The posteriori (or predictive) distribution will then be considerably influenced by the
additional data.

From the numerator on the right-hand side of (10.1) it should be clear that 𝜽 a high
degree of (negative) dependence between the structural failure event G(X) < 0 and the
successful proof-load event H > 0 will produce a tighter up-dated (posterior) distribu-
tion, giving more confidence about the estimated random vector X of interest. This
means that the inspection and assessment procedures should be constructed so as to
produce event outcomes H > 0 that are informative about G(X). For example, mea-
surements of beam stiffness can be used to make inferences about beam strength, pro-
vided the two are correlated highly, as is the case, for example, for reinforced concrete
beams.

To make the concept of updating a probability density function operational, the
parameters that define it, as in say vector 𝜽, need to be updated. This can apply also to
the situation when the parameters 𝜽 themselves are not known with a high degree of
accuracy. In both scenarios it follows that the probability density function is dependent
on 𝜽. It can be stated as a conditional probability density function fX|𝜽(x |𝜽). Updating
requires additional information and let this be considered obtained by making several
(n) observations x = (x1,… , xn) from which both the parameters 𝜽 can be updated and
also the pdf fX|𝜽(x |𝜽) updated.

Let the initial knowledge about 𝜽 be represented by f ′𝚯(𝜽), the prior distribution of
𝜽, that is, the distribution which represents the information about 𝜽 before any obser-
vations are made. After the n observations x = (x1,… , xn) have been made, the new
(posteriori) distribution f ′′Θ (𝜃) of 𝜽, given x is given by [e.g. Rackwitz, 1985b]:

f ′′𝚯 (𝜽) = c.L(𝜽 |x)f ′𝚯(𝜽) (10.2)

where L(𝜽 |x) is the so-called ‘likelihood’ function as before and c =
[
∫L(𝜽 |x) f ′𝚯(𝜽) d𝜽

]−1

is the normalizing factor. Here the likelihood function L(𝜽 |x) represents the knowl-
edge gained from the observations x. It is the likelihood of observing the outcome x
under the assumption that 𝜽 takes its current (set of ) value(s)—it may be written also as
P(x |𝜽).
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The likelihood function L(𝜽 |x) is proportional to the conditional probability of mak-
ing the observations, thus

L(𝜽 |x) ∝
n∏

i=1
fX|𝚯(xi |𝜽) (10.3)

where n is the number of samples (or observations).
Once f 𝚯(𝜽) has been updated, it is possible to obtain the ‘predictive’ (or expected)

distribution for X, given that the sampling has been done and the probability density
function for the parameters 𝜽 has been refined, from

fX(x) = ∫𝜽 fX|𝚯(x |𝜽) f ′′𝚯 (𝜽) d𝜽 (10.4)

This is an expression of the total probability theorem (A.6). It might be compared also
to (1.35).

Example 10.1 [adapted from Val et al., 1998a] A reinforced concrete column was
suspected of deficient concrete strength. Core samples were taken. At first there were
three such samples with core strengths (45.19, 39.95, 42.77 MPa) and a Bayesian analysis
was performed. There was concern about the outcome, and three more samples were
taken, with strengths (41.61, 43.39, 37.88 MPa). This was later followed by another four
samples (46.11, 41.78, 43.93, 40.63 MPa). The mean and coefficient of variation for each
total group of samples is shown in Table 10.1.

It is known from extensive experimental work that the relationship between the core
strength f c,core and the in-situ strength f c,is of concrete is given by [Bartlett, 1997]:

fc,is = K . fc,core (10.5)

where K collects a number of factors (see Section 8.4). Here the core strength is the
observed variable and is a function of the actual in-situ strength and the factor K which,
in general, is known only as an uncertain relationship.

More generally, the relationship between the structural parameter x of interest (i.e.
the in-situ concrete strength) and the parameter y actually observed, can be given as

y = axb (10.6)

where a and b are calibration values. In the present example a = K and will be assumed
known, with known mean 𝜇a and known variance 𝜎2

a . These values could be obtained
from repeated testing of the in-situ testing process or equipment when x is known (i.e. a
calibration exercise). In the following, let b be a deterministic value (=1 in this example).

Table 10.1 Mean and standard deviation
for samples.

No. of samples Mean (MPa) COV

3 42.58 0.062
6 41.73 0.063
10 42.26 0.059
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Uncertainty in y can come about from (i) imprecision of the measurement instrument
or process; (ii) model uncertainty, that is, how well (10.6) represents the relationship
between x and y; and (iii) through limited sampling.

For convenience, let x and y be Lognormal in distribution. Then (10.6) becomes

Y = A + B.X (10.7)

with Y = log y, A = log a and X = log x each with a Normal distribution. Also, for these:

𝜇Y = 𝜇A + b.𝜇X (10.7a)

and

𝜎2
Y = 𝜎2

A + b2 . 𝜎2
X (10.7b)

Evidently, x and a are independent random variables, and y is a dependent variable.
Also, 𝜎Y ≥ 𝜎X , 𝜎Y ≥ 𝜎A always. If enough observations of y are taken, it is possible to
estimate the moments of the random variable Y (see Section A.5.9). The mean and vari-
ance for the Normal distributed X can then be estimated from 𝜇X = 1

b
(𝜇Y − 𝜇A) and

𝜎2
X = 1

b2 (𝜎2
Y − 𝜎2

A).
Thus in (10.3) the vector of (unknown) parameters 𝜽 becomes 𝜽 = (𝜇X , 𝜎X), and the

likelihood function, given the vector of observations Y′, is then proportional to:

L((𝜇X , 𝜎X) |Y′) ∝ 1
(𝜎2

Y − 𝜎2
A)n∕2

exp

{
− b2

2(𝜎2
Y − 𝜎2

A)

n∑
i=1

[
Yi −

1
b
(𝜇Y − 𝜇A)

]2}
(10.8)

If it is assumed that the parameters 𝜇X and 𝜎X are independent a priori, their joint prior
distribution is given by f ′Θ(𝜃) = fM(𝜇) . fΣ(𝜎) where f M(𝜇) and f Σ(𝜎) are marginal prior
distributions of 𝜇X and 𝜎X respectively. The choice of these distributions depends on the
information available about 𝜇X and 𝜎X a priori, as will now be discussed for the problem
under consideration.

Let it be assumed that in the first analysis no attempt was made to look at the records
to determine what might have been the specified concrete strength. Hence the prior
knowledge is ‘non-informative’. For this situation, the prior distribution is locally
uniform on the mean 𝜇X [e.g. Box and Tiao, 1973]:

fM(𝜇X) ∝ constant (10.9)

In this case the distribution of the standard deviation may be given by Jeffrey’s rule [e.g.
Box and Tiao, 1973], which leads to:

fΣ(𝜎X) ∝
𝜎X

𝜎2
Y − 𝜎2

A
(10.10)

with 𝜎A given above. Using these prior distributions in (10.4) produces the ‘predic-
tive’ distribution for the compressive strength of concrete, assuming non-informative
prior information. The resulting distributions for n = 3, 6, 10 are shown in Figure 10.4(a)
[Val et al., 1998a].
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Figure 10.4 Predictive distributions for in-situ compressive strength of concrete (a) non-informative
priors for 𝜇 and 𝜎, (b) informative priors for both 𝜇 and 𝜎.

If more information is known a priori, such as the characteristic compressive strength
f ′c of the concrete used in the column, known relationships [Bartlett and MacGregor,
1996] (see Section 8.4) between this value and the mean of the in-situ strength and its
variance can be used to derive the a priori distribution for 𝜇. Similarly, generic data can
be used to set an a priori distribution for 𝜎 [Val et al., 1998a]. If this is done, typical
results such as shown in Figure 10.4(b) are obtained.

Evidently, in this example the non-informative prior, case (a), has a more peaked (nar-
rower) distribution than case (b) and has a slightly lower mean. For a given value of
compressive strength, say 50 MPA, the upper tail of the distribution (a) has a smaller
probability content than for case (b). This indicates that there is a smaller probability
that the actual strength of the concrete is 50 MPa or above.

Increasing the number of samples leads to a more peaked distribution in both cases,
although the effect is slightly more pronounced for case (b). This demonstrates that case
(a) is (of course) highly dependent on the samples. In case (b) the prior information is
more important and there is less reliance on the sample information.

10.3.4 Pre-Posterior Analysis

The above examples have shown that additional information can be used to update the
estimated probability of failure, either directly or through updated probability distri-
butions to be used in a reliability analysis of the existing structure. Such additional
information usually comes at some cost, including the actual cost of testing or addi-
tional investigations or both. A question that then arises is whether the cost of gaining
the extra information is warranted in terms of the savings related to the updated esti-
mate of the failure probability of the structure. The investigation of this can be done
best through a decision framework (cf. Section 2.4.2) or similar, conducted before the
estimation of the adjusted (posterior) failure probability. For that reason it has been
termed pre-posterior decision analysis [Benjamin and Cornell, 1970; Diamantidis, 2001].
It may require the evaluation of different options for gaining information, each with its
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own costs and likelihood of influencing the outcome probability estimate. The struc-
tural reliability estimation components of such a pre-posterior decision analysis are not
significantly different from what has been outlined so far. Typically, only the decision
framework itself (i.e. the event tree analysis) is somewhat more complex and requires
cost estimates. The reader is referred to Diamantidis (2001) for more details about the
fundamental issues involved. In addition, the literature now contains many example
applications.

10.4 Analytical Assessment

10.4.1 General

Using analytical techniques to model the existing structure for evaluation has the advan-
tage that known probabilistic information about materials and loadings relevant to the
existing can be incorporated directly into the analysis. This information also can be
up-dated and augmented with new information as it becomes available. Further, models
for structural material deterioration can be incorporated easily, and these models can be
updated, modified or replaced with better models as they become available. Also, sen-
sitivity analyses can be performed at relatively low cost, irrespective of whether Monte
Carlo methods or the simplified methods from Chapter 4 are employed. All this can be
achieved more easily and with much less cost than can be achieved with tests such as
proof loading.

A possible disadvantage of analytical techniques is uncertainty about how well the
analytical model represents reality. While finite element and other structural modelling
tools can be matched closely to represent the response of a structure (and in this sense
a proof load test can be very useful for calibration), the modelling of the (most likely
deteriorated) condition of the materials in the structure is likely to be less certain.

The damage caused by fatigue has had a considerable amount of study and, in gen-
eral, can be modelled reasonably well. The main qualification is that particular care is
required in the modelling of the details where fatigue cracking can commence, as these
tend to dominate the subsequent behaviour.

On the other hand, damage mechanisms such as reinforcement corrosion, structural
steel corrosion, sulphate and other chemical attack, frost damage and microbiological
attack and the effect these have on structures generally are less well understood and
therefore difficult to model convincingly for analysis. There also tends to be a rather
high level of uncertainty associated with these various influences and their effects on
the structure.

Within these constraints, modelling of the structure and its various influences allows
appropriate probabilistic analysis to be performed. Particular care is required to use
relevant data for the structure: while generic data (such as described in Chapter 8) is
appropriate for the establishment of design rules as in Chapter 9, for the assessment
of an existing structure it is better for the data to be directly relevant to that structure.
Generic data must be used with great care. The next section gives a brief review of some
deterioration models.

Once the models for the structure and the various deterioration and other models
have been established, and probabilistic models for the various influences selected, the
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reliability analysis follows a pattern similar to that described in the earlier chapters, using
FOR/SOR methods, as demonstrated in some example applications [e.g. Micic et al.,
1995; Enright and Frangopol, 1998]. Also, simulation techniques have been used for
relatively simple structures [e.g. Mori and Ellingwood, 1993b; Stewart and Val, 2003;
Akgul and Frangopol, 2005; Strauss et al., 2008]. It is likely that a full-scale probabilistic
reliability analysis for an existing structure is feasible only for really major systems or
those with very severe consequences should failure occur (e.g. nuclear facilities, nuclear
waste storages, major oil and gas facilities).

10.4.2 Models for Deterioration

When the structure being assessed for remaining life and reliability has undergone some
deterioration, the inspection process should attempt to ascertain the amount of deteri-
oration that has occurred. Thus material loss due to corrosion might be estimated, and
inspection might reveal fatigue cracking, but in general it will not be possible to obtain
a complete picture of the deterioration of the structure. Some estimation from known
fatigue mechanics and corrosion mechanics usually will be needed to supplement the
visual and on-site inspection observations.

Inspection and observation itself introduces an element of uncertainty [e.g. Silk et al.,
1987; Frangopol and Hearn, 1996], and this must be considered in the analysis [e.g.
Moses, 1996].

As noted, apart from fatigue [Wirsching, 1998; Byers et al., 1997], the modelling of
the mechanics of structural deterioration is not yet well developed. Simplified constant
corrosion rate models have been used in some of the early work on the reliability assess-
ment of ships [e.g. Piak et al., 1997] and steel pipelines [e.g. Ahammed and Melchers,
1997]. For atmospheric corrosion non-linear empirical curve-fitting approaches have
been applied, as for example for steel bridge reliability [Albrecht and Naeemi, 1984;
Hearn, 1996]. All these efforts showed that when compared to data, the uncertainty
in material losses due to corrosion was very large. One issue is that some of the data
sets used by investigators were not homogeneous, as would be required for valid prob-
abilistic models. Data was simply ‘opportunistic’ and even for short-term exposures,
when a ‘rate’ model might be expected to be reasonable, there are many cases in the
literature with very high standard deviations [Guedes-Soares et al., 2006]. But even for
well-controlled data it was found that the ‘corrosion rate’ or simple non-linear mod-
els are not sufficient to properly capture and thus represent corrosion behaviour for
longer-term exposures. In particular, the parameters of such simple models are very
sensitive to the period of exposure being modelled. All this suggests that the simpler
models are not sufficiently discriminatory to capture longer term corrosion behaviour.

Much more detailed investigation has shown, initially for the marine corrosion of
a variety of steels that the trend for corrosion loss versus exposure time is distinctly
non-linear and, depending on the precise exposure conditions, such as water velocity,
often exhibits bi-modal behaviour (Figure 10.5). This bi-modal behaviour is related to
the development of the corrosion products on the metal surface and the changing condi-
tions at the corrosion interface, denoted by the phases shown in Figure 10.5a [Melchers,
2008b]. Such behaviour also has been demonstrated for longer-term exposures of alu-
minium alloys and for copper alloys [Melchers, 2014a, 2015a]. In addition, for steels,
much research activity has demonstrated that microbiologically influenced corrosion
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Figure 10.5 Typical bi-modal corrosion loss penetration p as a function of exposure period t showing
(a) main phases in the early stages of corrosion and the effect of microbiologically influenced
corrosion (MIC) and (b) the medium to longer-term linear bounding trend.

can be severe but only under particular circumstances [Melchers, 2014b]. These include
unfavourable local conditions such as high nutrient loading and under-deposit corro-
sion, both important for some types of major steel marine infrastructure, including
sheet piling, pipelines, welded zones, etc. [Melchers and Jeffrey, 2014; Melchers, 2015b;
Comanescu et al., 2016; Chaves and Melchers, 2014]. Both the bi-modal characteristic
and the influence of MIC can have significant influence on the statistical representation
of maximum pit depth, for which the Gumbel extreme value distribution has long been
considered the most appropriate representation [Galambos, 1987; Melchers, 2015b].

For reinforced concrete the most serious deterioration issue usually is reinforcement
corrosion. In most coastal regions, where the significant infrastructure often is located,
onshore and offshore, chloride diffusion to the reinforcement usually is considered the
most critical issue, along with the ability for moisture to penetrate or be present at the
reinforcement–concrete interface. Chlorides also may result from the application of
de-icing salts to bridge decks [e.g. Hoffman and Weyers, 1994] and as air-borne par-
ticles in coastal inland regions. Cracking and spalling of concrete and loading intensity
are other factors to be considered, although often these are the result of reinforcement
corrosion [Gjorv, 2009].

A large number of papers have addressed these matters in a reliability context [e.g.
Thoft-Christensen et al., 1996; Val and Melchers, 1997; Frangopol et al., 1997; Stewart
and Rosowsky, 1998; Val, 2007; Strauss et al., 2008; Orcesi and Frangopol, 2011], most
commonly using numerical models to simulate the physics of the situation, or inter-
pretations from laboratory experiments. Unfortunately there has been remarkably little
that relates the predictions of these models or experiments to observed behaviour of
actual structures. In part this is because of the scarcity of systematic well-controlled,
field observations over extended periods of time. However, there is now considerable
evidence that the theory and the laboratory experimental results do not always relate
well to field observations [Melchers and Li, 2009a,b; Angst et al., 2012]. This includes
the threshold chloride content linked to the initiation of reinforcement corrosion [Angst
et al., 2009; Melchers and Chaves, 2017], a factor most papers dealing with reliability
analysis have assumed to be a random variable. However, the fact that the variability is
so high indicates that the mechanisms and behaviours involved are not well understood,
or simply that the conventional understanding of the factors involved is poor. Recent
research and many field observations [as summarized by Angst et al., 2009; Melchers and
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Figure 10.6 Beam in Example 10.2

Li, 2006; 2009b] suggests that high chloride content is not the critical issue for the initia-
tion of reinforcement corrosion. A more sophisticated understanding is now beginning
to be developed [Melchers and Chaves, 2016].

Example 10.2 [adapted from Ellingwood, 1996] Consider a W24 × 76 wide-
flange steel beam (610UB101 universal beam) simply supported over a 12.2 m span, as
shown schematically in Figure 10.6. The nominal yield strength of the steel is 250 MPa
(60 ksi). The loading is as shown. Assume that the design of the beam needs to comply
with the LRFD format (see Section 9.3.4) given by

0.9 FynZxn = 1.2 MD + 1.6 ML (10.11)

where Fyn and Zxn are the nominal yield strength and plastic section modulus
respectively and MD, ML are the moments due to dead and live loading. Usually the
moment due to dead load, MD, can be estimated reasonably accurately from careful
measurements.

To assess the integrity of the beam under live load, it is subject to a proof load of magni-
tude q *. This sets up a moment Mq *. The event of withstanding the load test successfully
can be expressed as

H =
{

FynZxn − MD − Mq∗ > 0
}

(10.12)

The updated probability of failure is then found from

pfn = P[G(X) < 0 |H] (10.13)

where the conditional probability term P[ ] is calculated according to (10.1).
Consider now the effect of the magnitude q * of the proof load and the effect it has on

the updated failure probability p′′
f for the above example [Ellingwood, 1996]. Assume it

has a 50-year nominal service life. The variation in updated failure probability p′′
f as a

function of q * normalized with respect to the live load L is shown in Figure 10.7 for two
cases of proof load, that is, applied at 10 years and at 25 years after construction. The
functions are shown for two values of coefficient of variation of the resistance, namely
for VR = 0.13 and for VR = 0.18.

It is seen that later application of the proof load in the life of the structure has a greater
effect on the updated (posteriori) failure probability p′′

f . This is as would be expected.
Increasing the coefficient of variation of the resistance from VR = 0.13 to VR = 0.18
increases p′′

f significantly for lower magnitude proof loads. Also, proof loads of greater
magnitude significantly reduce the value of p′′

f and that little information is gained for
low proof loads, as shown with the curve P(H < 0). In the present case a value of q */L
less than about 1.2 provides little information.
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Figure 10.7 Posteriori failure probability p′′
f as a function of normalized proof load q ∗ ∕L and the

probability of failure P(H < 0) = 1 − P(H > 0) under the application of the proof load (schematic).

Table 10.2 Statistical data for Example 10.2.

Variable (Nominal value)
Mean/
Nominal COV Description

Dead load, D 1.05 0.10 Normal
Live load (50 years) L 1.00 0.25 EV-Type I
Live load (25 years) L 0.85 0.35 EV-Type I
Yield strength, Fy 1.05 0.11 Lognormal
Section modulus, Zx 1.00 0.06 Normal
Flexural model bias, B 1.02 0.05 Normal

For higher proof loads it would be expected that there is an increased risk of structural
failure under the application of increased levels of proof load. Indeed, this is shown on
Figure 10.5 as P(H < 0) = 1 − P(H > 0). Evidently, the probability of failure increases
sharply as the estimate for p′′

f improves. From this notion arises the possibility of a
decision analysis to determine the optimum proof load level based on the associated
expected costs (including the costs of failure) [Diamantidis, 2001].

Continuing with the example, the matter of interest now is whether the service life
of the beam can be extended by 50 years from the present. To assess this assume the
governing limit state is the flexural limit state (10.11). The present safety can be assessed
using the known or estimated statistical properties for the random variables, as shown
in Table 10.2. Using these, the safety index is found to be 𝛽C ≈ 2.6.

To estimate whether the service life of the beam can be extended by 50 years from the
present, some additional information was sought to try to reduce the COVs of some
of the parameters. Thus, mill test reports for steel closely related to the steel in the
structure indicated a mean yield strength of 345 MPa (50 ksi) with an estimated COV of
0.07. Using a rule such as given in Section 8.2.2 to estimate the static yield strength for
use in design and analysis, indicated that a better estimate of the static yield strength is
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300 MPa (44 ksi). No deterioration was observed so that the section modulus was taken
as the original value. Observations and measurements of the dead load suggested that
the original dead load was under-estimated by 10% on average, with a revised estimated
COV of 0.05.

With this revised information the revised safety index becomes 𝛽′
C ≈ 3.4. This shows

that the beam is stronger than suggested by the original, nominal design procedure. In
consequence, it would be possible to increase the applied live load L without violating
code requirements. Specifically, L can be increased about 30% before 𝛽′

C decreases to
the current safe value of 𝛽C ≈ 2.6.

10.5 Acceptance Criteria for Existing Structures

10.5.1 Nominal Probabilities

In setting acceptance criteria for the design of new structures a target acceptable 𝛽T , or
equivalently, a target acceptable probability of failure pfT was used (see Chapter 9). As
noted, this was based on back-calculation from the interpretation of the acceptability
of existing good practice in structural engineering. The 𝛽T or pfT is then used to cal-
ibrate the new rules for design. The process involved is now widely accepted for the
development of code rules for the structural design of new structures (see Chapter 9).

It is important to recognize that within that process are hidden certain assumptions.
These have to do with the translation of the design to the actual, constructed structure.
The usual design procedure makes allowance, implicitly, for the uncertainties associ-
ated with the documentation, interpretation and the various construction processes
necessary to realize the structure. In terms of probability theory, the structure as
built is just one realization of many possible outcomes. What is important is that
once the realization has occurred, the uncertainties associated with the processes
involved essentially have disappeared. What now replaces these uncertainties is our
limited knowledge of the actual realization. In principle, given sufficient resources
and ideal measurement and monitoring techniques, this lack of knowledge can be
overcome. In practice this is possible only to a limited extent (as noted already
earlier). But it should be clear that the nominal probability pfC and corresponding
safety index 𝛽C used in the calibration process to obtain the target values pfT or 𝛽T
in the development of design code rules for new structures cannot, in general, be
directly translated to the verification of existing structures. As noted in Chapter 2,
pfC and 𝛽C are surrogates for societal acceptable risk criteria even though the link
between them is not necessarily clear. In the case of existing structures the link to
societal acceptable risk criteria is likely to be different. For this reason we might define
a nominal probability pfA (and corresponding safety index 𝛽A) for the assessment
process.

The question now arises as to the values for pfA or 𝛽A which should be acceptable
or which might be used as target values in any calibration process for a partial factor
format for assessment of existing structures. This question has been addressed (i) using
a simplified semi-probabilistic format, (ii) inferences from historical data and (iii) using
decision theory and the various costs involved. The latter can be expanded to include
broader utility indicators such as the Life Quality Index (see Section 2.4).
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10.5.2 Semi-Probabilistic Safety Checking Formats

In the same way that semi-probabilistic safety checking formats such as LRFD (see
Section 9.3.4) have been developed for the design of new structures, it has been
proposed that rather similar formats can be developed for the safety assessment of
existing structures. Clearly such formats would need to make allowance also for matters
such as the quality of inspection, extent and quality of in-situ measurements, potential
failure modes and possible consequences.

One possible format has been described by Allen (1991) for the Canadian National
Building Code. In this approach the target reliability index 𝛽T is adjusted by an amount
Δ =

∑
Δi to allow for the above factors (see Table 10.3) to give 𝛽A as 𝛽A = 𝛽C − Δ.

The standard code calibration processes are then applied to obtain the modified par-
tial factors. Table 10.4 shows typical changes from the usual partial load factors (see
also Section 9.3.2).

The resistances for use in the partial factor format would be taken as those measured
or inferred for the structure being considered, modified to provide a lower fractile,
conservative result. Where this is impractical, the nominal material strengths can
be used together with measurements of the actual sizes installed. The partial factors
are the same as for new design, except for some components where the current limit
state design code is known to be excessively conservative, with higher 𝛽T values.
For these the partial resistance factors are modified (see Table 10.5 for some typical
examples).

Table 10.3 Adjustments to reliability index 𝛽C [Allen, 1991].

Assessment factor 𝚫i

Inspection performance Δ1

No inspection or drawings −0.4
Inspected for identification/location 0.0
Satisfactory performance or dead load measured 0.25

System behaviour Δ2

Failure leads to collapse, personal injury likely 0.0
In between 0.25 (less under

earthquake conditions)
Local failure, personal injury unlikely 0.50 (less under

earthquake conditions)

Risk category Δ3

Very high Use design code
High n = 100−1000 0.0
Normal n = 10−99 0.25
Low n = 0−9 0.50

n denotes the maximum number of people likely to be at risk on average during normal
occupancy. The factors for Normal and Low are reduced by 0.25 for assembly occupancy and for
timber (wood) structures.
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Table 10.4 Typical changes to load factors for evaluation of existing buildings
[Allen, 1991].

𝜷C adjustment Load factor Load

𝚫 = ∑𝚫 i Dead 𝜸D Variable 𝜸L or 𝜸Q Earthquake 𝜸Q combination factor𝝍

−0.4 1.35 1.70 1.40 0.70
0.0 1.25 1.50 1.00 0.70
0.25 1.20 1.40 0.80 0.70
1.00 1.08 1.10 0.40 0.80

Table 10.5 Typical resistance modification factors for
bridges [after Allen, 1991].

Component or condition
Resistance
modification factor

Steel bolts 1.5
Steel welds 1.3
RC compression members 1.2
RC shear (no stirrups) 0.84

10.5.3 Probabilistic Criteria

Target failure probabilities considered to encapsulate social aspects in a simplified
form, the importance of historical buildings, some cost-benefit considerations and
using preservation values inferred from current practice in Belgium and based on
earlier formats (see Eq. 2.12) were proposed by Schueremans (2001):

pf = S.T .A.Cf .N−1.W−1 × 10−4 (10.14)

where:

S = social criterion factor (or preservation value)
T = residual service life (years)
A = activity factor
Cf = economic factor (costs or consequences of failure)
N = number of lives at risk (or likely to be in danger)
W = warning factor.

The factors in (10.14) are based in part on earlier work [Allen, 1991; CEB, 1976; CIRIA,
1977] (see Section 2.5.5) and are summarized in Table 10.6. Example applications are
available [Schueremans and van Gemert, 2004]. As in other, similar, schemes [e.g. Stew-
art and Melchers 1988], the number of lives at risk is those at risk of death, rather than
the risk of serious or other injuries.

10.5.4 Decision-Theory-Based Criteria

In principle, a more rational approach to selecting the values that might be adopted
for pfA or 𝛽A for assessments of existing structures is to use decision-theoretical
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Table 10.6 Factors influencing target failure probabilities [based on Schueremans, 2001].

Social criterion factor S Warning factor A

Places of public assembly,
dams, internationally
recognized historical
buildings.

0.00 Fail-safe condition. 0.01

Domestic, trade, industrial,
listed historical buildings.

0.05 Gradual failure with some
warning likely.

0.1

Bridges. 0.5 Gradual failure hidden
from view.

0.3

Towers, masts, offshore
structures.

5 Sudden failure without
warning.

1.0

Economic factor Cf Activity factor A

- Not serious. 10 Post-disaster activity. 0.3
- Serious. 1 Normal activities:

- buildings
1.0

- bridges. 3.0
- Very serious. 0.1 High exposure structures. 10.0

(socio-economical) tools, similar to the approach used in Section 2.4.2 [Ditlevsen and
Arnbjerg-Nielsen, 1989; Ang and De Leon, 1997]. In practice decisions from such an
approach might be bounded by regulatory requirements, but the principle remains.

As noted before, in making decisions about existing structures, there are three main
courses of action:

(1) leave the structure unchanged (‘do nothing’);
(2) strengthen the structure or change its use;
(3) demolish the structure and replace it with a new structure.

In cases (2) and (3) there may be a range of alternatives. Although these have an influence
on the costs involved, they do not affect the essential discussion to follow.

Consider first the possibility of strengthening the structure as opposed to leaving
it unchanged. After assessing the existing structure the probability of failure is esti-
mated as pfA (i.e. the a posteriori probability of failure). If cfail is the sum of all the direct
costs of failure associated with the structure and cnew is the estimated cost for creat-
ing a new structure if the existing one were to fail, the expected cost for option (1) is
given by:

E1 = (cfail + cnew)pfA (10.15)

If the structure were to be strengthened, a decision would be required as to the accept-
able level of safety to be built into the new structure. Let this be p∗

f . Also, the cost of
strengthening will be a function of this risk level: let this be given by cS(p∗

f ) = a + b(1 −
p∗

f ) > 0 where a is the initial cost of the strengthening work and b( ) is an increasing
function as the probability of failure reduces. The expected total cost for option (2) is
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then given by:

E2 = (cfail + cnew)p∗
f + (a + b(1 − p∗

f )) (10.16)

This will have a minimum, typically when 𝜕E2∕𝜕p∗
f = 0. Let this minimum, if it exists, be

E20 at pf 0. The decision is then made as follows. If E1 < E20 and pf 0 > pfA, no strength-
ening should be carried out (i.e. option 1 should be selected). If E1 ≥ E20, strengthening
the structure would be the most rational choice (i.e. option 2); this implies that p∗

f > pfA.
The decision process to consider option (3) is only a little more complex. Recall that

for new designs there is a nominal probability of failure considered the ‘target’ or code
specified value, pfT or safety index 𝛽T (see Section 9.6). Clearly, if pfA >> pfT there might
be a case for demolition and rebuilding (option 3). In this case the new structure would
have a nominal failure probability of pfT and the expected total cost for this option
would be

E3 = cdemolition + cnew + (cfail + cnew)pfT ≈ cnew + (cfail + cnew)pfT (10.17)

where the approximation holds if, as is usually the case, cdemolition << cnew.
By decision-theory logic, if E3 > E1 option (3) is not a rational choice. Simplifying the

inequality E3 > E1 then leads to the following decision rule:

if pfA − 1
1 + cfail∕cnew

< pfT then do nothing (10.18a)

if pfA − 1
1 + cfail∕cnew

≥ pfT then demolish and build new structure (10.18b)

Decision (10.18a) implies that a high value of pfA could be acceptable provided that
cfail/cnew in the second term of (10.17) is sufficiently large. However, it is likely that a
decision outcome based on such logic usually would not be acceptable to society.

In practice the costs of failure cfail is likely to be very high compared to the cost of a
new structure cnew. Typically the ratio cfail/cnew is of the order of 104 − 106 (CIRIA, 1977).
This means that the second term in (10.17) is of the order of 10−6 − 10−4 and thus about
an order of magnitude less than typical values for pfT . Hence the second term can be
neglected to obtain an approximate decision rule for option (1) as: pfA < pfT .

10.5.5 Life-Cycle Decision Approach

The above approach to making decisions about the acceptability of existing struc-
tures leads directly to the concept of optimal inspection and repair policies so as to
minimize total expected costs, including repair and expected costs as consequences
of failure. A number of investigators examined this issue in a variety of contexts
[e.g. Thoft-Christensen and Sørensen, 1987; Sørensen and Faber, 1991; Nakken and
Valsgard, 1995; Faber et al., 1996; Gomes et al., 2013; Gomes and Beck, 2014a, b],
including for multiple limit state situations [e.g. Stewart and Val, 2003; Val, 2004; Akgul
and Frangopol, 2005] and results from on-going monitoring processes [e.g. Orcesi and
Frangopol, 2011]. Most have relied on mathematical modelling of the structural system
of interest, implying that such analysis is representative of reality, such as, for example,
cracking in concrete structures under elevated chloride environments [e.g. Vu and
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Acceptable risk level

Expected deterioration

Particular structure
deterioration

Risk of failure

Time (age of structure)

Figure 10.8 Life-cycle reliability and assessment, showing effect of appropriate repairs (schematic).

Stewart, 2005; Val, 2007; Strauss et al., 2008]. Most also have relied on strength issues,
whereas serviceability also may be an important criterion for some structures.

It should be clear that reassessments are more likely to be necessary as the structure
becomes older. For reinforced concrete structures aging can result in internal damage
and interior deterioration, thereby increasing the rate of other influences such as chlo-
ride diffusion [Melchers et al., 2008]. Aging also raises the question as to the degree
or intensity of the repairs that might be performed, given that further inspections and
assessments might be made in the future. The process can be represented schematically
as in Figure 10.8.

When the estimated reliability fails below an acceptable level, immediate action is
required, such as closing road lanes or reducing the loads on a structure such as a bridge.
Such action will bring with it various associated costs. If the estimated reliability lies only
a little above the minimum acceptable, urgent action for repair or, worse, rebuilding
might be warranted. This will also incur costs, and it may not be a useful medium-term
solution, with further repairs etc. possible in the next few years (see Figure 10.8). The
balance between possible courses of action and the associated costs if failure does occur
can be addressed using a decision framework similar to the that discussed in the previ-
ous section and in Chapter 2. In each case the associated optimization criterion is the
minimization of expected present value costs.

It is fair to note that life-cycle decision approaches are not necessarily always part
of normal engineering practice owing to public works funding mechanisms and, in the
private sector, possibly to lack of long-term commitment to a project.

10.6 Conclusion

This chapter has considered the main issues relevant for the probabilistic reliability
assessment of existing structures. Many of the uncertainties which face designers of new
structures are no longer an issue, as the structure has been ‘realized’ already. However, in
making an assessment, many other uncertainties can arise, particularly if the data avail-
able for the original structure has been lost. In this case there are important matters,
such as the amount and extent and detailing of reinforcement, for example, which must
be inferred from field measurements, with concomitant high uncertainties and hence
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penalties in terms of the safety and reliability assessment. It is important that owners,
consultants and local authorities maintain adequate records, particularly for structures
and buildings likely to be subject to re-use or life extension.

Finally it is noted that the decision-criteria approaches discussed herein may be sup-
plemented by other considerations, including a possible need to preserve heritage values
and to allow for architectural integrity in making structural engineering modifications
when strengthening existing buildings and structures.
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11

Structural Optimization and Reliability

11.1 Introduction

Structural design is primarily about technical issues: ensuring strength and serviceabil-
ity, construction feasibility, safety, etc. But designers also must be cognizant of costs
and maintenance issues. Increasing the safety of structural systems may add to costs,
and cost savings sometimes can result in lower levels of structural safety. This chapter
is primarily about design, that is the optimal sizing of a structure to meet predefined
safety levels, considering explicitly the uncertainties in loads, strengths and engineering
models and meeting some cost criterion. Thus the ‘optimal’ structure is sought under
uncertainty conditions.

More specifically, the present chapter is about how to select the set of parameters,
d = [d1, d2,… , dn] say, that define the optimal structure and meet a structural safety
requirement pf < pfT or safety index requirement 𝛽 > 𝛽T , when all properties and loads
are defined, as usual, by the vector of random variables or processes X. In contrast, the
previous chapters were about analysis, without d as an independent set of variables, and
the aim being to determine the value of pf or 𝛽 for given X.

Some of the earliest works discussing structural reliability concepts recognized
structural optimization as a possibility [Johnson, 1953, 1971; Ferry-Borges, 1954;
Freudenthal, 1956; Benjamin, 1968; Cornell, 1969b; Turkstra, 1970; and Moses, 1977].
Algorithms explicitly addressing optimal design using reliability measures were pro-
posed by Hilton and Feigen (1960), Liu et al. (1976) and Rosenblueth (1976a,b). Later,
Enevoldsen and Sørensen (1994) employed classical decision theory for risk optimiza-
tion of structural components and systems and also optimal inspection planning and
sensitivity measures. Overviews of these developments are available [Moses, 1969;
Frangopol, 1985b; and Beck and Gomes, 2012].

The next section (11.2) describes in more detail the type of problem of interest
in the present chapter. Three types of optimization problems involving probabilistic
information, indirectly or directly and with increasing complexity, are introduced.
A simple example problem is used for each, using FOSM theory as the basis for probabil-
ity calculations. Section 11.3 considers the most common reliability-based optimization
problem (Reliability-Based Design Optimization—RBDO) coupled with FOR for prob-
ability estimation. To make the solution tractable, two simplifications are introduced,
selected from a range of other possibilities proposed in the literature. An alternative is to
try to decouple the reliability estimation from the optimization algorithm—a summary
of some attempts to do this is provided. Section 11.4 turns to RBDO using system
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reliability constraints. This allows free competition between failure modes but is also
more difficult to solve. Monte Carlo methods for reliability estimation within opti-
mization are addressed in Section 11.5. For these, the estimation of the gradient of the
performance function (limit state function) is a critical issue, and the various approaches
proposed for this are reviewed briefly. Finally, life-cycle cost and risk optimization
(LCRO) algorithms are considered in Section 11.6. These are less well developed, and
much scope for further work remains.

In the following, some familiarity with mathematical optimization theory is
assumed. However, only relatively simple optimization problems are considered in
this chapter—those that can be solved analytically, by graphical methods or by simple
spread-sheet programming. For specialized numerical optimization algorithms, the
reader is referred to Arora (2007, 2012), Haftka et al. (1990), Nocedal and Wright (2006)
and Rao (2009).

11.2 Types of Reliability-based Optimization Problems

11.2.1 Introduction

Consider the vector X ∈ ℝnRV that contains the nRV random variables defining the struc-
tural dimensions, resistance properties of materials or structural members, loads and
model errors. For simplicity, herein loads are modelled as random variables. They are,
of course, derivable from random processes in time (Chapter 6).

For optimal design of a structure, however, there are other variables, termed ‘design
variables’ d, that usually are different from those in X. They define the nominal member
dimensions, partial safety factors, reinforcement ratio, design life, parameters of inspec-
tion and maintenance programs, etc. Let there be nDV components of d collected in
the vector d ∈ ℝnDV . Some components could be simply deterministic variables. Others
might be variables such as the mean values of components in X. The total number of
variables (some or all random) in the definition of the structure is thus nRV + nDV .

As in the previous chapters, there are also limit state requirements to be met, but now
these will depend also on d. Also, in some cases, d may have to meet specific constraints.
Let these be termed g(d) ≤ 0 and h(d) = 0. Also, the components of the design vector d
may be constrained, defined by {dmin ≤ d ≤ dmax}.

The optimization problem now can be defined as finding the optimal vector of design
variables d∗ ∈ ℝnDV , that minimizes an objective function f (d), subject to constraints, or:

Find d∗

which minimizes the objective function f (d)
subject to the following constraints∶

hi(d) = 0, i = 1,… , p ;
gj(d) ≤ 0, j = 1,… , q ;
d ∈ S ⊂ ℝnDV , (11.1)

Here p is the number of equality constraints, q is the number of inequality constraints
and S = {dmin,dmax}. As before, the failure probability in terms of the random variables
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DDO:

DETERMINISTIC

DESIGN OPTIMIZATION

STRUCTURAL

MECHANICS

cost of manufacture

Uncertainty

Failure Probability pf
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Risk = pf . Cf

RBDO:

RELIABILITY-BASED

DESIGN OPTIMIZATION

LCRO or RO:

RISK OPTIMIZATION

(RELIABILITY-BASED)

Figure 11.1 Conceptual relationship between structural uncertainties in design and the increasing
complexity of optimization problems.

X can be expressed as in (1.31) for one limit state function and (5.9) more generally
for the failure domain D. The objective function f (d) in principle could be a complex
combination of many factors but often is taken simply as the total volume of structural
materials, or the cost of construction or manufacture.

The formal problem (11.1) can be reduced to a number of special cases (Figure 11.1).
Starting from the uncertainties defining the structural reliability problem, it shows the
increasing complexity that can be considered for probabilistic design optimization.
However, mostly there are no simple (progressive) relationships between the types of
problems as each relies on quite different formulations [Beck and Gomes, 2012]. These
formulations are described below.

11.2.2 Deterministic Design Optimization (DDO)

11.2.2.1 Formulation
Deterministic Design Optimization (DDO) takes uncertainties into account only implic-
itly. Uncertainties in material strengths and in loads are considered only through partial
safety factors. Formally DDO can be stated as:

Find d∗ which minimizes f (d)
subject to∶ 𝜎(d) ≤ 𝜎ALL, d ∈ S, (11.2)

where, for example, 𝜎 denotes working stress and 𝜎ALL is an allowable stress, such as
may be defined by the yield stress of the material, as in allowable stress design (cf. 1.1).
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In terms of limit state (or LRFD) design:

Find d∗ which minimizes f (d)
subject to∶ 𝜙R(d) ≥ 𝛾DDn + 𝛾LLn + 𝛾W Wn, d ∈ S, (11.3)

where 𝜙 and 𝛾 i are partial safety factors on resistance and load variables, respectively,
and ( )n denotes nominal values for D, L, W , which refer to Dead, Live and Wind loads,
respectively.

Since uncertainties in material strengths and loads are not considered explicitly, this
formulation has the same limitations as discussed in Section 1.2. For example, opti-
mization using the DDO formulation may lead to the conclusion that for a hyperstatic
(statically indeterminate) structure one or more members are not loaded at all and thus
could be removed. But considerations of uncertainty would indicate a finite probabil-
ity that the members in question could be required to take some load at some time.
Thus, the actual probability of failure would be underestimated. It follows that the results
from DDO (deterministic design optimization) are not robust with respect to uncer-
tainties. Efforts to improve robustness (‘Robust Design Optimization’) have focussed on
adding factors, such as one or more statistics of structural behaviour or performance,
to the objective function, or building a multi-objective optimization problem, with, say,
mean system performance to be maximized and performance variance to be minimized
[cf. Zang et al., 2005; Beyer and Sendhoff, 2007; Schuëller and Jensen, 2009; Beck et al.,
2015].

11.2.2.2 Example of DDO Using FOSM
The essential features of DDO can be illustrated with a simple example, with the linear
limit state function g(d,X) = R − S = 0 and with two independent Normal random
variables R ∼ N(𝜇R, 𝜎R), S ∼ N(𝜇S, 𝜎S) where R and S are resistance and load effect.
As before, 𝜇 is the mean and 𝜎 is the standard deviation. This allows use of FOSM
theory to estimate probabilities of failure. From Section 1.4.3 the failure probability is
given by:

pf = Φ(−𝛽), with 𝛽 =
𝜇R − 𝜇S√
𝜎2

R + 𝜎2
S

(11.4)

where Φ(.) is the standard Normal distribution function and 𝛽 is the safety index.
For this example, let the objective function be the mean 𝜇R of the structural resistance,

and let there be a constraint on its value. Hence (11.2) is reformulated as:

Find 𝜇∗
R which minimizes𝜇R

subject to∶ 𝜇R ≥ 𝛾𝜇S, (11.5)

Here 𝛾 ≥ 1 is a safety coefficient. The trivial solution 𝜇R = 𝜇S = 0, for which the struc-
ture vanishes, is avoided by requiring that 𝜇S > 0. Using standard optimization notation
(cf. 11.1), the problem is rewritten as:

Find 𝜇∗
R which minimizes𝜇R

subject to∶ g(𝜇R) = 𝛾𝜇S − 𝜇R ≤ 0 (11.6)
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Since this problem has a single design variable, a linear objective function and a lin-
ear inequality constraint, it follows immediately that the optimal solution occurs when
g(𝜇R) = 0, which leads to 𝜇∗

R = 𝛾𝜇S.
A more formal solution is obtained as follows. Since (11.6) represents a constrained

optimization, use a Lagrangian multiplier u in (11.6) together with a slack variable s to
produce the Lagrangian function:

(𝜇R,u, s) = 𝜇R + u(𝛾𝜇S − 𝜇R + s2) (11.7)

As is well-known, the condition for a minimum (formally the first-order Karush-Kuhn-
Tucker (KKT) condition) is to have (11.7) stationary with respect to the design variable,
the Lagrange multiplier and the slack variable. This produces:

𝜕(𝜇R,u, s)
𝜕𝜇R

= 1 − u∗ = 0, ∴ u∗ = 1;

𝜕(𝜇R,u, s)
𝜕s

= 2 u∗s∗ = 0, ∴ s∗ = 0; (11.8)

𝜕(𝜇R,u, s)
𝜕u

= 𝛾𝜇S − 𝜇∗
R + (s∗)2 = 0, ∴ 𝜇∗

R = 𝛾𝜇S.

The solution is obtained from the third condition. The other two (first two lines) refer
to the constraint being active at the optimal point—the solution satisfies the first-order
KKT necessary conditions and also the sufficiency conditions (for mathematical details
see, for example, Nocedal and Wright, 2006; Arora, 2012). Hence, 𝜇∗

R = 𝛾𝜇S is the global
minimum for this problem. Note that this result depends directly on the required safety
factor 𝛾 , chosen as a constraint in this example.

11.2.3 Reliability-Based Design Optimization (RBDO)

11.2.3.1 Formulation
For Reliability-Based Design Optimization (RBDO) the objective function contains
the design vector d as before, but the deterministic constraints in (11.2 and 11.3) are
replaced by reliability constraints:

Find d∗ which minimizes f (d)
subject to: pfi(d) ≤ pfTi, i = 1,… , nLS; d ∈ S (11.9)

where pfi(d) is the failure probability for the ith failure mode, rTi = 1 − pfTi is the target
reliability for the ith failure mode, nLS is the number of limit states and S = {dmin,dmax}
as in (11.1). The equivalent of (11.9) in terms of the reliability index 𝛽 is:

Find d∗ which minimizes f (d)
subject to: 𝛽i(d) ≥ 𝛽Ti, i = 1,… , nLS; d ∈ S (11.10)

Classical structural reliability methods such as FOSM, FOR or SOR methods or Monte
Carlo simulation can be used to evaluate the pfi and 𝛽 i in (11.9) and (11.10). How-
ever, the computational cost of evaluating these reliabilities may be significant, since
the reliability analysis is now part of the computations for the optimization process.
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This is discussed further in Sections 11.3 and 11.4. The example below uses the simplest
approach—FOSM.

An alternative formulation in terms of system reliability (1 − pfsys) is:

Find d∗ which minimizes f (d)
subject to: pfsys(d) ≤ pfTsys; d ∈ S, (11.11)

where system reliability (1 − pfsys) is a function of component reliabilities (1 − pfi, i =
1,… , nLS) and where rTsys = (1 − pfTsys) is the target system reliability. RBDO problems
with system reliability constraints are significantly more difficult to solve; these prob-
lems are further addressed in Section 11.4.

11.2.3.2 Example of RBDO using FOSM
For the same example as above, the RBDO problem (11.10) can be stated as:

Find 𝜇∗
R which minimizes 𝜇R

subject to: 𝛽(𝜇R) ≥ 𝛽T , (11.12)

with the same notation as before and 𝛽T the target reliability index. Assume, as usual
for structural reliability, that 𝛽T ≥ 0, so that pf ≤ 0.5. Using (11.5) this becomes:

Find 𝜇∗
R which minimizes 𝜇R

subject to: g(𝜇R) = 𝛽T −
𝜇R − 𝜇S√
𝜎2

R + 𝜎2
S

≤ 0, (11.13)

In this case the Lagrangian function is:

(𝜇R,u, s) = 𝜇R + u
⎛⎜⎜⎜⎝𝛽T −

𝜇R − 𝜇S√
𝜎2

R + 𝜎2
S

+ s2

⎞⎟⎟⎟⎠ . (11.14)

and the stationarity conditions for an optimum (i.e. the first order KKT conditions) are:

𝜕(𝜇R,u, s)
𝜕𝜇R

= 1 − u∗√
𝜎2

R + 𝜎2
S

= 0, ∴ u∗ =
√

𝜎2
R + 𝜎2

S ;

𝜕(𝜇R,u, s)
𝜕s

= 2 u∗s∗ = 0, ∴ s∗ = 0;

𝜕(𝜇R,u, s)
𝜕u

= 𝛽T −
𝜇∗

R − 𝜇S√
𝜎2

R + 𝜎2
S

+ (s∗)2 = 0, ∴ 𝜇∗
R = 𝜇S + 𝛽T

√
𝜎2

R + 𝜎2
S .

(11.15)

As before, the necessary KKT conditions are also sufficient. Therefore 𝜇∗
R =

𝜇S + 𝛽T

√
𝜎2

R + 𝜎2
S is the global minimum. This shows that the optimal result depends

directly on the chosen value of the target reliability index 𝛽T .
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11.2.4 Life-Cycle Cost and Risk Optimization (LCRO)

11.2.4.1 Formulation
Inclusion of costs of structural failure and consequential costs in the analysis requires
a more comprehensive optimization (cf. Section 2.4.2). As in Eq. (2.7) each potential
structural failure mode has an associated expected cost of failure (CEF ) and this depends
on design decisions, i.e. Cf (d), thus:

CEF (d) = Cf (d)pf (d) (11.16)

where pf (d) is the probability of occurrence of that failure mode. Hence the total
expected cost CET over the expected life of the structure (cf. Eq. 2.7) is a function of d:

CET (d) = Cc(d) + Co(d) + Ci &m(d) + Cd(d) +
nLS∑
i=1

Cfi(d)pfi(d) (11.17)

where Cc is the cost of construction, Co is the cost of operation, Ci &m is the cost of
inspection and maintenance, Cd is the cost of eventual disposal and Cfi is the cost of fail-
ure associated with the ith failure mode (limit state). As discussed in Section 2.4.2 there
are likely to be costs associated with increasing safety—often, but not always, changes in
d that reduce costs also could result in increased probability of failure and thus also an
increase in expected cost of failure. In principle, reduction in expected failure costs can
be achieved by targeted changes in d, which generally increase costs. There are likely
to be trade-offs between safety and economy and these should be considered, ideally,
over the expected lifetime of the structure. This life-cycle problem can be formulated as
Life-cycle Cost and Risk Optimization (LCRO):

Find d∗ which minimizes CET (d)
subject to: d ∈ S (11.18)

Compared to (11.9 and 11.10) for RBDO, expression (11.18) with (11.17) has the relia-
bility constraints as part of the objective function. This is a crucial difference, not always
made clear in the literature, with some works referring to (11.18) as an RBDO problem.

When there also are regulatory requirements on acceptable risk levels, the corre-
sponding system reliability constraints can be included in (11.18) as:

Find d∗ which minimizes CET (d)
subject to: pfsys(d) ≤ pfTsys; d ∈ S (11.19)

or

Find d∗ which minimizes CET (d)
subject to: 𝛽sys(d) ≥ 𝛽Tsys; d ∈ S (11.20)

Whenever possible, the formulation in (11.18) should be preferred, as fewer constraints
should result in more economical designs. For inactive constraints, (11.19) and (11.20)
are equivalent to (11.18). The life-cycle risk optimization formulation is further
discussed in Section 11.6.
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11.2.4.2 Example of LCRO using FOSM

Using the same variables and FOSM reliability formulation as for the previous two
examples, the Life-cycle Cost and Risk Optimization (LCRO) problem (11.18) becomes,
for the special case with all lifetime costs neglected (cf. 11.17):

Find 𝜇∗
R which minimizes 𝜇R + Cf pf (𝜇R)

subject to: g(𝜇R) = 𝜇S − 𝜇R ≤ 0. (11.21)

As before, it is required that 𝜇S > 0 to avoid the trivial solution 𝜇R = 𝜇S = 0, for which
the structure vanishes. Note that in (11.21) there is no safety constraint, but the probabil-
ity of failure is part of the objective function. Assuming the cost of failure is proportional
to 𝜇S (Cf = k 𝜇S) and using the reliability index 𝛽 (11.4), (11.21) becomes:

Find 𝜇∗
R which minimizes 𝜇R + k 𝜇S Φ(−𝛽)

subject to: g(𝜇R) = 𝜇S − 𝜇R ≤ 0, (11.22)

As in the two previous examples, applying the Lagrangian multiplier u and the slack
variable s, the Lagrangian function is:

(𝜇R,u, s) = 𝜇R + k 𝜇S Φ(−𝛽) + u(𝜇S − 𝜇R + s2). (11.23)

The stationarity condition (first order KKT condition) for a minimum is:

𝜕(𝜇R,u, s)
𝜕𝜇R

= 1 + k 𝜇S
𝜕Φ
𝜕𝛽

𝜕𝛽

𝜕𝜇R
− u∗ = 1 −

k 𝜇S 𝜙(𝛽∗)√
𝜎2

R + 𝜎2
S

− u∗ = 0;

∴ u∗ = 1 −
k 𝜇S 𝜙(𝛽∗)√

𝜎2
R + 𝜎2

S

, (11.24)

where 𝛽∗ is the candidate optimum reliability index and 𝜙 is the standard normal prob-
ability density function. Without numerical values it is not possible to determine, from
the above, whether the constraint is active or not. However, an active constraint in
(11.22) would lead to very large failure probabilities, which is unusual in structural engi-
neering. Hence, it is reasonable to assume the constraint is inactive, hence: u∗ = 0 and
s∗ > 0. Then from (11.24) the optimal reliability index is given by:

𝛽∗ =
⎡⎢⎢⎢⎣−2 ln

⎛⎜⎜⎜⎝
√

2𝜋
√

𝜎2
R + 𝜎2

S

k 𝜇S

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

1∕2

. (11.25)

Note that this result is independent of 𝜇∗
R. Eq. (11.25) also shows the

minimal value of the failure cost multiplier k, for which a real solution is obtained:
k ≥ k0 =

√
2𝜋

√
𝜎2

R + 𝜎2
S∕𝜇S. Note also that if the target reliability index 𝛽T in (11.10) of

the RBDO example (section 11.2.4.2) is set equal to the above (i.e. that given in 11.25)
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Figure 11.2 Solutions of DDO, RBDO and LCRO problems solved using FOSM.

the same result is obtained. In this case RBDO and LCRO provide the same optimal
solution for the present example.

11.2.5 Comparison, Summary and Outlook

The solutions obtained by DDO, RBDO and LCRO for the three FOSM example prob-
lems considered above are compared in Figure 11.2, for the special case𝜇S = 𝜎S = 𝜎R = 1.
The continuous heavy lines represent the objective functions for DDO and RBDO, as
functions of mean strength 𝜇R, and for LCRO as a function of (𝜇R + k 𝜇S Φ(−𝛽), with
k = k0 and k = 2k0).

The broken lines represent the optimum solutions for the problems considered above,
based on setting 𝛾 = 2 for DDO and 𝛽T = 2 for RBDO. The horizontal broken lines
denote where the constraints become active (with 𝛾 = 𝛽T = 2).

For the LCRO problem with failure cost multiplier k = k0, the minimum of the objec-
tive function is obtained for an active constraint, with𝜇R = 𝜇S = 1. For k > k0, the objec-
tive function becomes convex, the constraint becomes inactive and the global minimum
is inside the design domain. For k = 2k0, the optimal strength is 𝜇∗

R = 1 + 2
√

ln (2) ≅
2.6651.

The three examples given above were very simple and used the most elementary struc-
tural reliability theory (i.e. FOSM), including both probability of failure pf and the safety
index 𝛽. They showed the formulation of the objective function, of the constraints and
also the optimization approach, in each case using Lagrangian multiplier formalism.
Generally similar examples are available in the literature [Rosenblueth, 1976; Kanda and
Ellingwood, 1991].

From here on, the discussion will focus largely on the formulation and solution of
RBDO (Reliability-Based Design Optimization) problems, as these have had most
attention in the literature. The next section considers RBDO with the use of the FOR
method for estimating failure probabilities (and safety indices).
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11.3 Reliability Based Design Optimization (RBDO) Using
First Order Reliability (FOR)

11.3.1 Introduction

Solving the reliability constraints in Eqs. (11.9) and (11.10) by the First Order Reliabil-
ity (FOR) method leads to nested optimization loops. The outer loop involves design
optimization; the inner loop involves search for the design point. The interactive solu-
tion of such nested loops is clearly computationally demanding. However, this classical
approach is described here, before discussion of alternatives.

The First Order Reliability (FOR) method (cf. Section 4.4) consists of mapping the
reliability problem from the original space X to standard normal (Gaussian) space Y.
This is accomplished by the transformation y = T(x). The most probable point y∗ is then
found by solving a constrained optimization problem [cf. (4.4) and Section 4.4], restated
here as:

Given d, find y∗ which minimizes 𝛽(d) = ‖y‖ = (yT y)1∕2

subject to: g(d, y) = 0 (11.26)

where g(d, y) = g(d,T(x)) = 0 is the limit state function, also mapped to the standard
normal space. As before (cf. Section 4.3.4), the point y∗ is known variously as the ‘design’
point, the point of maximum likelihood or the Most Probable Point (MPP). It is the
point just on the edge or surface of the failure domain, possessing the highest likelihood
(cf. Figure 4.5).

After y∗ is found, a linear approximation to the limit state function is constructed,
which yields [cf. (4.1)] pf (d) ≈ Φ(−𝛽(d)). This expression involves only the variables d
since these only are permitted to be varied in the optimization process (cf. Section 11.1).

The minimization in (11.26) has to be carried out for every failure mode, and is solved
for a candidate value of d. This process must be performed repeatedly in the search for
the optimal design d∗. However, this process also is part of the optimization in (11.9
or 11.10) and if this is done by iteration, RBDO using FOR leads to nested optimization
loops. This is computationally cumbersome and demanding. Further, typically the whole
design space d is explored systematically during search for d∗. As a result, (11.26) some-
times has to be solved for odd configurations, with the whole process possibly becoming
unstable or even unsolvable. Therefore, alternative and robust ways of solving Eq. (11.26)
are of interest.

11.3.2 Alternative Robust Solutions Schemes

One robust solution can be constructed by considering the cumulative distribution of
the limit state function G = g(d,X), which is a random variable as a function of d and X.
In this context, it has been called the performance function [Youn et al., 2003]. The
probability of failure as a function of the design parameters d is then:

pf (d) = P[g(d,X) ≤ 0] = FG(0) = ∫g(d,x)≤0fX(x) dx ≈ Φ(−𝛽(d)), (11.27)

This expression can be solved in original space X or in standard Gaussian space Y. For
some values of d, the reliability constraint will not become active; hence the limit state
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Figure 11.3 Probability density fG(g) and cumulative distribution FG(g) of the limit state function.

function will not become zero. Replacing the limit state ‘zero’ by value g∗ produces:

FG(g∗) = ∫
g∗

−∞fG(z)dz =∫g(d,x)≤g∗ fX(x)dx ≈ Φ(−𝛽G) (11.28)

which is valid for any g = g∗. These relations are sketched in Figure 11.3.
The last term in (11.28) involves a first-order approximation, equivalent to FOR, to the

probability FG(g) = P[G ≤ g]. The original reliability constraint is recovered for g = 0,
i.e., pf (d) = FG(0). The generalized reliability index 𝛽G, which is a non-increasing func-
tion of g, is obtained from the equality [Madsen et al., 1986]:

FG(g) = Φ(−𝛽G) (11.29)

This equality can be written in two alternative forms, using inverse transformations:

𝛽G(g) = −Φ−1[FG(g)], (11.30a)
g(𝛽G) = F−1

G [Φ(−𝛽G)]. (11.30b)

The non-increasing 𝛽G ∼ g relationship is obtained from the one-to-one mapping
FG(g) ∼ g; it completely describes the cumulative distribution of the performance
function. These relations are shown in Figure 11.4.

With this background, the reliability constraint in (11.26) can be written as:

FG(0) ≤ Φ(−𝛽T ), (11.31)

which can be expressed in two alternative ways [Youn et al., 2003]:

𝛽 = −Φ−1[FG(0)] ≥ 𝛽T , (11.32a)
g∗p = F−1

G [Φ(−𝛽T )] ≥ 0, (11.32b)
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Figure 11.4 Interpretation of reliability constraint and generalized reliability index.

where 𝛽 is the original, conventional reliability index, and g∗p is called the ‘target proba-
bilistic performance measure’. Using (11.32b) to impose the reliability constraint:

gp(d) = F−1
G [Φ(−𝛽(d))] ≥ 0, (11.33)

where gp is performance measure associated to reliability index 𝛽.
It follows from the above that there are two equivalent ways of expressing the RBDO

constraint in (11.26). The first is the conventional form, which has been called the
‘Reliability-Index Approach’ (RIA) in this context:

Given d, find y∗
RIA which minimizes 𝛽(d) = ‖y‖

subject to: g(d, y) = 0. (11.34)

In this expression the point y∗
RIA was known also simply as y∗ in Section 4.3. It was there

known as the ‘design’ or ‘checking’ point or the Most Probable Point (MPP). It is the point
of maximum likelihood within the failure domain, and usually located on its boundary
(cf. Section 4.3).

Another way of expressing the RBDO constraint in (11.26) is the ‘Performance-
Measure Approach’ (PMA), defined as:

Given d, find y∗
PMA which minimizes g(d, y)

subject to: ‖y‖ = 𝛽T . (11.35)

where y∗
PMA is the ‘Minimal Performance Point’, herein abbreviated to MinPP. As

shown in [Youn et al., 2003], Eq. (11.35) can be solved using the AMV algorithm
[Tu et al., 1999]:

yk+1 = −𝛽T
𝛁 g(d, yk)‖𝛁 g(d, yk)‖ = −𝜶k𝛽T (11.36a)

g(d, yk+1) = g(d,−𝜶k𝛽T ) (11.36b)
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Figure 11.5 Comparison RIA x PMA: for active reliability constraint (left), points y*RIA and y*PMA are the
same; for inactive constraint (right), these points are different.

11.3.3 Comparison Between RIA and PMA Solution Schemes

The differences between RIA and PMA and y∗
RIA and y∗

PMA are illustrated in Figure 11.5.
The solutions y∗

RIA and y∗
PMA are the same if, at the end of an RBDO iteration, the con-

straint is active (see also Figure 11.4). At any other point and for a given design d,
the point y∗

PMA represents the point of minimal performance on the target reliability
hyper-sphere.

The main difference between RIA and PMA is the type of optimization problem that
is solved in each case. It usually is easier to minimize a complicated function subject
to a simple constraint (as in (11.35) for PMA) than to minimize a simple function sub-
ject to a complicated constraint (as in (11.34) for RIA). It has been demonstrated by
examples that PMA tends to be more robust and converge faster than RIA [Youn et al.,
2003]. As a result it tends to be more effective when the probabilistic constraint is either
very feasible or very infeasible [Youn et al. 2003]. One of the reasons for this is that
in PMA only the direction vector needs to be determined and this can take advantage
of the spherical equality constraint ‖y‖ = 𝛽T to find the minimal performance point
(MinPP) y∗

PMA.
It appears from experience that iterative convergence schemes also favour PMA. Usu-

ally, a search using the conventional RIA uses the HLRF algorithm (Section 4.3.6) and
requires several iterations to reach the failure surface given by g(d, y) = 0. In the process
the optimal design parameter(s) d is obtained. Typically, also, for a large target value of
𝛽 the number of iterations required to converge on the limit state function increases,
as y∗

RIA is further away from the origin. In contrast, for PMA the target reliabilities 𝛽T
are defined from the outset, and the search starts already on the ‖y‖ = 𝛽T hyper-sphere.
Thus the PMA search is independent of 𝛽 [Lee et al., 2002]. Experience also shows that
PMA tends to have lower dependence on the distribution of the random variables, as it
is less affected by non-linearities in the y = T(x) mapping [Youn and Choi, 2004b]. This
means that PMA can handle different distributions without significantly increasing the
number of function evaluations. On the other hand, RIA often diverges when strongly
non-Gaussian random variables are employed. For some values of d, the RIA solution
cannot be found since 𝛽 → ∞ (see Figure 11.4). The PMA solution, however, is always
obtainable.
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11.3.4 Solution of Nested Optimization Problems

Solution of RBDO problems using FOR leads to nested optimization problems. The
inner optimization loop for reliability constraints can be solved using the RIA or PMA
approaches, as discussed above. Solution of the outer structural optimization loop can
be achieved with any of a variety of iterative numerical algorithms [Arora, 2007, 2012;
Haftka et al., 1990]. One approach is to use Sequential Linear Programming [Nocedal
and Wright, 2006; Rao, 2009] after linearizing the objective function and the constraints,
and application of the Lagrangian multiplier technique, in a manner similar to Sections
4.3.4 to 4.3.6. Linearizing the constraints is not equivalent to replacing FOR by FOSM, as
illustrated in the example to follow. The example also illustrates solution by Sequential
Linear Programming.

11.3.5 Example of RBDO Using RIA and PMA

Consider now the design of a metal beam against formation of a plastic hinge, based
on Problem 4.4. The random variables are the steel yield stress (𝜎y), the plastic mod-
ulus of the cross-section (S) and the external bending moment load (M). These are
grouped in the vector X = {𝜎y, S,M}T = {X1,X2,X3}T . Table 4.1 shows the correspond-
ing statistical parameters. An additional safety factor 𝛾 = d is introduced to construct
the optimization problem. The limit state function becomes:

gX(d,X) = d S𝜎y − M = d X1X2 − X3 = 0 (11.37)

As in Problem 4.4, this limit state, transformed to standard Gaussian space (y = T(x)),
is:

g(d, y) = gX(d,T−1(y)) = d(5y1 + 40)(2.5y2 + 50) − 200y3 − 1000
= d(12.5y1y2 + 100y2 + 250y1 + 2000) − 200y3 − 1000 (11.38)

Solution of Problem 4.4 is recovered for d = 1, with 𝛽 = 3.0491 obtained by an inter-
active solution. In the present example, the smallest d which produces a target reliability
index of 𝛽T = 4 is sought. The RIA version of this problem is:

Find d∗ which minimizes − d
subject to: 𝛽T − 𝛽(d, y∗

RIA) ≤ 0 (11.39)

for which the reliability index 𝛽(d) is obtained as the solution to the internal optimization
problem in (11.34).

The PMA version of the same problem is:

Find d∗ which minimizes − d
subject to: − g(d, y∗

PMA) ≤ 0 (11.40)

where the internal optimization problem is given by Eq. (11.35).
The external problems are solved using Sequential Linear Programming [Nocedal

and Wright, 2006; Rao, 2009]. The objective function is already linear; hence only the
constraints need to be linearized. Starting from an initial trial design d0, for k = 0, the
RIA problem becomes:
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For k = 0, 1,2,…, until |dk+1 − dk| ≤ 𝜀f , starting with trial d0:

find d which minimizes − d

subject to: 𝛽T − 𝛽(dk) −
𝜕𝛽

𝜕d
(dk)(d − dk) ≤ 0 (11.41)

where 𝛽(dk) is solved using the HLRF algorithm (Section 4.3.6).

To simplify the notation, the linearized constraint in (11.41) is written as:

ak + bkd ≤ 0; where ak = 𝛽T − 𝛽(dk) +
𝜕𝛽

𝜕d
(dk)dk and bk = −𝜕𝛽

𝜕d
(dk) (11.42)

The Lagrangian function for the linearized problem is:

(d,u, s) = −d + u(ak + bkd + s2) (11.43)

where, as before, u is a Lagrangian multiplier and s is a slack variable. For d∗ to be solu-
tion to the above problem, the KKT first order necessary conditions are:

𝜕

𝜕d
= −1 + u bk = 0 ∴ u = 1

bk
(11.44a)

𝜕

𝜕u
= ak + bkd∗ + s2 = 0 (11.44b)

𝜕

𝜕s
= 2 u s = 0 ∴ s = 0 (11.44c)

Eventually, from Eq. (11.44b):

d∗ = dk+1 = −
ak

bk
= dk +

𝛽T − 𝛽(dk)
𝜕𝛽

𝜕d
(dk)

(11.45)

The solution in (11.45) shows the linearized reliability constraint. Although the con-
straint is linearized, computation of 𝛽(dk) is still done by FOR. The solution also involves
the gradient 𝜕𝛽∕𝜕d, which can be obtained interactively by repetitive hand calculations,
as in Problem 4.4. For the present solution, finite differences are used.

The Sequential Linear Programming formulation of the PMA problem is:
For k = 0, 1,2,…, until |dk+1 − dk| ≤ 𝜀f , starting with trial d0:

find d which minimizes − d

subject to: − g(dk , y∗
PMA) −

𝜕g
𝜕d

(dk , y∗
PMA)(d − dk) ≤ 0 (11.46)

where y∗
PMA is found using the AMV algorithm [Wu et al., 1990] (Section 4.7).

As before, to simplify the notation, the linearized constraint in (11.46) is rewritten as:

ak + bkd ≤ 0; where ak = −g(dk , y∗
PMA) +

𝜕g
𝜕d

(dk , y∗
PMA)dk

and bk = −
𝜕g
𝜕d

(dk , y∗
PMA) (11.47)
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Then the Lagrangian function for the linearized problem is:

(d,u, s) = −d + u(ak + bkd + s2) (11.48)

which is identical to the Lagrangian of the RIA solution (11.43). Hence, the same result
is obtained, which leads to:

d∗ = dk+1 = −
ak

bk
= dk −

g(dk , y∗
PMA)

𝜕g
𝜕d
(dk , y∗

PMA)
(11.49)

Note that the PMA solution only involves the gradient of the limit state function
(11.38) with respect to the design variable. It is given by:

𝜕g
𝜕d

(d, y) = 12.5y1y2 + 100y2 + 250y1 + 2000 (11.50)

The interactive solutions above can be implemented in a spread-sheet or other
programing software, together with the HLRF (Eq. 4.24) and AMV (Eq. 11.36b)
algorithms. In principle, hand calculations could be used for the external optimization
loop. However, this is prohibitive for the nested interactive solution for the internal
optimization. For that reason the results shown in Table 11.1 were obtained in Math-
ematica. An initial value d0 = 1 was used, with tolerance of 𝜀f = 10−4. All RIA and
PMA runs were started from the mean point (x(0) = {40, 50, 1000}T ). The PMA step
(11.49), however, needs to be computed at the MinPP point y∗

PMA found in the previous
iteration.

Table 11.1 shows the distinctly different outcomes of the RIA and PMA solution
strategies. For the RIA solution, the limit state constraint is always enforced, such
that g(y) ≈ 0 at the end of each HLRF run. The target reliability is obtained only at
convergence of the external optimization. In the PMA solution, the reliability constraint
is always enforced, such that 𝛽 = 𝛽T at the end of each AMV iteration. The limit state
function is only zeroed at convergence of the external optimization. Since the reliability

Table 11.1 Interactive solution results of external optimization
loop, shown at the end of each internal reliability loop.

k d 𝜷 g(y)

RIA 0 1.0 3.0491 −9.2 10−5

1 1.22189 3.8755 −8.2 10−4

2 1.26151 3.9971 −1.1 10−3

3 1.26151 4.0000 −1.1 10−3

PMA 0 1.0 4.0 −304.41
1 1.25417 4.0 −8.3427
2 1.26151 4.0 −5.58 10−3

3 1.26151 4.0 −2.93 10−7
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constraint is active at the end of the RBDO solution, the MPP and MinPP points
coincide:

y∗
RIA = y∗

PMA = {−3.269,−0.806,+2.160}T

x∗
RIA = x∗

PMA = {23.657, 47.984, 1432.0}T (11.51)

11.3.6 Decoupling Techniques for Solving RBDO Problems

11.3.6.1 Decoupling: Serial Single Loop Methods
In the numerical optimization literature the decoupling concept is to separate the
computations of the outer (structural) optimization loop from the inner (reliability)
loop and to use sequential iteration to attempt to achieve a pre-assigned convergence
criterion. The efficiency of the techniques varies considerably [Yang and Gu, 2004;
Yang et al., 2005].

One particularly efficient, accurate and robust technique is the Sequential Opti-
mization and Reliability Assessment (SORA) [Du and Chen, 2004]. It uses the PMA
approach and replaces the reliability constraint by a deterministic constraint, by
shifting the boundaries of violated (or low reliability) constraints towards the feasible
direction. The equivalence between reliability and deterministic constraints is obtained
by means of shifting vectors, calculated from previous reliability analysis. The reliability
analysis is only performed after convergence of a deterministic sub-optimization round.
Details are available in the literature. The SORA and other techniques, such as the
efficient, robust and accurate single-loop computational technique proposed by Liang
et al. (2004, 2007), been reviewed by Aoues and Chateauneuf (2010) and Lopez and
Beck (2012).

11.3.6.2 Decoupling: Uni-level Methods
So-called uni-level methods are obtained by eliminating the inner reliability loop,
and replacing it by optimality criteria imposed as constraints in the outer design
optimization loop. In this way, concurrent convergence is obtained, where optimal
design and target reliability are obtained simultaneously in the same optimization
loop. For the classical reliability computations (RIA), two slightly different approaches
have been proposed [Kuschel and Rackwitz, 2000; Agarwal et al., 2004; 2007]. Both
require second-order derivatives, which are costly and potentially inaccurate to
compute.

11.3.6.3 Sequential Approximate Programming (SAP)
Sequential Approximate Programming (SAP) is a technique for solving conventional
optimization problems. The original optimization problem is decomposed into a
sequence of simpler sub-optimization problems for which solutions are obtained by
finding the minimum of an approximate objective function subject to approximate
constraints. Approximations are generally linear or quadratic. Applications to RBDO
have been illustrated by Cheng et al. (2006) and Yi et al. (2008).
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11.4 RBDO with System Reliability Constraints

11.4.1 Formulation of System RBDO

When a structure or structural system has more than one failure mode, which is usually
the case, it is more consistent to use a single system reliability constraint rather than
a set of component reliability constraints. This applies also to the RBDO formulation.
Consider a compound system failure domain:

Ωf(d, x) =

{
x|⋃

k

⋂
i∈Ck

gi(d,X) ≤ 0

}
(11.52)

where Ck is the index set for the components of the kth cut set, such that series, parallel
and combined cut-set systems can be represented. Let pfsys represent the system failure
probability and rTsys = (1 − pfTsys) the target system reliability, such that (cf. 1.31):

pfsys = P[X ∈ Ωf] = ∫⋃
k
⋂

i∈Ck
gi(d,X)≤0 fX(x) dx (11.53)

For a structural system the RBDO formulation then becomes:

Find d∗ which minimizes f (d)
subject to: pfsys(d) ≤ pfTsys; d ∈ S, (11.54)

where the system reliability (1 − pfsys) is a function of component reliabilities (1 − pfi, i =
1,… , nLS). The component reliabilities themselves are sub-products of the solution of
(11.54). Using the generalized reliability index defined as

𝛽sys = −Φ−1(pfsys) = Φ−1(1 − pfsys) (11.55)

the RBDO formulation becomes:

Find d∗ which minimizes f (d)
subject to: 𝛽sys(d) ≥ 𝛽Tsys; d ∈ S, (11.56)

where, in parallel to the system failure probabilities, the system reliability (𝛽sys) is a func-
tion of component reliabilities (𝛽i, i = 1,… , nLS). These are obtained as sub-products of
the solution of (11.56).

The problems given by (11.54) and (11.56) are significantly more difficult to solve
than (11.9) and (11.10). Solution involves evaluation of system reliabilities in (11.53),
but, more importantly, there are infinite number of combinations of component
reliabilities potentially leading to the same overall system reliability. In addition,
the derivatives of unions of limit states (11.53) are sensitive only to the dominant
failure modes [Aoues and Chateauneuf, 2008] whereas the sensitivity with regard to
other modes is difficult to compute since they are hidden behind dominant modes.
This could bring instabilities to the solution of problems in RBDO for structural
systems.

On the other hand, the formulations given in (11.54) and (11.56) contain
fewer constraints and hence more ‘degrees of freedom’. In turn this leads to easier
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reconciliation between failure modes that potentially are critical—in the sense that it
may be cheaper (in terms of the objective function f (d)) to reduce reliability in one
failure mode and compensate for it in one or more other modes, while at the same time
respecting overall system reliability.

11.4.2 Structural Systems RBDO with Component Reliability Constraints

Some system RBDO solutions require that reliability of individual components also be
included as constraints. In this case, target component reliabilities should be included
explicitly as additional design variables:

Find {d∗,𝛃∗
T} which minimizes f (d)

subject to: 𝛽sys(d) ≥ 𝛽Tsys, 𝛽i(d) ≥ 𝛽Ti, i = 1,… , nLS; d ∈ S; (11.57)

where 𝛃∗
T ∈ ℝnLS is the vector of component target reliabilities (𝛽Ti). However, including

these may result in an over-constrained problem, and thus should be avoided if possible
[Aoues and Chateauneuf, 2008]. In general, if the system reliability constraint is active at
the optimum, some (or many) component reliability constraints may become inactive,
leading to over-designed components. On the other hand, due to redundant constraint
specification, if many component constraints become active, the system reliability con-
straint becomes inactive and useless.

11.4.3 Structural System RBDO—solution Schemes

Regarding computations for solving system reliability RBDO problems, generally
the same general approaches as for components have been used. Early investigators
[e.g. Feng and Moses, 1986; Kim and Wen, 1990; Enevoldsen and Sørensen, 1993]
solved simple problems by a nested brute-force computation, in which the system
reliability ‘loop’ was solved, by employing different approximations, within the design
optimization loop. Such nested solutions are very costly to compute, and examples
have been restricted to simple problems. More specialized algorithms have only been
developed more recently. These include a decoupling with heuristic adjustment of
component reliabilities [Royset et al., 2001], and extension of SORA to series system
RBDO [Ba-abbad et al., 2006], an extension of the SLA method based on second-order
system reliability bounds [Liang et al., 2004] and a methodology employing an addi-
tional internal loop to minimize differences between component reliabilities and their
targets [Aoues and Chateauneuf, 2008]. A more comprehensive single-loop system
RBDO approach for general systems, similar to (11.53), was presented by Nguyen et al.
(2010).

11.5 Simulation-based Design Optimization

11.5.1 Introduction

Methods for solving general design optimization problems using Monte Carlo simu-
lation of various types (cf. Chapter 3) are considered in this section. Generally these
are applicable to RBDO (11.9) and to LCRO (11.18) type problems. The use of simula-
tion eliminates some of the numerical and stability problems observed for some of the
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methods discussed in Sections 11.3 and 11.4. Mostly, simulation can deal well with
problems involving strongly non-linear limit state functions, strongly non-linear y =
T(x) mappings, and general system reliability analysis. However, simulation itself intro-
duces some new issues, including potential instability due to random sampling and
the necessity for large sample sizes to evaluate small failure probabilities. As a con-
sequence, simulation may become prohibitive when dealing with structural responses
given implicitly by non-linear FE models with many degrees of freedom, or in the solu-
tion of MDOF stochastic dynamics problems.

The methods described in this section can be classified as general methods for solving
design optimization problems in presence of uncertainties. Such problems are called
stochastic optimization problems in the literature, and are found in broad areas such
as finances, mathematics, logistics and general engineering. A general overview and
detailed description of stochastic optimization methods can be found in Birge and Lou-
veaux (1997), Kall and Wallace (1994), Ruszczynski and Shapiro (2003) and Spall (2003).

Stochastic design optimization problems can be solved by the Simplex method and by
entirely heuristic methods including Genetic Algorithms, Particle Swarm Optimization
and Simulated Annealing that do not require gradients of the failure probability to be
computed. However, this has the disadvantage that large numbers of design candidates
are required to form statistical populations; hence they require large numbers of limit
state function calls.

Stochastic design optimization problems can be solved also by first-order methods
requiring computation of the gradient of failure probabilities with respect to the vector
of design variables. This can be done by simulation, but it presents computational diffi-
culties. Standard deterministic optimization algorithms can be employed, using at any
iteration a set of realizations of the random variables of the problem [Ruszczynski and
Shapiro, 2003]. This still requires large numbers of samples, and attention is required
to ensure that these are independent samples. This may require attention to be given to
the process of generating random numbers and hence random variates (cf. Section 3.3).

A third approach to solving stochastic design optimization problems is through appli-
cation of stochastic quasi-gradient iterative search methods together with sample aver-
age approximations [Royset and Polak, 2004]. They can handle LCRO problems with
failure probabilities in the objective function, but not RBDO problems with their failure
probabilities as constraints.

Sample average approximations are constructed by replacing failure probabilities
in the original problem by corresponding Monte Carlo simulation estimates. Results
become asymptotically exact as the number of samples tends to infinity (nS → ∞), and
are associated with a sampling error enS

(d,𝛀nS
) for finite nS. This method of solution is

described further below.

11.5.2 Problem Formulation

Reliability constraints in RBDO and objective function in LCRO can be evaluated by
simulation using conditional failure probabilities:

pf (d) = P(F |d) = ∫ΩP(F |d, x)p(x |d) dx

= ∫Ω IF (d, x)p(x |d) dx (11.58)
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where F represents the failure event, p(x|d) = fX(x) is the joint probability density of the
random variables, which will be explicit functions of d when random design variables are
present. Also, IF (d, x) is the indicator function for failure (cf. 1.36), here written directly
in terms of the failure domain Ω or Ωf :

IF (d, x) = 1 if x ∈ Ωf

IF (d, x) = 0 if x ∉ Ωf . (11.59)

As observed in Section 3.3.4, (11.58) represents the expected value of the indicator
function. An unbiased estimator of this expected value is obtained, from a finite number
of samples nS, drawn from p(x |d), as:

p̂f (d,𝛀nS
) = 1

nS

nS∑
i=1

IF (d, xi), (11.60)

where 𝛀nS
= [x1, x2,… , xnS

] represents the set of samples and xi is the ith sample of the
random variable vector. The estimator in (11.60) is said to be unbiased if:

lim
nS→∞

p̂f (d,𝛀nS
) = pf (d). (11.61)

In practice, only a finite number of samples nS can be employed. Fortunately, in most
cases a good approximation is obtained for sufficiently large nS. However, it does mean
that simulation provides only an approximate solution to the optimization problem.

The formulation of RBDO using simulation is:

Find d∗
nS

which minimizes f (d)
subject to: p̂fi(d,𝛀nS

) ≤ pfTi, i = 1,… , nLS; d ∈ S. (11.62)

The formulation for LCRO may be written as:

Find d∗
nS

which minimizes Cc(d) + · · · +
nLS∑
i=1

Cfi(d)p̂fi(d,𝛀nS
)

subject to: d ∈ S. (11.63)

11.5.3 Remarks About Solutions

In the above implied iterative simulation schemes, greater accuracy for the solution
of (11.62) and (11.63) requires reduction of the sampling error enS

(d,𝛀nS
). This can

be achieved using more samples (cf. Section 3.3.5), but at a computational cost. If the
sampling procedure is consistent, it can be expected that d∗

nS
→ d∗ as nS → ∞. The

appropriate number of samples nS for a given problem may be estimated from conver-
gence plots (cf. Section 3.3.5); however, nS needs to be large enough for all candidate d,
and this may be difficult to prove or verify. Greater accuracy of the Monte Carlo solu-
tions can be achieved also by appropriate selection of the random samples, through
the use of specific variance reduction techniques such as ‘common random numbers’
[e.g. Rubinstein, 1981].

For smoother convergence of the iterative solution schemes, it usually is helpful if
there are no sudden changes in behaviour of the functions involved [Rockafellar and
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Royset, 2010]. Thus, it is likely to be helpful if the indicator function (11.59) is modified
slightly to be less sharp in its binary behaviour. Thus a continuous indicator function
could be considered as an approximation. Use of such a continuous indicator function in
(11.58), in combination with the conditional random numbers for random sampling will
tend to smoothen any comparisons between nearby designs d1 and d2, thereby making
the simulation-based search for d∗

nS
more stable.

As noted, the solution of stochastic optimization problems (11.62) or (11.63) requires
evaluation of derivatives of failure probabilities with respect to the design variables d.
The use of finite differences or similar schemes would require large numbers of samples,
and would add ‘noise’ to the simulation. To try to obviate this, it has been proposed
that artificial random variables be introduced in the simulation to allow gradients to
be obtained in a single simulation run. This also permits sensitivities to be obtained,
even though the computational effort is still considerable [Au, 2005; Taflanidis and Beck,
2008a; 2008b; 2009].

In addition, a small number of rather specialized techniques have been proposed. To
estimate gradients of failure probabilities with respect to the design variables, various
approximations to the Dirac delta function, used instead of the indicator function above
have been proposed [Lacaze et al., 2015].

A technique named Simultaneous Perturbation Stochastic Analysis (SPSA), a stochas-
tic search method, is based on the observation that one properly chosen simultaneous
random perturbation of all components of d provides, in the long run, as much infor-
mation as a set of one-at-a-time perturbations of individual components [Spall, 2003].

A two-stage approach termed Stochastic Subset Optimization (SSO) that combines
a number of the techniques was proposed by Taflanidis and Beck (2008a, 2009b). It
uses global searches performed by subset simulation with design variables artificially
assumed as random variables. The local search is performed using SPSA. It also uses
‘common random numbers’ and indicator function smoothening, while importance
sampling is employed for those random variables identified as more relevant. Further
developments from this approach [Jia and Taflanidis, 2013; Jia et al., 2015], while
efficient, tend to be limited to a small number of design variables, due to the difficulty
in identifying the subsets in higher dimensions.

Techniques have been proposed to try to make some of the evaluations of probabili-
ties easier. For example, for evaluating the integral in (11.58) by Importance Sampling
(cf. Section 3.4), it has been proposed that a uniform importance sampling function
over the integration domain relevant to an individual random variable might be advan-
tageous [Rashki et al., 2012; Xiaopeng et al., 2014], possibly modified by a heuristic
weighting scheme [Rashki et al., 2014]. In this case only the weightings need to be
changed as simulation proceeds [Rashki et al., 2014]. Hence, the large cost of evaluating
limit state functions for different realizations xi is avoided. However, in its crude form,
the method is not very efficient for problems involving small failure probabilities. Alter-
native suggestions to achieve similar computational simplifications also have been made
[e.g. Yuan and Lu, 2014; Okasha, 2016] but these, too, remain to be further inves-
tigated, particularly for their computational effectiveness in application to RBDO
problems.

Finally, a completely different approach specifically targeted at solving risk opti-
mization problems using Monte Carlo simulation, builds on the notion that it is easier
(less computationally demanding) to first identify the failure domain over the whole
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design space and for each sample [Gomes and Beck, 2016]. That information then
allows the probability of failure to be computed for any point in the design space,
with no need of further limit state function evaluations. This strategy has been shown
to be efficient for problems involving up to a dozen design variables. However, the
efficiency of the method reduces considerably for problems involving twenty or more
design variables. Special schemes for the extension to multiple design variables are still
needed.

11.6 Life-cycle Cost and Risk Optimization

11.6.1 Introduction

Problems addressing life-cycle cost and risk optimization can be classified broadly into
two somewhat overlapping types: optimal design under stochastic loading, and opti-
mal design considering inspection and maintenance activities. Most published solutions
on these topics tend to be problem-oriented. There is relatively little about appropriate
solution techniques. In both approaches, expected costs of failure are part of the objec-
tive function. In the following, such applications are briefly described, noting that the
formulations usually are very problem-specific.

11.6.2 Optimal Structural Design Under Stochastic Loads

Optimal structural design under stochastic loads involves time-variant reliability
approaches, such as those addressed in Chapter 6. One of the first approaches to
the problem, by Kim and Wen (1990), addressed optimal design of frame structures
under multiple stochastic loads, considering the effects of member and/or system
reliability constraints. Wen and Kang (2001a) addressed minimal life-cycle cost design
of buildings under environmental loading such as earthquake and hurricanes. As
has been recognized in other areas of structural design (cf. Chapters 1 and 2), it was
observed that optimal designs were controlled mainly by failure consequences, and by
design life. As might be expected intuitively, for structures subject to multiple hazards,
design is controlled by the hazard with the worst combination of large uncertainty
and strong intensity or severe consequences. When costs and consequences are
considered in the formulation of the optimal problem, it was found that requiring
uniform reliability under multiple hazards is not optimal. This was demonstrated for
the design of an office building subject to earthquake and wind hazards [Wen and
Kang, 2001b].

The optimal design of reinforced concrete frames subject to earthquake loading was
found to be dominated by total expected damage costs, consisting mainly of building
damage repair costs and indirect losses [Ang and Lee, 2001]. The contributions of fatality
and injury rates, using a willingness to pay criterion, were found of secondary impor-
tance. For the optimal design of general, renewable structures it has been proposed that
failure could be measured in terms of failure rates instead of failure probabilities and that
the criteria for risk acceptability could be considered in terms of efficiency of investment
towards life-saving measures [Rackwitz, 2001]. This agrees with heuristic observations
(cf. Section 2.4).
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The optimal design of linear and non-linear MDOF dynamical systems, subject to
stochastic excitations has been considered extensively [Jensen, 2006; Jensen et al.,
2008; Jensen et al., 2009; Jensen et al., 2015]. In this work, a numerically inten-
sive procedure is employed in which load processes are discretized into thousands
of random variables, and the resulting high-dimensional reliability problems are
solved using different Monte Carlo techniques. Also, various approaches have been
investigated to attempt to reduce the computational burden of solving the resulting
RBDO problems. Some further solution strategies are available [Valdebenito and
Schuëller, 2011].

11.6.3 Optimal Structural Design Considering Inspections and Maintenance

A large number of investigations have been reported for optimal design with allowance
for the potential influence of the costs and effectiveness of inspections, repairs,
maintenance and failure. Many of these are of the case-study type. However, some
efforts are based on stochastic notions, such as renewal theory. Thus, failure models
have been proposed for minimal life-cycle cost design of ageing components, con-
sidering also the costs of inspections, repairs, maintenance and the cost of failure
[e.g. Rackwitz and Joanni, 2009]. This reinforced earlier (perhaps more heuristic) find-
ings that inspection-based (predictive or pro-active) maintenance was more effective in
terms of overall expected life-time costs than conventional age-dependent (preventive)
maintenance.

A number of efforts have focussed on multi-objective optimization of structural main-
tenance strategies incorporating system reliability, system redundancy and life-cycle
costs. This can have interesting practical outcomes. For example, Okasha and Frangopol
(2009) showed that system reliability and system redundancy have different impacts on
optimal maintenance strategies and confirmed that different maintenance actions might
be applied to different components of a structural system, thereby potentially avoiding
unnecessary maintenance actions or reducing or delaying maintenance on non-critical
components.

Some of the Monte Carlo simulation techniques for solving life-cycle cost and risk
optimization problems (cf. Section 11.4) were employed in [Gomes et al., 2013; Gomes
and Beck, 2014a] to find optimal wall thickness and optimal inspection and maintenance
plans for pipelines subject to corrosion defects, and in [Gomes and Beck, 2014b] to gen-
eral structures subject to fatigue. Results illustrate the different compromises that can
be achieved when designing structures under uncertainty, in particular for systems for
which structural failures are, ultimately, unavoidable. This is in contrast to conventional
engineering thinking, where proper design, construction and operation are assumed to
eliminate failures.

11.7 Discussion and Conclusion

A comprehensive example covering many of the aspects considered herein is available,
for the case of a concrete gravity dam. It compares deterministic, reliability-based and
life-cycle cost and risk optimization for the case of equilibrium limit state functions
[Beck, 2013]. The example and the computations are too large to be reproduced here.
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In this chapter structural design optimization under the explicit consideration of
uncertainties in loads and in strengths was considered. Some level of probabilistic
influence can be considered using code-specified partial factors in an optimal design
(herein termed Deterministic Design Optimization). However, a more satisfactory
approach is to replace the code-specified single-limit-state constraints by reliability
constrains, as in Reliability-Based Design Optimization (RBDO). An optimization
problem with more degrees of freedom, with no deterministic counterpart, is obtained
by using only system reliability constraints in RBDO. Such formulation leads to optimal
points of compromise between competing failure modes. When costs of failure can
be quantified, the apparently conflicting goals of economy and safety in structural
design can be resolved by using the more comprehensive Life-cycle Cost and Risk
Optimization (LCRO) formulation framework to develop rational designs.

The main methods used for solving RBDO and LCRO problems using FOR or Monte
Carlo simulation were reviewed. Problems with a single system reliability constraint
were considered and shown to lead to a less-constrained problem, where individual fail-
ure modes can compete with each other. The RBDO problem with system-reliability
constraints, however, was shown to be significantly more difficult to solve. The reliabil-
ity constraints can be imposed by the conventional reliability-index approach (RIA), or
by the so-called performance-based approach (PMA). Overall it appears that the PMA
approach has advantages for optimization in RBDO problems.

It was noted that structural optimization problems using FOR usually lead to nested
optimizations loops. These can be approached by different de-coupling strategies, briefly
reviewed herein. Solution by Monte Carlo simulation also is possible, even though this
introduces issues of its own, the most important being the compounding of computa-
tional effort and time-cost. Some techniques to alleviate this issue were reviewed. Finally
it was noted that for life-cycle-based optimization most efforts have been case-studies
and that there is still relatively little fundamental theory available.
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A

Summary of Probability Theory

A.1 Probability

Probability can be considered as a numerical measure of the likelihood that an event
occurs relative to a set of alternative events that do not occur. The set of all possible
events must be known.

The determination of the probability that an event occurs can be based on:

(1) a priori assumptions about the underlying mechanisms governing events(s);
(2) relative frequency of empirical observations in the past;
(3) intuitive or subjective assumptions.

The probability of an event E is denoted P(E |X) where P is the probability operator,
and |X denotes the condition ‘subject to X’, where X denotes whatever may be known
or assumed in determining P(E |X). Hence any probability depends on the state of
knowledge (or ignorance) (or more generally ‘the state of nature’) at the time that the
probability is calculated. Seen in this way, all probabilities are conditional (as indicated
by X [e.g. Tribus, 1969]. In many cases P(E |X) will be denoted simply P(E), the state of
nature X being understood.

A.2 Mathematics of Probability

A.2.1 Axioms

(a) The probability P(E) of an event E is a real non-negative number: 0 ≤ P(E) ≤ 1.
(b) The probability of an inevitable event C is P(C) = 1.0. Hence the probability P(0) of

an impossible event equals zero.
(c) Addition rule. The probability that either or both of two events E1 and E2 occurs is

P(E1 ∪ E2) = P(E1) + P(E2) − P(E1 ∩ E2) (A.1)

Hence for two mutually exclusive events

P(E1 ∪ E2) = P(E1) + P(E2) (A.2)

Structural Reliability Analysis and Prediction, Third Edition. Robert E. Melchers and André T. Beck.
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A.2.2 Derived Results

A.2.2.1 Multiplication Rule The probability that events E1 and E2 both occur can be
written as the conditional probability of one with respect to the other (i.e. there is
symmetry in E1 and E2 ):

P(E1 ∩ E2) = P(E1 |E2)P(E2) = P(E2 |E1)P(E1) (A.3)

If E1 and E2 are independent,

P(E1 |E2) = P(E1) and P(E1 ∩ E2) = P(E1)P(E2) (A.4)

(These statements are used to provide the formal definition of independent events
[e.g. Lindley, 1976]).

A.2.2.2 Complementary Probability If E is the event that E does not occur,

P(E ∪ E) = P(E) + P(E) = P(C) = 1

Therefore

P(E) = 1 − P(E) (A.5)

A.2.2.3 Conditional Probability It follows directly from (A.3) that

P(E1 |E2) =
P(E1 ∩ E2)

P(E2)
(A.3a)

A.2.2.4 Total Probability Theorem By virtue of the multiplication rule it follows that for
events Ei, i = 1, 2,… , n, mutually exclusive and collectively exhaustive (i.e. covering all
possibilities without overlap),

P(A) = P(A |E1)P(E1) + P(A |E2)P(E2) +… + P(A |En)P(En) (A.6)

A.2.2.5 Bayes’ Theorem Expression (A.3a) is also a formal statement of Bayes’ theo-
rem [Lindley, 1976]. For practical applications it can be rewritten, with the aid of the
right-hand equality in (A.3), as:

P(A |Ec) =
P(A ∩ Ec)

P(Ec)
=

P(Ec |A)P(A)
P(Ec)

(A.7a)

where A is an event conditional on conditioning event Ec. The latter can be expanded
to the case where there are several conditioning events Ei, i = 1, 2,… , n. Then (A.7a)
becomes

P(A |E1 ∩ E2 ∩ E3 …En) =
P(A ∩ E1 ∩ E2 ∩ E3 …En)

P(E1 ∩ E2 ∩ E3 …En)

=
P(E1 ∩ E2 ∩ E3 …En|A)P(A)

P(E1 ∩ E2 ∩ E3 …En)
(A.7b)
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where the second equality shows the conditioning events Ei now being conditional on
the original event A. On the right-hand side of (A.7b) the term P(E1 ∩ E2 ∩ E3 …En|A) is
known as the ‘likelihood function’. The term [P(E1 ∩ E2 ∩ E3 …En)]−1 is the ‘normalizing
factor’, necessary to ensure both sides of (A.7) are proper probabilities.

A.3 Description of Random Variables

In what follows, only the case of continuous random variables will be noted; for discrete
random variables the results are analogous with integration being replaced by summa-
tion. The probability that the random variable X takes on a value less than or equal to x
(a specific value) is given by:

P(X ≤ x) ≡ FX(x) = ∫
x

−∞ fX(𝜀)d𝜀 (A.8)

where FX(x) is defined as the cumulative distribution function of X, and FX(x) is the
probability density function. Obviously fX(x) = dFX(x)∕dx; thus f X(x) is not a probability,
but its local derivative. Specific cases of f X(x) and FX(x) are considered in Section A.5.
Any function satisfying FX(−∞) = 0, FX(+∞) = 1.0, FX(x) ≥ 0, fX(x) ≥ 0, and for which
the derivative fX(x) = dFX(x)∕dx exists, is a possible cumulative distribution function.
However, in practice, attention is restricted to a limited set.

By direct extension of (A.8)

P(a < X ≤ b) = ∫
b

−∞ fX(x)dx − ∫
a

−∞ fX(x)dx = FX(b) − FX(a) (A.9)

A distribution may be described by a number of derived properties, commonly called
‘moments’, without specific reference to either fX(x) or FX(x). Also, for discrete func-
tions, the probability density function is replaced by the probability mass function pX .

A.4 Moments of Random Variables

A.4.1 Mean or Expected Value (First Moment)

This is a ‘weighted average’ of all the values that a random variable may take:

E(X) ≡ 𝜇X = ∫
∞

−∞x fX(x) dx ≈
∑

i
xi pX(xi) (A.10)

The integral expression is for continuous variables and the last expression is its discrete
approximation or is the expression for a discrete random variable. In both cases the
result is called the ‘first moment’ since it is the first moment of ‘area’ of the probability
density function about the origin. (The mean 𝜇X is analogous to the centroidal distance
of the cross-section for a beam).

Other central tendency measures are the mode, which is the most probable value, i.e.
the value of x for which pX or f X is greatest and the median, which is the value of x for
which FX(x) = 0.5, i.e. values above and below the mean are equally likely.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

374 Structural Reliability Analysis and Prediction

A.4.2 Variance and Standard Deviation (Second Moment)

The variance of a random variable is a measure of the degree of randomness about the
mean:

E(X − 𝜇X)2 = var (X)

= ∫
∞

−∞(x − 𝜇X)2 fX(x)dx (A.11a)

or

=
∑

i
(xi − 𝜇X)2 pX(xi)

= E(X2) − (𝜇X)2 (A.11b)

where the alternative expression is for discrete random variables. The last expression is
exact for both types of random variable and is a useful result. The standard deviation is
defined as

𝜎X = [var (X)]1∕2 (A.12)

and the coefficient of variation is defined as

VX =
𝜎X

𝜇X
(A.13)

A.4.3 Bounds on the Deviations from the Mean

For all discrete and continuous random variables there are bounds on the relationship
between the standard deviation and the mean. The most well-known is due to Bienayme
and Chebychev. For a random variable X, with mean 𝜇X and standard deviation 𝜎X , this
relationship is

P(|X − 𝜇X | ≥ k𝜎X) ≤ 1∕k2 (A.14)

where k > 0 is a real number. This is a (weak) general bound on the amount of
deviation |X − 𝜇X | from the mean relative to the standard deviation. If it is known
that f X(x) has a single peak and has so-called ‘higher order’ contact with the x axis at
x = ±∞, the right-hand side of expression (A.14) may be replaced by 1/(2.25k2). This is
the ‘Camp-Meidall’ inequality [Freeman, 1963].

A.4.4 Skewness 𝜸1 (Third Moment)

A measure of skewness or lack of symmetry of a distribution is given by the third central
moment about the mean:

E(X − 𝜇X)3 = ∫
∞

−∞(x − 𝜇X)3 fX(x)dx
or =

∑
i
(xi − 𝜇X)3pX(xi)

(A.15)

E(X − 𝜇X)3 will be positive if there is greater dispersion of values of X ≥ 𝜇X than for
values of X < 𝜇X ; the sign and magnitude of E(X − 𝜇X)3 governs the sign and degree
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of ‘skewness’

𝛾1 =
E(X − 𝜇X)3

𝜎3
X

Positive skewness is indicated by the longer ‘tail’ of the distribution in the positive
direction.

A.4.5 Coefficient 𝜸2 of Kurtosis (Fourth Moment)

A measure of the ‘flatness’ of a distribution is given by the fourth central moment

E(X − 𝜇X)4 = ∫
∞

−∞(x − 𝜇X)4 fX(x)dx
or =

∑
i
(xi − 𝜇X)4pX(xi)

(A.16)

The greater the moment, the ‘flatter’ (less peaked) is the distribution. The kurtosis is
defined as

𝛾2 =
E(X − 𝜇X)4

𝜎4
X

with 𝛾2 = 3.0 for a standard Normal distribution. The measure is used in statistics only
for large samples.

A.4.6 Higher Moments

Higher-order moments can be developed. A systematic way of developing moments
indirectly employs the ‘moment-generating function’ [e.g. Ang and Tang, 1975]. In gen-
eral, the set of all moments of a probability density function describes the function
exactly; any subset of moments represents an approximation to it. For some probability
density functions, a limited set of moments is sufficient to describe the function com-
pletely. Thus, the Normal, or Gaussian distribution, is completely described by its first
two moments.

A.5 Common Univariate Probability Distributions

A.5.1 Binomial B(n, p)

The Binomial distribution gives the probability of exactly x ‘successes’ in n trials. Its
probability mass function is given by

P(X = x) = pX(x) =
(

n
x

)
px(1 − p)n−x x = 0, 1, 2,… , n (A.17)

and the cumulative distribution function by

P(X ≤ x) = FX(x) =
x∑
y

(
n
y

)
py(1 − p)n−y x = 0, 1, 2,… , n (A.18)
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where (
n
x

)
= n!

x!(n − x)!
(A.19)

is the binomial coefficient. The parameters are the number n of independent trials and
the probability p of success per trial (= constant).
The moments are

E(X) = 𝜇X = np (A.20)
var (X) = 𝜎2

X = np(1 − p) (A.21)

The binomial distribution is applicable where there are only two discrete alternatives
per independent trial, with probability p and 1 − p respectively. A useful property is

B(n1, p) + B(n2, p) = B(n1 + n2, p) (A.22)

The ‘multinomial’ distribution applies where there are more than two discrete
outcomes possible.

A.5.2 Geometric G(p)

The geometric distribution gives the probability that the nth trial is a success given
that the first n − 1 trials were failures. Its probability mass function and its cumulative
distribution function are

P(N = n) = pN (n) = (1 − p)n−1p n = 1, 2,… (A.23)

P(N ≤ n) = FN (n) =
n∑

i=1
(1 − p)i−1p = 1 − (1 − p)n (A.24)

The parameters are the number n of independent trials and the probability p of success
per trial (= constant). The moments are

E(N) = 𝜇N = 1
p

(A.25)

var (N) = 𝜎2
N =

1 − p
p2 (A.26)

For applications, see those for the binomial distribution. It is assumed that the trials are
independent. A case in which this is not so occurs in sampling without replacement.
The corresponding distribution is the hypergeometric HG(p) [Ang and Tang, 1975;
Freeman, 1963].

A.5.3 Negative Binomial NB(k, p)

This distribution gives the probability that the k th occurrence of a success occurs at the
t th trial. It is also known as the Pascal distribution. The probability mass function is

P(T = t) = pT (t) =
(

t − 1
k − 1

)
(1 − p)t−kpk t = k, k + 1,… (A.27)
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The parameters are the number k of successes, the probability p of success per trial
(= constant) and the number t of trials before k successes (t ≥ k). The moments are

E(T) = 𝜇T = k
p

(A.28)

var (T) = 𝜎2
T =

k (1 − p)
p2 (A.29)

The number of trials can be interpreted also as the number of time units. Other forms
also exist.

A.5.4 Poisson PN(𝝂t)

This distribution gives the probability of a number of occurrences Xt of a random event
in a given (time) interval t, given that the mean rate of occurrences is known. The prob-
ability mass function and the cumulative distribution function are:

P(Xt = x) = pX(x) =
(𝜈t)x

x!
e−𝜈t (A.30)

P(Xt ≤ x) = FX(x) =
x∑

r=0

(𝜈t)r

r!
e−𝜈t (A.31)

The parameters are the mean occurrence rate (per unit time or space units) 𝜈, the time
or space interval t, the average number 𝜆(= 𝜈t) of events in t, and the number Xt of
occurrences in t. The moments are

E(X) = 𝜇X = 𝜈t (A.32)
var (X) = 𝜎2

X = 𝜈t (A.33)

The Poisson distribution results from (approximates) the Binomial distribution B(n, p)
as n → ∞ and p is small by replacing the number of trials in the Binomial by the time
interval. The relationship is given by np = 𝜈t in the limit as n → ∞, p → 0. In practice,
this is satisfied if, say, n = 50 for p < 0.10, or n = 100 for p < 0.05. The Poisson distri-
bution has wide application in its own right and not merely as an approximation for the
binomial distribution. When the Poisson distribution is used in terms of time or space
units, with independence of events, a Poisson process results (see Chapter 6). Note that
(vt)0∕0! = 1. Also note that the Poisson distribution has the useful property

PN(𝜆1) + PN(𝜆2) = PN(𝜆1 + 𝜆2) (A.34)

A.5.5 Exponential EX(𝝂)

For events occurring according to a Poisson process the Exponential distribution
describes the probability of the time to the first occurrence of an event. Its probability
density and the cumulative distribution functions are, respectively,

P(T = t) = fT (t) = 𝜈e−𝜈t t ≥ 0 (A.35)
P(T ≤ t) = FT (t) = 1 − e−𝜈t t ≥ 0 (A.36)

so that P(T ≥ t) = e−𝜈t .
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The parameters of the Exponential distribution are the mean rate of occurrence 𝜈 and
the time or space interval t. The moments are

E(T) = 𝜇X = 1
𝜈
= Δt (A.37)

var (T) = 𝜎2
T =

(1
𝜈

)2
= (Δ t)2 (A.38)

where Δ t is the average time between arrivals (or the mean life).
The exponential distribution is the continuous analogue of the Geometric distribu-

tion. Since a Poisson process is stationary by definition, any starting time can be used,
and hence T can refer to ‘inter-arrival time’, which is therefore exponentially distributed.

A.5.6 Gamma GM(k, 𝝂) [and Chi-squared 𝝌2(n)]

For events occurring according to a Poisson process, this distribution describes the
probability of the time T to the kth occurrence of an event taking on a given value,
t say. The distribution is generalized when k is not an integer. The probability density
(Figure A.1) and the cumulative distribution function are, respectively;

P(T = t) = fT (t) =
𝜈k(t)k−1

Γ(k)
e−𝜈t t ≥ 0 (A.39)

P(T < t) = FT (t) = 1 −
k−1∑
x=0

(𝜈t)x

x!
e−𝜈t t ≥ 0, k integer > 0 (A.40a)

= Γ(k, 𝜈t)
Γ(k)

t ≥ 0, all k > 0 (A.40b)

k = 1

k = 2

k = 3

fT(t) 

1.0

0.8

0.6

0.4

0.2

0 1 2 3 4 5

ϑ

ϑt

Figure A.1 Gamma probability density function.
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where

Γ(k) = ∫
∞

0 e−uuk−1du = (k − 1)! for k integer > 0 (A.41)

and

Γ (k, x) = ∫
x

0 e−uuk−1 du (A.42)

The parameters are the mean occurrence rate 𝜈 and the time or space interval t. The
moments are

E(T) = 𝜇T = k
𝜈

(A.43)

var (T) = 𝜎2
T = k

𝜈2 (A.44)

𝛾1 =
E(T − 𝜇T )3

𝜎3
T

= 2k−1∕2 (skewness coefficient) (A.45)

The gamma function Γ (k) is the generalization of the factorial for non-integer k. It is
tabulated as the ‘incomplete gamma function’ Γ (k, 𝜈t) [e.g. Ang and Tang, 1975; Ben-
jamin and Cornell, 1970]. For k integer, the distribution is known also as the ‘Erlang’
distribution, and is the continuous analogue of the negative binomial distribution.

The gamma distribution has the useful property that, if Xi is GM(ki, 𝜈), then
m∑
i

Xi = GM

( m∑
i

ki, 𝜈

)
(A.46)

In the special case with 𝜈 = 1∕2 and k = n∕2 expression (A.39) becomes

fT (t) = 2−n∕2tn∕2−1e−t∕2∕Γ(n∕2) (A.39a)

which is known as the Chi-squared (𝜒2) distribution with n = 1, 2, 3,… degrees of
freedom. It represents the probability density function for the sum of the squares of n
independent Normal (i.e. Gaussian) random variables [Shiryaev, 1996].

A.5.7 Normal (Gaussian) N(𝝁, 𝝈)

The Normal distribution is one that arises frequently in practice as a limiting case of
other probability distributions. It also is a reasonable model for observations of many
physical processes or properties.
Its probability density function (Figure A.2) and its cumulative distribution functions
are given by

fX(x) =
1

(2𝜋)1∕2 𝜎X
exp

[
−1

2

(x − 𝜇X

𝜎X

)2
]

−∞ ≤ x ≤ ∞ (A.47)

P(X ≤ x) = FX(x) =
1

(2𝜋)1∕2 ∫
s

−∞ e−
1
2
𝜈2 d𝜈 −∞ ≤ x ≤ ∞ (A.48)

where s = (x − 𝜇X)∕𝜎X . There is no simple expression for FX(x). However, there are many
approximations (see below).
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Figure A.2 Normal probability density function.

The parameters of the distribution are the mean value 𝜇X and the standard deviation
𝜎X . The moments are

E(X) = 𝜇X (A.49)
var (X) = E (X − 𝜇X)2 = 𝜎2

X (A.50)
E(X − 𝜇X)3 = 0 (no skewness) (A.51)
E(X − 𝜇X)4

𝜎4
X

= 3 (coefficient of kurtosis) (A.52)

The standard Normal distribution N(0, 1) usually is tabulated for both f X(x) and
FX(x) (see Appendix D). The variate is then given by s = (x − 𝜇X)∕𝜎X . Also FS(s) com-
monly is denoted Φ(s), while f S(s) usually is denoted 𝜙(s). Note that, if X is N(𝜇X , 𝜎X),
then

fX(x) =
1
𝜎X

𝜙

(x − 𝜇X

𝜎X

)
, FX(x) = Φ

(x − 𝜇X

𝜎X

)
The Normal distribution has the following useful properties:

Φ(−s) = 1 − Φ(s) (A.53)
s = Φ−1(p) = −Φ−1(1 − p) (A.54)

P(a < x ≤ b) = Φ
(b − 𝜇X

𝜎X

)
− Φ

(a − 𝜇X

𝜎X

)
(A.55)

If Y =
∑

i
Xi where Xi are independent N(𝜇Xi

, 𝜎Xi
), then (cf. Section A.11.1):

𝜇Y =
∑

i
𝜇Xi

(A.56)

𝜎2
Y =

∑
i
𝜎2

Xi
(A.57)
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Approximate expressions are [Abramowitz and Stegun, 1966; Hastings, 1955]:

(i) .
Φ(−𝛽) ≈ 1

𝛽(2𝜋)1∕2 e−
1
2
𝛽2 (A.58)

(ii) .
Φ(s) = P(S ≤ s) = 1 − 1

(2𝜋)1∕2 e−
1
2

s2

[ 5∑
i=1

biti + 𝜀(s)

]
(A.59a)

where t = (1 + 0.2316419s)−1 and the constants are bi (i = 1,… , 5); (0.319 381 530;
0.356 563 782; 1.781 477 937; 1.821 255 978; 1.330 274 429). The error is |𝜀(s) | <
7.5 × 10−8.

(iii) .
Φ(s) = P(S ≤ s) = 1 − 0.5

(
1 +

6∑
i=1

dixi

)−16

+ 𝜀(s) (A.59b)

where the constants di (i = 1,… , 6) are: (0.049 867 3470; 0.021 141 0061; 0.003
277 6263; 3.800 36 ∞ 10−5; 4.889 06 ∞ 10−5; 0.538 30 ∞ 10−5). The error is|𝜀(s) | < 1.5 × 10−7.

(iv) .
Φ(−𝛽) ≈

⎡⎢⎢⎣
𝛽

1 + 𝛽2 +

( 5∑
i=0

ai𝛽
i

)−1⎤⎥⎥⎦𝜙(𝛽) + 𝜀(𝛽) for 𝛽 ≥ 1 (A.59c)

where a0 = (2∕𝜋)1∕2 and the constants ai (i = 1, ., 5) have the following values:
(1.280; 1.560; 1.775; 0.584; 0.427). The error is |𝜀(𝛽) | < 5 × 10−5 [Rosenblueth,
1985b].

A.5.8 Central Limit Theorem

This famous theorem states that the probability distribution for the sum of a large num-
ber of random variables approaches the Normal distribution, irrespective of the individ-
ual distributions of the random variables [Freeman, 1963; Benjamin and Cornell, 1970
and many others].

A.5.9 Lognormal LN(𝝀, 𝜺)

In the Lognormal distribution, the natural logarithm of the random variable X, rather
than X itself, has a Normal distribution. The probability density function (Figure A.3)
and the cumulative distribution functions are:

fX(x) =
1

(2𝜋)1∕2x𝜀
exp

[
−1

2

(
ln x − 𝜆

𝜀

)2
]

0 ≤ x < ∞ (A.60)

FX(x) = ∫
x

−∞ fX(u)du = Φ
(

ln x − 𝜆

𝜀

)
(no explicit form) (A.61)

The parameters are

𝜆 = E(ln X) = mean of ln (X) = 𝜇ln x (A.61a)
𝜀2 = var (ln X) = 𝜎2

ln X (A.61b)
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4

3

2

1

0 1 2

fX(x)

ε = 0.1

ε = 0.25

ε = 0.5

λ = 0.0

(xm = 1.0)

x

Figure A.3 Lognormal probability density function.

The moments are [e.g. Ang and Tang, 1975]:

E(X) = 𝜇X = exp
(
𝜆 + 1

2
𝜀2
)

(A.62)

var (X) = 𝜎2
X = 𝜇2

X[exp(𝜀2) − 1] (A.63)

Expression (A.61) allows probabilities to be evaluated using standard Normal tables
when X is Lognormal. Further, the probability over an interval may be evaluated from

P(a < x ≤ b) = Φ
(

ln b − 𝜆

𝜀

)
− Φ

(
ln a − 𝜆

𝜀

)
(A.64)

The Lognormal distribution has the following useful properties:

(1) From equation (A.62)

𝜆 = 𝜇ln X − 1
2
𝜀2

or

𝜆 = ln xm = ln

[
𝜇X

(1 + V 2
X)1∕2

]
or

xm = 𝜇X exp
(1

2
𝜀2
)

where xm is the ‘median’ of x, defined as P(X ≤ xm) = 0.5.
(2) From equation (A.63), with V X defined as the coefficient of variation:

𝜀2 = 𝜎2
ln X = ln

(
1 +

𝜎2
X

𝜇2
X

)
= ln(1 + V 2

X) ≈ V 2
X for VX ≤ 0.3
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(3) Also xm =
𝜇X

(1 + V 2
X)1∕2

so that xm ≤ 𝜇X .

(4) If Y =
n∏

i=1
Xi where the Xi are Lognormal, LN(𝜆i, 𝜀i), then

𝜇 ln Y =
n∑

i=1
𝜇 ln Xi

or ym =
n∏

i=1
xmi

and 𝜎2
ln Y =

n∑
i=1

𝜎2
ln Xi

(A.65)

Because of the relationship between the Normal and the Lognormal distributions, the
central limit theorem extended to the Lognormal distribution states that the probability
distribution for the product of a large number of random variables approaches a Log-
normal distribution, irrespective of the individual distributions of the random variables.

A.5.10 Beta BT(a , b , q , r)

Although the Beta distribution may arise from physical considerations, its chief advan-
tage is its great flexibility in fitting to data. It is given in various, essentially equivalent,
forms. The probability density function is (Figure A.4):

fX(x) =
1

𝛽(q, r)
(x − a)q−1(b − x)r−1

(b − a)q+r−1 a ≤ x ≤ b

= 0 elsewhere
(A.66)

6

5

4

3

2

1

0  0.2 0.4 0.6 0.8 1.0

q = 1,

r = 3

q = 1,

r = 2

q = 1, r = 6

q = 2, r = 6

q = 4, r = 4

q = 2, r = 3

q = 2, r = 2

q = 1, r = 1

s

fS(s)

Figure A.4 Beta distribution probability density function for different parameters.
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where the Beta function 𝛽(q, r) is given by

𝛽(q, r) = ∫
1

0 xq−1(1 − x)r−1dx =
Γ(q)Γ(r)
Γ(q + r)

and, for q, r integer =
(q − 1)!(r − 1)!
(q + r − 1)!

.

The parameters a and b describe the intervals for the general beta distribution.
If a = 0, b = 1 the standard beta distribution is obtained:

fS(s) =
1

𝛽(q, r)
sq−1(1 − s)r−1 0 ≤ s ≤ 1

= 0 elsewhere
(A.67)

The cumulative distribution function is

FS(s) =
𝛽S(q, r)
𝛽(q, r)

0 ≤ s ≤ 1 (A.68)

where the incomplete Beta function is given by 𝛽S(q, r) = ∫
S
0 yq−1(1 − y)r−1dy.

The first two moments and the coefficient of skewness of the Beta distribution are:

E(X) = 𝜇X = a +
q(b − a)

q + r
(A.69)

var (X) = 𝜎2
X =

qr(b − a)2

(q + r)2(q + r + 1)
(A.70)

𝛾1 =
2(r − q)

(q + r) (q + r + 2)𝜎X
(skewness coefficient) (A.71)

The incomplete Beta function ratio 𝛽S(q, r)/𝛽(q, r) has been tabulated [Pearson and
Johnson, 1968]. If q, r are both integral, BT(0, 1, q, r) is Binomially distributed such that

fS(s) = (q + r − 1)pX(x) (A.72)

where pX(x) is Binomially distributed as B(q + r − 2, s) with x = q − 1.
A special case of the general Beta distribution is the rectangular or uniform distribu-

tion BT(a, b, 1, 1) = R(a, b) with probability density function and cumulative distribu-
tion function given by:

fX(x) =
1

b − a
a < x < b

= 0 elsewhere

FX(x) =
x − a
b − a

a < x < b

= 0 x ≤ a
= 1 x ≥ b

(A.73)

with moments

𝜇X = (a + b)
2

𝜎2
X = (b − a)2

12
(A.74)
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1.1396 
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α
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Figure A.5 Extreme value distribution type I (Gumbel).

A.5.11 Extreme Value Distribution Type I EV - I(𝝁 , 𝜶) [Gumbel distribution]

This is the limiting (asymptotic) distribution of the largest (smallest) of n random vari-
ables Xi as n → ∞. The distribution of the Xi must be of the form FX(x) = 1 − exp[−g(x)]
or fX(x) = exp[−g(x)] with dg∕dx > 0. The Normal, Gamma and Exponential distribu-
tions are of this type. If Y is the largest of many independent random variables Xi then
the probability density (Figure A.5) and cumulative distribution functions for Y are
given, asymptotically, by [Gumbel, 1958]:

fY (y) = 𝛼 exp[−𝛼(y − u) − e−𝛼(y−u)] − ∞ < y < ∞ (A.76)
FY (y) = exp[−e−𝛼(y−u)] − ∞ < y < ∞ (A.77)

The parameters of this distribution are u, the mode of the distribution, and 𝛼, which
is a measure of its dispersion. Usually 𝛼−1 is known as the ‘slope’ of the distribution
(obtained when plotting the distribution on so-called ‘Gumbel’ paper). Both u and 𝛼

can be obtained, using the moments of the distribution, from curve fitting to observed
data. The moments are:

E(Y ) = 𝜇Y = u + 𝛾∕𝛼 (A.78)

var (Y ) = 𝜎2
Y = 𝜋2

6𝛼2 (A.79)

𝛾1 = 1.1396 (skewness) (A.80)

where 𝛾 = 0. 577 215 664 9… (known as Euler’s constant). Expression (A.80) shows that
the skewness is independent of the distribution parameters u and 𝛼. The following points
might be noted in applications using this distribution:

(1) Although in theory the Xi of the underlying population should be completely
independent and completely identical, in practice one or both these requirements
may be relaxed [Gumbel, 1958], particularly in the case of large sample sizes
[Leadbetter et al. 1983]. Also, it may be difficult in practice to determine the
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appropriate underlying distribution of the Xi, and convergence to the asymptotic
distribution may be slow. Nevertheless extreme value distributions are useful for
fitting to experimental data even where the underlying mechanisms are not fully
understood.

(2) The EV - I distribution usually is tabulated in terms of a reduced variate defined
as W = (Y − u)𝛼 for which u = 0, 𝛼 = 1 and FW (w) = exp [−e−w] [NBS, 1953]. The
probability density function and the cumulative distribution function in terms of Y
are given by

fY (y) = 𝛼 fW [(y − u)𝛼] (A.81)
FY (y) = FW [(y − u)𝛼] (A.82)

(3) The EV - I distribution or Gumbel distribution is also known as the ‘double expo-
nential’ or ‘Fisher-Tippett Type I’ distribution.

(4) The Gumbel (EV - I) distribution occurs as the limit of maxima of most standard
(i.e. underlying) distributions, particularly the Normal distribution. It is considered
the only possible limiting (asymptotic) distribution for the entire range of tail
behaviour [Foureges et al. 2009].

In addition to the distribution of the largest value, a complementary distribution exists
for the smallest value Y S of many independent Xi. The corresponding probability density
and cumulative distribution functions are:

fY S (yS) = 𝛼 exp[𝛼(yS − u) − e𝛼(yS−u)] − ∞ < yS < ∞ (A.83)
FY S (yS) = 1 − exp[−e𝛼(yS−u)] − ∞ < yS < ∞ (A.84)

with moments

𝜇Y S = u − 𝛾∕𝛼 (A.85)

𝜎2
Y S =

𝜋2

6𝛼2 (A.86)

𝛾1 = −1.1396 (A.87)

The tabulated results for the reduced variable W described above can be applied since
the distribution for Y S is related to that for W by

fY S (yS) = 𝛼 fW [−(yS − u)𝛼] (A.88)
FY S (yS) = 1 − FW [−(yS − u)𝛼] (A.89)

The extreme value distribution for the minimum value has less practical application
than that for the maximum value; the Weibull distribution (extreme value distribution
type III) more commonly is used for smallest values.

A.5.12 Extreme Value Distribution Type II EV - II(u, k) [Frechet Distribution]

The EV-II distribution is the limiting distribution of the largest of n random variables Xi
as n → ∞. The distribution of the Xi must be of the form FX(x) = 1 − Ax−k , x ≥ 0 where
A = constant [Gumbel, 1958]. Typical of this form are (1) the Pareto distribution and
(2) the Cauchy distribution for x ≥ 0. The probability density function (Figure A.6) and
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Figure A.6 Extreme value distribution type II (Frechet).

the cumulative distribution function are, respectively:

fY (y) =
k
y

(
u
y

)k

e−(u∕y)k y ≥ 0 (A.90)

FY (y) = e−(u∕y)k y ≥ 0 (A.91)

The distribution parameters are the characteristic value u (with median > u > mode;
median ≈ mode for k > 4) and 1/k which is a dimensionless measure of the dispersion
of the distribution. The first two moments are:

E(Y ) = 𝜇Y = uΓ(1 − 1∕k) k > 1 (A.92)
var (Y ) = 𝜎2

Y = u2 [Γ(1 − 2∕k) − Γ2(1 − 1∕k)] k > 2 (A.93)

so that

V 2
Y =

𝜇2
Y

𝜎2
Y
=

Γ(1 − 2∕k)
Γ2(1 − 2∕k)

− 1 (A.94)

Moments of order l ≥ k do not exist; this complicates the estimation of u and k.
The following points should be noted in applications using this distribution.

(1) If it is known that k > 2, equation (A.94) may be used to evaluate k, and then u may
be evaluated from (A.92).

(2) The type II distribution for Y [i.e. EV-II(u, k)], may be transformed to the type I
distribution for Z [i.e. EV-I(u, 𝛼)], by letting Z = ln Y . Then

fY (y) =
1
y

fZ(ln y) (A.95)

FY (y) = FZ(ln y) (A.96)
𝛼 = k (A.97)
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Hence, in terms of the reduced variable W , which is tabulated (see Section A.5.11),

fY (y) =
k
y

fW [(ln y − ln u)k] (A.98)

FY (y) = FW [(ln y − ln u)k] (A.99)

(3) The above properties hold for y ≥ 0. A more general result, for y ≥ 𝜀, 𝜀 ≠ 0, can be
obtained by linear transformation, writing u − 𝜀 for u and y − 𝜀 for y.

(4) The distribution for the smallest extreme value is of no practical interest.
(5) The underlying distributions Xi for the type II distribution typically have longer tails

(x ≥ 0) than those for the type I distribution.

A.5.13 Extreme Value Distribution Type III EV - III(𝜺, u, k) [Weibull]

The Weibull extreme value distribution represents the (asymptotic) distribution of the
largest (smallest) value of n random variables Xi as n → ∞, with Xi limited in the tail
of interest to some maximum (minimum) value w (or 𝜀), and Xi having a distribution of
general form

FX(x) = 1 − A(w − x)k x ≤ w, k > 0, A = constant

The rectangular (k = 1), triangular (k = 2) and the Gamma distribution (𝜀 = 0) are of
this form. The probability density function (Figure A.7) and the cumulative distribu-
tion function for the largest value Y L of many independent Xi are given, respectively, by
[Gumbel, 1958]:

fY L (yL) = k
w − u

(
w − yL

w − u

)k−1

FY L(yL) yL ≤ w (A.100)

FY L (yL) = exp

[
−
(

w − yL

w − u

)k
]

yL ≤ w (A.101)

0.5

0 1 2 y-ε
u-ε

k = 3

(u-ε)fy(y)

k = 1

k = 2

3

1.0

Figure A.7 Extreme value distribution type III (Weibull).
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More useful is the distribution of the smallest value Y of many independent Xi. In this
form it is commonly known as the Weibull distribution. The relevant cumulative
distribution and the probability density functions are [Gumbel, 1958]:

FY (y) = P(Y ≤ y) = 1 − PY (y) y ≥ 𝜀 (A.102)

where

PY (y) = exp
[
−
( y − 𝜀

u − 𝜀

)k
]

y ≥ 𝜀 (A.103)

which equals the probability of a value Y larger than y, i.e. P(Y > y). Also,

fY (y) =
dFY (y)

dy
= k

u − 𝜀

( y − 𝜀

u − 𝜀

)k−1
PY (y) y ≥ 𝜀 (A.104)

The parameters are the minimum value 𝜀 of Xi (and hence Y ), the characteristic value
u of the distribution (which converges to 𝜇Y as k → ∞) and the ‘scale parameter’ 1/k
(usually k > 1). The moments are

E(Y ) = 𝜇Y = 𝜀 + (u − 𝜀)Γ(1 + 1∕k) (A.105)
var (Y ) = 𝜎2

Y = (u − 𝜀)2 [Γ (1 + 2∕k) − Γ2 (1 + 1∕k)] (A.106)

The following points might be noted in application of this distribution:
(1) Estimation of the parameters 𝜀, u and k generally is not straightforward. If the under-

lying distribution is known, k is known and 𝜀 and u can be estimated from the
estimates for 𝜇Y and 𝜎2

Y . Otherwise, k may be estimated from sample skewness or u
may be estimated from order statistics [Gumbel, 1958]. If the lower limit 𝜀 is known,
or is zero, then u and k can be evaluated from equations (A.105) and (A.106) by
writing y for y − 𝜀 and hence

𝜇Y = uΓ(1 + 1∕k)
𝜎2

Y = u2 [Γ (1 + 2∕k) − Γ2 (1 + 1∕k)]

and

1 + V 2
Y =

Γ(1 + 2∕k)
Γ2 (1 + 1∕k)

or k ≈ V−1.09
Y

all of which can be estimated from sample data [Gumbel, 1958]. However, the pro-
cedure may be cumbersome [see also Mann et al., 1974].

(2) The distribution FY (y) is pseudo-symmetric for 3.2< k<3.7.
(3) If Y is EV - III (𝜀, u, k) for smallest values, then Z = ln(Y − 𝜀) is EV -I [ln(y − 𝜀), k]

for smallest values. This enables the third extreme value distribution to be evaluated
using the tables for EV - I (largest) in terms of the reduced variate W :

FY (y) = 1 − FW{−k[ln (y − 𝜀) − ln(u − 𝜀)]} y ≥ 𝜀 (A.107)

fY (y) =
k

y − 𝜀
fW

[
−k ln

( y − 𝜀

u − 𝜀

)]
y ≥ 𝜀 (A.108)

(4) As noted, the distribution PY (y) for the smallest values is commonly known as the
Weibull distribution.
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(5) If 𝜀 = 0, k = 2 the distribution is also known as the Rayleigh distribution:

fY (y) =
y
𝜎2

Y
exp

(
−

y2

2 𝜎2
Y

)
(A.102a)

FY (y) = 1 − exp

(
−

y2

2𝜎2
Y

)
(A.103a)

A.5.14 Generalized Extreme Value distribution GEV

The generalized extreme value distribution is a combination of the above 3 extreme
value distributions, with sufficient parameters to allow it to be fitted to almost any set
of (continuous, homogeneous) extreme value data. Depending on the choice of param-
eters, each of EV - I, EV - II and EV - III can be recovered. It has a continuous, smooth
cumulative probability function (CDF) given by [e.g. Leadbetter, et al. 1983; Kotz and
Nadarajah, 2000; Coles, 2001]:

FX(x) = P[X ≤ x] = exp
{
−
[
1 + 𝜀

(x − 𝜇

𝜎

)]−1∕𝜀
}

if 𝜀 ≠ 0 (A.109a)

with t(x) = 1 + 𝜀

(x − 𝜇

𝜎

)
> 0, 𝜎 > 0

For 𝜀 > 0 (A.109a) can be shown to have the form of the Frechet (EV-II) distribution
(A.91). For 𝜀 < 0 (A.109a) becomes the Weibull (EV-III) distribution. Expression
(A.109a) is formally undefined for 𝜀 = 0. However, in the limiting case as 𝜀 → 0 it
defines the Gumbel distribution. Thus, (A.109a) becomes:

FX(x) = exp
[
− exp

(
−(x − 𝜇)

𝜎

)]
if 𝜀 = 0 (A.109b)

which is the ‘double exponential’ form of the Gumbel EV distribution seen in (A.77).
While each of the original EV distributions (EV - I, EV - II and EV - III) are asymptotic

distributions (for maxima or minima) relative to some underlying parent distribution,
since the GEV distribution encompasses all three, it should be clear that there
can be no single underlying (parent) distribution for which the GEV is the natural
asymptotic EV distribution. In other words, while there might be some physical or other
phenomenological reason for the choice of EV - I or II or III, this cannot be the case for
the GEV distribution. It means there is no underlying logic or physical meaning and thus
its application is entirely empirical. That means its application as an EV distribution
is entirely as an empirical fit to EV data [Coles, 2001]. In turn this means that any
extrapolation of data using the GEV distribution also is entirely empirical. Theoretically
also, more data are required to obtain a satisfactory fit [Foureges et al. 2009].

A.6 Jointly Distributed Random Variables

A.6.1 Joint Probability Distribution

If an event is the result of two (or more) continuous random variables, X1 and X2 say,
the (non-zero) probability that the event occurs for values less than (or equal to) x1 and
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x2 is described by the joint cumulative distribution function

FX1X2
(x1, x2) = P[(X1 ≤ x1) ∩ (X2 ≤ x2)] ≥ 0

= ∫
x1

−∞∫
x2

−∞ fX1X2
(u, v)dudv

(A.110a)

where fX1X2
(x1, x2) ≥ 0 is the joint probability density function. Further, fX1X2

() can be
given as follows, if the partial derivatives exist:

fX1X2
(x1, x2) ≡ lim

𝛿x1, 𝛿x2→0
{P[(x1 < X1 ≤ x1 + 𝛿 x1) ∩ (x2 < X2 ≤ x2 + 𝛿 x2)]}

=
𝜕2FX1X2

(x1, x2)
𝜕x1𝜕x2

(A.110b)

Also,

FX1X2
(−∞, −∞) = 0 (A.111)

FX1X2
(−∞, y) = 0 and vice versa in (x1, x2) (A.112)

FX1X2
(∞, y) = FX2

(y) and vice versa in (x1, x2) (A.113)
FX1X2

(∞,∞) = 1.0 (A.114)

The last expression states that the volume under FX1X2
( ) is unity, as would be expected.

For discrete random variables, analogous expressions apply.

A.6.2 Conditional Probability Distributions

If the probability that (x1 < X1 ≤ x1 + 𝛿x1) is a function of X2, the following holds:

lim
𝛿x1, 𝛿x2→0

{P[(x1 < X1 ≤ x1 + 𝛿x1)|(x2 < X2 ≤ x2 + 𝛿x2)]} ≡ fX1|X2
(x1 |x2) (A.115)

According to (A.3), reading f as a probability over the infinitesimal region (𝛿x1, 𝛿x2):

fX1|X2
(x1 |x2) =

fX1X2
(x1, x2)

fX2
(x2)

(A.116)

By analogy to (A.4), if X1 and X2 are independent,

fX1X2
(x1, x2) = fX1

(x1) fX2
(x2) (A.117)

A.6.3 Marginal Probability Distributions

A marginal probability density function may be obtained from the joint density function
by integrating over the other variables, that is, by invoking the total probability theorem
(A.6). Also making use of (A.116) produces:

fX1
(x1) = ∫

∞

−∞ fX1|X2
(x1 |x2) fX2

(x2)dx2 = ∫
∞

−∞ fX1X2
(x1, x2)dx2 (A.118)

If X1 and X2 are independent, the conditional and marginal distributions are identical,
so that fX1|X2

= fX1
, fX1X2

= fX1
fX2

, etc. In general, the relationship between fX1X2
, fX1|X2

and
fX1

, etc., takes the form shown in Figure A.8.
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Figure A.8 Joint, marginal and conditional probability density functions.

Multivariate distributions and concepts follow directly by extending the above
relationships.

A.7 Moments of Jointly Distributed Random Variables

The concept of moments may be extended to an event that depends on two (or more)
random variables. Let the variables be the jointly distributed random variables X1
and X2.

A.7.1 Mean

𝜇X1
≡ E(X1) = ∫

∞

−∞∫
∞

−∞ x1 fX1 X2
(x1, x2) dx1dx2

= ∫
∞

−∞ 𝜇X1|X2
fX2

(x2) dx2 (A.119)

This is the first (marginal) moment of X1, or, equivalently, the mean value of X1 over all
X2. The fact that this is so can be seen also from the first double-integral term, which
can be rewritten as

∫
∞

−∞x1

[
∫
∞

−∞ fX1X2
(x1, x2)dx2

]
dx1 = ∫

∞

−∞ x1fX1
(x1)dx1 = 𝜇X1

since the term [ ] is the marginal distribution fX1
according to (A.118). Also, the condi-

tional mean of X1, given that X2 = x2, is given by:

𝜇X1|X2
= E(X1 |X2 = x2) = ∫

∞

−∞ x1 fX1|X2
(x1 |x2)dx1
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A.7.2 Variance

In a similar manner, extending the basic definition of the variance (A.11a):

var (X1) ≡ E[(X1 − 𝜇X1
)2] = ∫

∞

−∞∫
∞

−∞(x1 − 𝜇X1
)2 fX1X2

(x1, x2)dx1dx2 (A.120)

= ∫
∞

−∞var(X1 |x2) fX2(x2)dx2 = var (X1) (A.121)

Here the marginal variance of X1, is

var (X1 |X2) ≡ var(X1|X2 = x2) ≡ E[(X1 − 𝜇X1|X2
)2 |X2 = x2]

= ∫
∞

−∞(x1 − 𝜇X1|X2
)2 fX1|X2

(x1 |x2)dx1 (A.122)

A.7.3 Covariance and Correlation

The above expressions for the mean and the variance are symmetrical in (X1, X2). A
further elementary moment exists involving both X1 and X2; this is the covariance. It
has the same dimension as variance:

cov (X1,X2) ≡ E[(X1 − 𝜇X1
)(X2 − 𝜇X2

)]

= ∫
∞

−∞∫
∞

−∞(x1 − 𝜇X1
)(x2 − 𝜇X2

) fX1X2
(x1, x2)dx1dx2 (A.123)

Further, the correlation coefficient, defined as:

𝜌X1X2
=

cov (X1X2)
(+)[var (X1)var(X2)]1∕2 =

cov (X1X2)
𝜎X1

𝜎X2

− 1 ≤ 𝜌 ≤ +1 (A.124)

is a measure of linear dependence between two random variables; if 𝜌X1X2
= 0, it

follows only that (X1, X2) are not linearly related, but they may be related in some other
(non-linear) way. Correlation makes no statement about cause and effect [Benjamin
and Cornell, 1970; Freeman, 1963]. A summary of the significance of 𝜌 is given in
Figure A.9. Higher-order moments also may be developed but these have little practical
interest.

A.8 Bivariate Normal Distribution

The bivariate Normal distribution describes the joint probability density of two random
variables for which the marginal distributions are Normal distributed. The probability
density function usually is written as:

fX1X2
(x1, x2, 𝜌) =

1
2𝜋𝜎X1

𝜎X2
(1 − 𝜌2)1∕2 exp

[
− 1

2
(h2 + k2 − 2𝜌hk)

(1 − 𝜌2)

]
(A.125)
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x2 x2 x2

x1

x2x2

0
(b)

x10
(c)

x10
(a)

x10

(d)

x10

(e)

p +1.0 p –1.0 0 < p < 1.0

p ~ 0.0 p ~ 0

Figure A.9 Linear dependence between two variables as a function of correlation coefficient 𝜌.

with −∞ < xi < ∞, i = 1, 2 and where h = (x1 − 𝜇X1
)∕𝜎X1

and k = (x2 − 𝜇X2
)∕𝜎X2

. The
‘standard’ form, with zero means and unit standard deviations, is:

𝜙2(h, k, 𝜌) =
1

2𝜋(1 − 𝜌2)1∕2 exp

[
− 1

2
(h2 + k2 − 2𝜌hk)

(1 − 𝜌2)

]
−∞ < (h, k) < ∞ (A.126)

with h, k as before and fX1X2
(x1, x2, 𝜌) =

1
𝜎X1𝜎X2

𝜙2(h, k, 𝜌).
There is no explicit expression for the cumulative distribution function

FX1X2
(x1, x2, 𝜌) = ∫

∞

−∞∫
x2

−∞fX1X2
(u, v, 𝜌) dudv

However, it may be evaluated by relating it the standard bivariate Normal function
Φ2(h, k, 𝜌) (which is extensively tabulated—see below) through:

FX1X2
(x1, x2, 𝜌) = Φ2 (h, k, 𝜌) = ∫

h

−∞∫
k

−∞𝜙2(u, v, 𝜌)dudv (A.127)

The parameters are the mean values (𝜇X1
, 𝜇X2

) and the variances (𝜎2
X1
, 𝜎2

X2
) and the cor-

relation coefficient 𝜌 = 𝜌X1X2
.

The conditional moments (see Section A.7) are

E(X2 |X1 = x1) = 𝜇X2|X1
= 𝜇X2

+ 𝜌
𝜎X2

𝜎X1

(x1 − 𝜇X1
) (A.128)

(this is known also as the ‘regression function’ of X2 on X1).

var (X2 |X1 = x1) = 𝜎2
X2|X1

= 𝜎2
X2
(1 − 𝜌2) (A.129)

cov (X1,X2) = 𝜌𝜎X1
𝜎X2

(A.130)
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where 𝜇X2
is the marginal mean and 𝜎2

X2
is the marginal variance both defined in the

marginal density functions [which are therefore N(𝜇Xi
, 𝜎2

Xi
)]:

fXi
(xi) = ∫

∞

−∞fX1X2
(x1, x2)dxi i = 1, 2

= 1
(2𝜋)1∕2 𝜎Xi

exp
⎡⎢⎢⎣−1

2

(
xi − 𝜇Xi

𝜎Xi

)2⎤⎥⎥⎦ (A.131)

The properties of the bivariate Normal distributions are as follows [Owen, 1956; Johnson
and Kotz, 1972]:

(1) The marginal distributions are Normal (see above). However, the converse may not
be true; if fX1

(x1) and fX2
(x2) are Normal, the joint density function fX1X2

(x1, x2) is not
necessarily bivariate Normal.

(2) If 𝜌 = 0, i.e. if X1 and X2 are uncorrelated Normal random variables, they are also
independent. Then fX1X2

(x1, x2) = fX1
(x1)fX2

(x2) with fXi
(xi) Normal distributed.

(3) A common expression for the bivariate Normal is:

L(h, k, 𝜌) ≡ 1
2𝜋(1 − 𝜌2)1∕2∫

∞

h ∫
∞

k exp

[
− 1

2
(u2 + v2 − 2𝜌uv)

(1 − 𝜌2)

]
dudv (A.132)

for which the following properties hold:
(a) .

L(h, k, 𝜌) = L(k, h, 𝜌) (A.133)

(b) .
L(h, k, 0) = 1

4
[1 − 𝛼(h)][1 − 𝛼(k)] = [1 − Φ(h)][1 − Φ(k)] (A.134)

(c) . L(h, k,−1) = 0 if h + k ≥ 0
= 1 − Φ(h) − Φ(k) if h + k ≤ 0

(A.135)

(d) .
L (h, k, 1) = 1

2
[1 − 𝛼(t)] where t = max [h, k] ≥ 0 (A.136)

(e) .
L (−h, k, 𝜌) = −L(h, k,−𝜌) + 1

2
[1 − 𝛼(h)] (A.137)

(f ) .
L(−h,−k, 𝜌) = L(h, k, 𝜌) + 1

2
[𝛼(k) + 𝛼(h)] = Φ2(h, k, 𝜌) (A.138)

(g) .
L(0, 0, 𝜌) = 1

4
+ 1

2𝜋
arcsin 𝜌 (A.139)

(h) .
L(h, k, 𝜌)

= 1
2𝜋
∫
𝜋

arcos𝜌 exp
[
−1

2
(h2 + k2 − 2hk cos 𝜃)cosec2𝜃

]
d𝜃 h, k ≥ 0

(A.140)
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(i) .
Φ2(h, k, 𝜌) =

1
2𝜋
∫
𝜌

0
1

(1 − z2)1∕2 exp

[
−

1
2
(h2 + k2 − 2hkz)

(1 − z2)

]
dz

+ Φ(h).Φ(k) h, k ≥ 0 (A.141)

where

Φ2(h, k, 𝜌) = 1 − L(h,−∞, 𝜌) − L(−∞, k, 𝜌) + L(h, k, 𝜌) (A.141a)

𝛼(v) = 1
(2𝜋)1∕2∫

v

−v exp
(
−1

2
t2
)

dt (A.141b)

Φ(v) = 1
(2𝜋)1∕2 ∫

v

−∞ exp
(
−1

2
t2
)

dt (A.141c)

1
2
[1 − 𝛼(v)] = 1 − Φ(v) (A.141d)

Charts for L(h, 0, 𝜌), 0 ≤ h ≤ 1, −1 ≤ 𝜌 ≤ 1 and L(h, 0, 𝜌), h ≥ 1, −1 ≤ 𝜌 ≤ 1 are given,
for example, in Abramowitz and Stegun (1966). Using the relations (A.132) to (A.141)
above, the probabilities over rectangular regions can be determined.

Regions of polygonal shape may be broken down into triangular regions. For these,
tabulations exist [NBS, 1959] in terms of the circular Normal distribution, obtained by
transforming the variables into an orthogonal set. Since triangles transform to triangles
under rotation and scale change, the transformed variables can be used to obtain the
required probability. Such a transformation is(

u
v

)
= ±1

(2 ± 2𝜌)1∕2

(
x1 − 𝜇X1

𝜎X1

±
x2 − 𝜇X2

𝜎X2

)
𝜌 ≠ ±1 (A.142)

or alternatively

u = 1
(1 − 𝜌)1∕2

(
x1 − 𝜇X1

𝜎X1

−
𝜌(x2 − 𝜇X2

)
𝜎X2

)
, v =

(x2 − 𝜇X2
)

𝜎X2

𝜌 ≠ ±1 (A.143)

A simpler function, defined by

V (h, k) = 1
2p
∫

h

0∫
kx∕h

0 exp
[
−1

2
(x2 + y2)

]
dydx (A.144)

could then be employed. It expresses the probability content (in the transformed circular
Normal distribution) of the triangular region contained within the points (0, 0), (h, 0)
and (h, k). It is tabulated extensively [NBS, 1959]. The relationship between L(h, k, 𝜌)
and V (h, k) is

L(h, k, 𝜌) = V
[

h, k − 𝜌h
(1 − 𝜌2)1∕2

]
+ V

[
k, h − 𝜌k

(1 − 𝜌2)1∕2

]
+ arsin𝜌

2𝜋

+ 1
4
[1 − 𝛼(h) − 𝛼(k)] (A.145)

with 𝛼( ) as defined above.
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A.9 Transformation of Random Variables

A.9.1 Transformation of a Single Random Variable

If Y = g(X) and thus X = g−1(Y ), where g( ) is a monotonic function, and X and Y are
continuous random variables, it can be shown that the probability density function for
the dependent variable Y in terms of that for X is given by [e.g. Ang and Tang, 1975;
Freeman, 1963]:

fY (y) = fX(x)
||||dx

dy
|||| (A.146)

where x = g−1(y). A physical meaning should be evident. In the case of x and y increasing
monotonically, (A.146) is equivalent to

fY (y)dy = fX(x)dx (A.147)

This indicates that the infinitesimal area f X(x)dx under the f X curve at x is equal to the
corresponding infinitesimal area f Y (y)dy at y(= g(x)). Hence respective probabilities
over dx and dy are maintained when f Y is transformed from f X by equation (A.146).
See also Benjamin and Cornell (1970, p. 107) for a useful discussion of this
situation.

If g is not a monotonic function, (A.146) does not apply, since y (or x) may take on more
than one value. A general procedure, requiring adaptation to each individual problem,
is to derive FY (y) directly [Benjamin and Cornell, 1970, p. 110]:

FY (y) ≡ P(Y ≤ y) = P[X has a value x for which g(x) ≤ y]

= ∫Ry
fX(x)dx (A.148)

where Ry is the region in which g(x) ≤ y.
A particular transformation useful in Monte Carlo simulation work is that given by

y = FX(x), 0 ≤ y ≤ 1. If FX is differentiable, dy∕dx = dFX(x)∕dx = fX(x). Hence, substi-
tuting into (A.146) provides

fY (y) = fX(x)
|||| 1
fX(x)

|||| , 0 ≤ y ≤ 1 (A.149)

This is a Rectangular distribution, irrespective of the form of FX(x).

A.9.2 Transformation of Two or More Random Variables

Consider two random variables X1 and X2, with known joint density function
fX1X2

(x1, x2) and which are related to two random variables Y 1 and Y 2 by known
functions [Freeman, 1963]:

y1 = y1(x1, x2), y2 = y2(x1, x2)

having unique (i.e. one-to-one) inverses

x1 = x1(y1, y2), x2 = x2(y1, y2)
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Then

fY1Y2
(y1, y2) = fX1X2

(x1, x2) | J | (A.150)

where the Jacobian J is defined by

J ≡

⎡⎢⎢⎢⎢⎣
𝜕x1

𝜕y1

𝜕x2

𝜕y1

𝜕x1

𝜕y2

𝜕x2

𝜕y2

⎤⎥⎥⎥⎥⎦
≡

𝜕(x1, x2)
𝜕(y1, y2)

(A.151)

As in the case of the single random variable, an elemental volume defined by
fX1X2

(x1, x2)dA(x1, x2) in the (x1, x2) variables remains invariant under the transforma-
tion (A.151), after which it is defined by fY1Y2

(y1, y2) = dA(y1, y2).
Transformation (A.150) can be extended directly to more dimensions, provided the

uniqueness of transformations remains valid. This is guaranteed ‘locally’ if J does not
change sign with ‘small’ changes of Xi. The guarantee ‘in the large’ is less straightforward
[Freeman, 1963].

A.9.3 Linear and Orthogonal Transformations

For the linear transformation

yi =
∑

j=1, n
aijxj j = 1, 2,… , n (A.152)

the Jacobian is

J =
⎡⎢⎢⎢⎣
a11 • a1n

• •

an1 • ann

⎤⎥⎥⎥⎦ = A (A.153)

Here A is the transformation matrix, known from matrix theory to be orthogonal
(i.e. the yi are independent if AAT = 1, the identity matrix. It follows readily that in this
case |J| = |A| = (AAT)1∕2 = ±1 (see also Appendix B).

A.10 Functions of Random Variables

A.10.1 Function of a Single Random Variable

If Y = g(X), the transformation results of Section A.9 apply directly, using (A.146) and
(A.147) for monotonic functions, and (A.148) otherwise.

A.10.2 Function of Two or More Random Variables

If a function Y = Y (X1, X2) is sought when the function Y and its inverse are unique
in the sense of Section A.9, then the results of that section can be applied directly. Let
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Y = Y1 and let, say, Y2 = X2(or X1), an entirely dummy relationship. From the joint
density function fY1Y2

, the density function f Y can be obtained by integrating over Y 2,
using (A.118) but with the limits of integration changed, thus

fY (y) = fY1
(y1) = ∫

b

a fY1Y2
(y1, y2)dy2 = ∫

b

a fX1X2
(x1, x2)

||||𝜕(x1, x2)
𝜕(y1, y2)

||||dx2 (A.154)

This is an application of convolution to find what is essentially the marginal density
function. The integration is seldom straightforward [for example, see Wadsworth and
Bryan (1974)].

If the function Y = Y (X1, X2) and its inverse are not unique in the sense of
Section A.9, the above procedure is not valid. In parallel with the method of Section A.9,
an appropriate procedure is to establish FY (y) directly. In particular, we may write

FY (y) ≡ P(Y ≤ y) = P[X1, X2 have values (x1, x2) for which Y (x1, x2) ≤ y]

= ∫∫Ry
fX1X2

(x1, x2)dx1dx2 (A.155)

where Ry is the region over which Y (x1, x2) ≤ y. The integration is again seldom
straightforward. See Benjamin and Cornell (1970) for some examples.

A.10.3 Some Special Results

A.10.3.1 Y=X1 +X2

According to the convolution integral (A.154) and applying (A.117)

fY (y) = ∫
∞

−∞ fX1
(x1)fX2

(y − x1)dx1 (A.156)

If X1 and X2 are statistically independent, and if fX1
and fX2

are Poisson distributions,
then f Y will be Poisson also (see A.34). Similarly, the sum of Gamma distributions is
given by (A.46). If X1 and X2 are Normal distributed, then Y is Normal distributed also,
with mean and variance given by

𝜇Y = 𝜇X1
+ 𝜇X2

var(Y ) = var(X1) + var(X2) (A.157)

A.10.3.2 Y=X1X2

By convolution

fY (y) = ∫
∞

−∞

|||| 1
x2

|||| fX1X2

(
y
x2
, x2

)
dx2 (A.158)

If Y = X1∕X2 the same form holds with |1/x2| and y/x2 replaced by x2 and yx2 respec-
tively [Ang and Tang, 1975].

It is noted that an approximate method to combine random variables and to estimate
the probability density function (pdf) of the combination can be based on the idea of
using an exponential function with polynomial coefficients to represent the pdfs of the
random variables. These can be then combined through their moments to yield the
exponential function of the outcome random variable and hence its pdf [Er, 1998].
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A.11 Moments of Functions of Random Variables

The joint probability density function for a function of several random variables usually
is not easily obtainable. Fortunately, for many practical applications knowledge of the
first and second moments may be sufficient.

The basic expressions for moments, equations (A.10) and (A.11), can be extended to
a general function as follows

E(Y ) = ∫
∞

−∞ …∫
∞

−∞Y (x1, x2,… , xn) fX1X2…Xn
(x1, x2,… , xn)dx1dx2 … dx2 (A.159)

where Y (x1, x2, …, xn) is the function for which the moment is sought. Some special
results are given below.

A.11.1 Linear Functions

If Y =
n∑

i=1
aiXi, then

E(Y ) = 𝜇Y =
n∑

i=1
aiE(Xi) =

n∑
i=1

ai𝜇Xi
(A.160)

E[(Y − 𝜇Y )2] = var(Y ) =
n∑

i=1
a2

i var(Xi) +
n∑

j≠i

n∑
i=1

aiaj cov (Xi, Xj) (A.161)

or, more compactly,

var (Y ) =
n∑
j

n∑
i

aiaj𝜌ij𝜎Xi
𝜎Xj

(A.162)

where 𝜎Xi
is the standard deviation of Xi and 𝜌ij is the correlation coefficient between Xi

and Xj, with 𝜌ii = 1. If the Xi are independent, 𝜌ij = 0 if i ≠ j. Further, if there is a function

Z =
n∑

i=1
biXi, then [Ang and Tang, 1975]

cov (Y , Z) =
n∑
j

n∑
i

aibj𝜌ij𝜎Xi
𝜎Xj

(A.163)

A.11.2 Product of Variates

If Y =
n∏

i=1
Xi, then three cases may be identified:

(a) If n = 2,

E(Y ) = 𝜇Y = E(X1, X2) = E(X1)E(X2) + cov (X1, X2) = 𝜇X1
𝜇X2

+ 𝜌𝜎X1
𝜎X2

(A.164)
var (Y ) = 𝜎2

Y = [(𝜇X1
𝜎X1

)2 + (𝜇X2
𝜎X2

)2 + (𝜎X1
𝜎X2

)2](1 + 𝜌2) (A.165)

where 𝜌 is the correlation coefficient between X1 and X2.
(b) If n = 2 and X1, X2 are independent, (i.e. 𝜌 = 0), (A.165) reduces to

V 2
Y = V 2

X1
+ V 2

X2
+ V 2

X1
V 2

X2
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where Vk = 𝜎k ∕𝜇k is the coefficient of variation. The last term in (A.166) is negligible
if the coefficients of variation are small, say < 0.3. This result is of considerable prac-
tical importance.

(c) If n ≥ 2 and the Xi are independent,

E(Y ) = 𝜇Y = E

( n∏
i=1

Xi

)
=

n∏
i=1

E(Xi) =
n∏

i=1
𝜇Xi

(A.167)

and from equation (A.1)

var (Y ) = E(Y 2) − [E(Y )]2 =
n∏

i=1
𝜇2

Xi
−

( n∏
i−1

𝜇Xi

)2

(A.168)

An approximate result, that ignores second-order terms and that may be obtained
using the methods of Section A.12, is [Benjamin and Cornell, 1970]:

var(Y ) ≈
n∑

i=1

⎛⎜⎜⎜⎝
n∏

i=1
j≠i

𝜇2
Xi

⎞⎟⎟⎟⎠ 𝜎
2
Xi

(A.169)

A.11.3 Division of Variates

An approximate result for Y = X1∕X2 valid for random variables with reasonably small
variance, is [Haugen, 1968] (excluding division by zero):

E(Y ) = 𝜇Y =
𝜇X1

𝜇X2

[
1 +

𝜎X1

𝜇X1

(
𝜎X1

𝜇X1

− 𝜌
𝜎X2

𝜇X2

)(
1 +

𝜎2
X1

𝜇2
X1

+…

)]
(A.170)

or

E(Y ) = 𝜇Y ≈
𝜇X1

𝜇X2

(A.171)

This is a first-order approximation. Also:

var(Y ) = 𝜎2
Y ≈

(
𝜇X1

𝜇X2

)2 (
𝜎2

X1

𝜇2
X1

− 2𝜌
𝜎X1

𝜇X1

𝜎X2

𝜇X2

+
𝜎2

X1

𝜇2
X2

+ higher order terms

)
(A.172)

≈

(
𝜇X1

𝜇X2

)2 (
V 2

X1
− 2𝜌VX1

VX2
+ V 2

X2

)
(A.173)

A.11.4 Moments of a Square Root [Haugen, 1968]

If Y = X1∕2,

𝜇Y =
(
𝜇2

X − 1
2
𝜎2

X

)1∕4
(A.174)

𝜎2
Y = 𝜇X −

(
𝜇2

X − 1
2
𝜎2

X

)1∕2
(A.175)
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A.11.5 Moments of a Quadratic Form [Haugen, 1968]

If Y = aX2 + bX + c, then using results already given

𝜇Y = a(𝜇2
X + 𝜎2

X) + b𝜇X + c (A.176)
𝜎2

Y = 𝜎2
X(2a𝜇X + b)2 + 2 a2 𝜎4

X (A.177)

A.12 Approximate Moments for General Functions

The mean and variance of general functions usually are not obtained easily, owing to
the integrations required in (A.159). Nor may information beyond that of the first two
moments of each variable Xi be available. A useful approach is to calculate approxi-
mate moments by expanding the function Y = Y (X1, X2,… ,Xn)in a Taylor series about
the point defined by the vector of the means (𝜇X1

, 𝜇X2
,… , 𝜇Xn

) (or another appropriate
point). By truncating the series at linear terms, the first-order mean and variance are

E(Y ) ≈ Y (𝜇X1
, 𝜇X2

,… , 𝜇Xn) (A.178)

var(Y ) ≈
n∑
i

n∑
j

cicj cov(Xi, Xj) (A.179)

where ci ≡
𝜕Y
𝜕Xi

||||𝜇Xi
, 𝜇X2 ,…, 𝜇Xn

. If the Xi are independent, then cov (Xi, Xj) = 0 if i ≠ j and

cov(Xi, Xj) = var (Xi) if i = j. Similarly, the second-order approximation is given by

E(Y ) ≈ Y (𝜇X1
, 𝜇X2

,… , 𝜇Xn
) + 1

2

n∑
i=1

n∑
j=1

𝜕2Y
𝜕Xi𝜕Xj

cov(Xi, Xj) (A.180)

with the 𝜕2Y∕𝜕Xi𝜕Xj evaluated at (𝜇X1
, 𝜇X2

,… , 𝜇Xn
). The second term is negligibly small

if the coefficients of variation VXi
are small and the function Y does not depart too much

from linearity.
Reference might be made also to the approximate method noted at the end of Section

A.10, since this is based on approximating the moments of general functions to obtain
their probability density functions.
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Rosenblatt and Other Transformations

B.1 Rosenblatt Transformation

A dependent random vector X = {X1,X2,… ,Xn} may be transformed to the inde-
pendent Uniform distributed random vector R = {R1,… ,Rn} through the Rosenblatt
(1952) transformation R = T X given by

r1 = P(X1 ≤ x1) = F1(x1)
r2 = P(X2 ≤ x2|X1 = x1) = F2(x2|x1)
.

.

.

rn = P(Xn ≤ xn|X1 = x1,… ,Xn−1 = xn−1) = Fn(xn|x1,… , xn−1) (B.1)

where Fi( ) is shorthand for the conditional cumulative distribution function
FXi|Xi−1 ,…,X1

( ).
If the joint probability density function f X( ) is known, then Fi( ) can be determined as

follows. From Section A.6.2, the conditional probability density function fi( ) is given by

fi(xi|x1,… , xn−1) =
fXi
(x1,… , xi)

fXi−1
(x1,… , xi−1)

(B.2)

where fXj
(x1,… , xj) is a marginal probability density function, obtained from

fXj
(x1,… , xj) = ∫

∞

−∞ …∫
∞

−∞fX(x1,… , xn)dxj+1,… , dxn (B.3)

Fi( ) is then obtained by integrating fi( ) given by (B.2) over xi:

Fi(xi|x1,… , xn−1) =
∫
∞

−∞fXi
(x1,… , xi−1, t)dt

fXi−1
(x1,… , xi−1)

(B.4)

Structural Reliability Analysis and Prediction, Third Edition. Robert E. Melchers and André T. Beck.
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With all the conditional cumulative distribution functions Fi( ) determined in this way,
(B.1) may be inverted successively to obtain

x1 = F−1
1 (r1)

x2 = F−1
2 (r2|x1)

•

xn = F−1
n (rn|x1,… , xn−1) (B.5)

It follows immediately that (B.5) can be used to generate the random vector X with
probability density function f X( ) from R. A practical difficulty is that, unless Fi( ) is
simple in form, the inversion will need to be done numerically.

As noted by Rosenblatt (1952), there are n ! possible ways in which expressions (B.1)
can be written, depending on the numbering adopted for the variables in X. Equally, of
course, there are n ! possible ways of conditioning the Xi in expression (B.1), as seen for
the simple case n = 2 [Rubinstein, 1981]:

FX1X2
(x1, x2) = FX1

(x1) fX2|X1
(x2|x1) = FX2

(x2) fX1|X2
(x1|x2)

It is probably obvious that this freedom can lead to considerable differences in the
difficulty of solving for X, i.e. in solving (B.5).

Unfortunately, the above method is not always useful for practical problems since
FX( ), or the conditional probability density functions fi( ) which characterize the
dependence structure of the problem, are not always known. More commonly only
some estimate of correlation may be available from the data. This case is discussed
in Section B.2 below. A special case arises when the Xi are independent. All the
conditional requirements in (B.5) then disappear and each transformation takes the
form xi = F−1

i (ri) independent of all other xj(j ≠ i).
The Rosenblatt transformation may be used to transform from one distribution to

another by applying (B.1) twice, using R as a transmitter, e.g.

F1(u1) = r1 = F1(x1)
F2(u2|u1) = r2 = F2(x2|x1) (B.6)

etc.

A particular case of interest is where U in (B.6) is standard Normal distributed, with
X, say, a vector of correlated random variables and U uncorrelated (independent). Then
(B.6) may be written as

x1 = F−1
1 [Φ(u1)]

x2 = F−1
2 [Φ(u2)|x1] (B.7)

etc.

In practice, solution of (B.7) requires multiple integration [cf . (B.4)]. This technique
is used in Section 4.4.3.1 to convert non-Normal distributed random variables to
equivalent Normal random variables. Where both U and X are Normal vectors, an
easier approach to finding the transformation implied by (B.7) is to make direct use of
the special properties of the Normal distribution. This is considered in Section B.3.
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This transformation usually is attributed to Rosenblatt (1952) but appears to have been
given earlier by Segal (1938). It was first suggested for use in structural reliability by
Hohenbichler and Rackwitz (1981).

B.2 Nataf Transformation

A dependent random vector X = (X1,… ,Xn), for which the marginal cumulative dis-
tribution functions FXi

( ), i = 1,… , n and the correlation matrix P = {𝜌ij} are known,
may have assigned to it an approximate but completely specified joint probability
distribution function FX(x). It also may be transformed to the standardized Normal
random variables Y = (Y1,… ,Yn) in y space, given by

Yi = Φ−1[FXi
(Xi)], i = 1,… , n (B.8)

whereΦ( ) is the standard Normal cumulative distribution function. Let Y = (Y1,… ,Yn)
be n-dimensional standard Normal with joint probability density function 𝜙n(y, P′)
having zero means, unit standard deviations and correlation matrix P′ = {𝜌′ij}. Then,
with the usual rules for transformation of random variables, the approximate joint
density function f X( ) in x space is (Nataf, 1962):

fX(x) = 𝜙n(y ,P′) ⋅ |J | (B.9a)

with

|J | = 𝜕(y1,… , yn)
𝜕(x1,… , xn)

=
fX1

(x1).fX2
(x2)… fXn

(xn)
𝜙(y1)𝜙(y2)…𝜙(yn)

(B.9b)

To solve for P′ = {𝜌′ij} in (B.9) consider any two random variables (Xi, Xj) and the
correlation between them as:

𝜌ij =
cov[XiXj]
𝜎Xi

𝜎Xi

= E[ZiZj] = ∫
∞

−∞∫
∞

−∞zizj𝜙2(yi, yj; 𝜌′ij)dyidyj (B.10)

with Zi = (Xi − 𝜇Xi
)∕𝜎Xi

and with yi and yj dummy variables. Here the correlation
matrix P′ = {𝜌′ij} can be obtained from the known P = {𝜌ij} iteratively from (B.10). This
is readily programmed but is tedious to solve since the unknown is contained within
the double integral. Empirical, approximating expressions for the ratio R = 𝜌′ij∕𝜌i j are
given in Tables B.1 to B.3 below for a selected set of distributions for random variables.
A more complete set of approximating expressions is available in the literature (Liu and
Der Kiureghian, 1986; Der Kiureghian and Liu, 1986).

Once the P′ = {𝜌′ij} are obtained for any pair (Xi, Xj) expression (B.8) may be used
to obtain the correlated standard Normal distribution in y space. For the two variables
involved, an orthogonal transformation (see below) may be used to obtain independent
standard Normal random variables for use in FOSM theory.

The Nataf transformation (B.9) relies on the following fundamental properties being
valid for expression (B.10) [Liu and Der Kiureghian, 1986]:
(1) 𝜌ij is an increasing function of 𝜌′i j;
(2) 𝜌′i j = 0 for 𝜌i j = 0 and vice versa;
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(3) R ≥ 1;
(4) If both marginal distributions are Normal, R = 1;
(5) If one of the marginal distributions is Normal, R is a constant;
(6) R is invariant to increasing linear transformations of Xi and Xj;
(7) R is independent of the parameters of the marginal distributions of Type 1 (those

whose two-parameter distributions can be reduced to a parameter-free form by a
linear transformation);

(8) R is a function of the coefficient of variation V = 𝜎 ∕𝜇 for marginal distributions of
Type 2 (those that cannot be reduced to a parameter-free form by a linear transfor-
mation).

Typical examples of the Type 1 and Type 2 distributions with cross-reference to their
descriptions in Appendix A are given in Table B.1.
The approximate expressions for R = 𝜌′i j∕𝜌i j are based on a polynomial of the form

R = a + bVi + cV 2
i + d𝜌 + e𝜌2 + f 𝜌Vi + gVj + hV 2

j + k𝜌Vj + lViVj

with the coefficients given in Tables B.2 and B.3. The maximum error in the approx-
imations, given in Table B.2, generally is much below 1%. The exception is when the
Exponential distribution is involved, in which case the maximum error can be up to
about 2% or more when there is high negative correlation. This tends to be due to the
shape of the Exponential distribution being considerably different from the Normal dis-
tribution used as the basis for the method. The maximum errors for the approximations
in the formulae given in Table B.3 are shown in the last column of the table.

Table B.1 Selected two-parameters distributions.

Type & name
Reference
(Appendix A) Symbol Standardized form

Type 1
Normal A 5.7 N Φ(y)
Uniform U y, 0 ≤ y ≤ 1
Shifted exponential A 5.5 SE 1 − exp(−y), 0 ≤ y ≤ ∞

Shifted Rayleigh A 5.13 SR 1 − exp
(
−1

2
y2
)
, 0 ≤ y ≤ ∞

Extreme value I largest (Gumbel) A 5.11 G exp[− exp(−y)]
Extreme value I smallest A 5.11 EVIS 1 − exp[− exp(y)]

Type 2
Lognormal A 5.9 LN
Gamma A 5.6 GM
Extreme value II largest A 5.12 EVIIL
Extreme value III smallest (Weibull) A 5.13 W
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Table B.2 Coefficients in formula for R = 𝜌′i j ∕𝜌ij for selected distributions.

Coefficients

Xj Xi a b c d e f

N N 1
SE 1.107
SR 1.014
G 1.031
LN note 1
GM 1.001 –0.007 0.118
W 1.031 –0.195 0.328

SE SE 1.229 –0.367 0.153
SR 1.123 –0.100 0.021
G 1.142 –0.154 0.031
LN 1.098 0.019 0.303 0.003 0.025 –0.437
GM 1.104 –0.008 0.173 0.003 0.014 –0.296
W 1.147 0.145 0.010 –0.271 0.459 –0.467

SR SR 1.028 –0.029 0
G 1.046 –0.045 0.006
LN 1.011 0.014 0.231 0.001 0.004 –0.130
GM 1.014 –0.007 0.126 0.001 0.002 –0.090
W 1.047 –0.212 0.353 0.042 0 –0.136

G G 1.064 –0.069 0.005
LN 1.029 0.014 0.233 0.001 0.004 –0.197
GM 1.031 –0.007 0.131 0.001 0.003 –0.132
W 1.064 –0.210 0.356 0.065 0.003 –0.211

note 1: = Vj ∕[ln(1 + V 2
j )]

1∕2

B.3 Orthogonal Transformation of Normal Random Variables

Let X be a correlated vector of basic variables, with mean

E(X) = [E(X1),E(X2),… ,E(Xn)] (B.11)

and covariance matrix (cf . A.123)

CX = cov(Xi,Xj)n×m = (𝜎ij)n×m (B.12)
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Table B.3 Coefficients on formula for R = 𝜌′i j ∕𝜌ij for selected Type 2 distributions.

Coefficients

Xj Xi a b c d e f

LN LN note 1
GM 1.001 0.004 0.223 0.033 0.002 –0.104
W 1.031 0.052 0.220 0.052 0.002 0.005

GM GM 1.002 –0.012 0.125 0.022 0.001 –0.077
W 1.032 –0.007 0.121 0.034 0 –0.006

W W 1.063 –0.200 0.337 −0.004 −0.001 0.007

Coefficients Maximum

g h k l Error

–0.016 0.130 –0.119 0.029 4.0%
–0.210 0.350 –0.174 0.009 2.4%

–0.012 0.125 –0.077 0.014 4.0%
–0.202 0.339 –0.111 0.003 4.0%

–0.200 0.337 0.007 –0.007 2.6%

note 1: = ln(1 + 𝜌ViVj)∕[𝜌
√

ln(1 + V 2
i ) ⋅ ln(1 + V 2

j )]

with cov(Xi,Xi) = var(Xi). The covariance matrix will be strictly diagonal if the
X are uncorrelated. Recall that ‘correlation’ is a measure of linear dependence
(see Section A.7.3). This is a sufficient measure of dependence for Normal distributions.

An uncorrelated vector U, and a linear transformation matrix A, is now sought, such
that

U = AX or A−1U = X (B.13)

It is clearly desirable that the transformation (B.13) is also orthogonal, i.e. the vector
represented by X is unchanged in length under the transformation A. From well-known
matrix theory this implies that AT = A−1. Further, the vector U will be uncorrelated if
there exists a covariance matrix CU which is strictly diagonal.

Under the linear transformation (B.13) the covariance matrix (B.12) is also
transformed. It becomes the covariance matrix CU for U:

CU = cov(Ui,Uj) = cov(U,UT )
= cov(AX,AX) = cov(AX,XT AT )
= A cov(X,XT )AT (B.14)

or

CU = ACXAT (B.15)

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

B Rosenblatt and Other Transformations 409

To obtain U as an uncorrelated vector, the matrix A which makes (B.15) diagonal is
sought. Thus, it is required that the off-diagonal terms (i.e. i ≠ j) in CU be zero. This
can be done by finding the characteristic values (eigen-values) of CX using well-known
methods. In particular, consider a matrix D, having only diagonal coefficients 𝜆ii,
defined by

CXA = AD or CX = ADAT (B.16)

(provided that A is non-singular). Equation (B.16) may be written as a system of linear
equations∑

i
cij ajk = aik 𝜆ii, i, k = 1, 2,… , n (B.17)

Equation (B.17) represents a system of n linear equations with j = 1,… , n terms of
unknown coefficients aij on the left-hand side; typically

c11 a11 + c12 a21 + c13 a31 + · · · = a11 𝜆11

c11 a12 + c12 a22 + c13 a32 + · · · = a12 𝜆22

etc.
(B.18)

This system of equations is homogenous and may be written using the Kronecker delta
𝛿ij(= 1 if i = j, otherwise = 0):∑

i
(cij − 𝜆ii𝛿ij)ajk = 0, i, k = 1,… , n (B.19)

A system such as equations (B.19) has a non-trivial solution only if, for any value of k,

|cij − 𝜆ii𝛿ij| = 0 (B.20)

or, more generally,

|CX − 𝜆I| = 0 (B.21)

where I is the identity matrix. Equation (B.20) is the well-known ‘characteristic’
equation. Its solution, the ‘characteristic values’ 𝜆ii i = 1,… , n, of matrix D are
obtained by expanding (B.20) and solving the determinant|||||||||||||

c11 − 𝜆11 c12 c13

c21 c2 − 𝜆22 c23

c31 c32 c33 − 𝜆33
• • •

• • •

|||||||||||||n×n

= 0 (B.22)

There are standard procedures available to obtain 𝜆.
For each 𝜆ii, Equations (B.18) have a solution (ai1, ai2,…, aik ,…, ain). This is termed the

‘characteristic vector’ and yields the ith row of matrix A. It represents the components
of one of the uncorrelated vectors Ui in terms of the correlated vectors Xi, (and vice
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versa since A is symmetric). Thus solution for all characteristic values 𝜆ii and hence the
characteristic vectors produces the complete matrix A.

With A known, the uncorrelated vector U is then defined by

U = AX (B.13)

with

E(U) = AE(X) (B.23)

and using (B.15) there is obtained

C1∕2
U = (ACXAT )1∕2 (B.24)

where C1∕2
U is the matrix of standard deviations of U. This comes as about as follows.

Since U in uncorrelated, CU is strictly diagonal. For a diagonal matrix, such as D, say, it
is well known that {Dij}2 = {Dij

2}. Hence C1∕2
U consists only of terms C1∕2

U = 𝜎ui
= 𝜆

1∕2
ii

along the leading diagonal, where the 𝜆ii are the characteristic values.
A special case arises if the vector U consists of only one term, Z, say. Then (B14) is

given by

Z = AX (B.25)

where the matrix A has become just one row of coefficients (see Sections 4.2 and A.11.1).
The covariance matrix for Z is then one term (the variance) given by

CZ = var(Z) = ACXAT (B.26)

Mathematical aside. The standard deviations 𝜆1∕2
ii of CU must all be positive (or zero),

since they have no physical meaning otherwise. This means that the transformation
(B.15) must have special properties; in particular it is said that CX must be a positive
(semi-) definite matrix. In matrix terminology, this means that the determinant of any
minor,

det Mi =
|||||||
c11 • • ci1

•
•

•
•

c1i • • cii

||||||| (B.27)

is defined as positive definite if det Mi > 0 or positive semi-definite if det Mi ≥ 0. A
matrix is non-negative definite if it is either of these.

B.4 Generation of Dependent Random Vectors

In some situations it may be necessary to generate dependent variables. As will be seen,
with the exception of Normal distributed variables, this may not be easy in practice.

If the random variables in vector X are independent of each other, the joint probability
density function can be decomposed as (cf . A.117)

fX(x) =
n∏

i=1
fXi
(xi) (B.28)
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where fXi
(xi) is the marginal probability density function of the random variable Xi.

The generation of the vector X follows directly from the inverse transform method
(see Section 3.4.3) for each random variable Xi separately.

If there is dependence between the random variables constituting X, (B.28) is replaced
by (cf. (A.116) and A.3)

fX(x) = fX1
(x1)fX2|X1

(x2|x1)… fXn|X1,…,Xn−1
(xn|x1,… , xn−1) (B.29)

where fXk |Xi,…,Xn
is the conditional probability density function of Xk given that

X1 = x1,…, and where fX1
(x1) is the marginal probability density function of X1.

Provided that the joint probability density function f X(x) is known in terms of the
conditional probability density functions as in (B.29), the inverse transform method
of Section 3.3.3 can be extended to generate a sample vector x̂, such that x̂ is drawn
from a distribution with mean vector 𝜇X and covariance matrix CX as defined by the
joint probability density function f x( ) for the multivariate normal distribution (see also
Appendix C):

fX(x,CX) =
1

(2𝜋)n∕2|CX |1∕2 exp
[
−1

2
(x − 𝜇X)T C−1

X (x − 𝜇X)
]

(B.30)

The vector X of correlated Normal (Gaussian) distributed random variables with given
covariance matrix CX can be generated from a vector of independent standardised
Normal random variables such as Y = {Yi} using either the orthogonal transformation
of Section B.3 or the Rosenblatt transformation of Section B.1.

To be specific, let the n correlated random variables be X, with known mean vector 𝜇x,
and known covariance matrix CX . Further, let U be the vector of independent random
variables with strictly diagonal covariance matrix CU . Then the sample (i.e. generated)
dependent values of X can be obtained from the sampled independent U by the orthog-
onal transformation (cf . B.14):

X = AT U (B.31)

where, since CX is positive definite and symmetric, the orthogonal transformation
matrix AT = A−1 can be defined through the transformation of the covariance matrix
(cf . B.15):

CU = ACXAT or CX = AT CU A (B.32)

If B is substituted for AT = A−1 then

CX = B CU BT (B.33)

The elements bij of the square matrix B are given by

cij =
n∑

k=1
bik ukk bjk (B.34)

where cij is known from CX . Also, U = Y is the vector of independent standardized Nor-
mal variables, ukk = 1 for all k,ujk = 0, j ≠ k.
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The transformation (B.31) then becomes, after allowing for the normalization of the
mean of X,

X − 𝜇X = BY or X = BY + 𝜇X (B.35)

from which the correlated variables X can be generated for samples of Y. Further (B.32)
reduces to

CX = BBT = AT A (B.36)

where the matrix B is square lower triangular and obtained directly from A as indicated
for (B.33).

Alternatively, a recursive formula may be derived to obtain the elements bij of B
(cf. Rosenblatt, 1952). Noting that B is lower triangular, consider for instance the
following example of (B.36):

⎡⎢⎢⎢⎣
𝜎11 𝜎12 𝜎13

𝜎21 𝜎22 𝜎23

𝜎31 𝜎32 𝜎33

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
b11 0 0
b21 b22 0
b31 b32 b33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
b11 b21 b31

0 b22 b32

0 0 b33

⎤⎥⎥⎥⎦ (B.37)

from which

𝜎11 = b2
11 (B.38a)

𝜎22 = b2
21 + b2

22 (B.38b)
𝜎33 = b2

31 + b2
32 + b2

33 (B.38c)

or generalizing

𝜎ii =
n∑

k=1
b2

ik k ≤ i

and

𝜎21 = 𝜎12 = b21b11 (B.38d)

𝜎31 = 𝜎13 = b31b11 (B.38e)

𝜎32 = 𝜎23 = b31b21 + b32b22 (B.38f)

or generalizing

𝜎ij =
n∑

k=1
bikbjk k ≤ j < i

The recursive result now follows directly from (B.38a):

b11 = 𝜎
1∕2
11
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from (B.38d)

b21 =
𝜎21

b11
=

𝜎21

𝜎
1∕2
11

from (B.38b)

b2
22 = 𝜎22 − b2

21

i.e.

b22 =
(
𝜎22 −

𝜎2
21

𝜎11

)1∕2

from (B.38e)

b31 =
𝜎31

b11
=

𝜎31

𝜎
1∕2
11

from (B.38f)

b32 =
𝜎32 − b31b21

b22

etc. From thus it can be readily verified that the recursive formula

bij =

𝜎ij −
j−1∑
k=1

bikbjk(
𝜎jj −

j−1∑
k=1

b2
jk

)1∕2 (B.39)

is valid provided that
0∑

k=1
is interpreted as zero [Rubinstein, 1981].

Example B.1 It is desired to generate correlated Normal variates X1 and X2 having
means 10 and 12, respectively, and a non-negative definite covariance matrix

CX =

[
2 2

√
2

2
√

2 7

]
From equations (B.38)

b11 = 𝜎
1∕2
11 =

√
2

and

b21 =
𝜎21

b11
=

2
√

2√
2

= 2
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and

b22 =
(
𝜎22 −

𝜎2
21

𝜎11

)1∕2

=
(

7 − 8
2

)1∕2
=
√

3

Hence

B =

[√2 0
0 √3

]
and, from (B.35),

X1 =
√

2 Y1 + 10

X2 = 2Y1 +
√

3 Y2 + 12

where Y 1 and Y 2 are independent standardized normal variables (generated through a
random number generator).
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C

Bivariate and Multivariate Normal Integrals

C.1 Bivariate Normal Integral

C.1.1 Format

The bivariate Normal integral may be considered to arise as a special case of Equation
(1.31) when the random vector X consists of just two components, X1 and X2, each
normally distributed, and dependent through the correlation coefficient 𝜌 (cf. A.124).
Let the probability of interest and hence the failure region (and limit state equations) be
defined by the region X1 > x1,X2 > x2, so that (1.31) becomes

pf = ∫
∞

X2 > x2
∫
∞

X2 > x1
fX(x, 𝜌)dx (C.1)

The joint probability density function for X is given by (A.125):

fX(x, 𝜌) =
1

2𝜋 𝜎X1
𝜎X2

(1 − 𝜌2)1∕2 exp

[
−

1
2
(h2 + k2 − 2𝜌hk)

1 − 𝜌2

]
(C.2)

for −∞ ≤ xi ≤ ∞, i = 1,2 and with h = (x1 − 𝜇X1
)∕𝜎X1

and k = (x2 − 𝜇X2
)∕𝜎X2

.

The joint cumulative distribution function FX( ) is obtained directly by
integrating (C.2) (cf. A.127):

FX(x, 𝜌) ≡ P

[ 2⋂
i=1

(Xi ≤ xi)

]
≡ ∫

x2

−∞∫
x1

−∞fX(u, v, 𝜌)dudv (C.3)

As in the univariate case, it is convenient to work with standardized Normal variables,
yi = (xi − 𝜇Xi

)∕𝜎Xi
, (𝜇Yi

= 0, 𝜎Yi
= 1). With these substitutions in (C.2) and (C.3):

fX(x, 𝜌) =
1

𝜎X1
𝜎X2

𝜙2(y, 𝜌) and FX(x, 𝜌) = Φ2(y, 𝜌) (C.4)

where 𝜙2( ) and Φ2( ), respectively, are the joint probability density function and the
joint cumulative distribution function for the standardized variables y = (y1, y2). The
coordinates (h, k) in the reduced, but correlated, y space are shown in Figure C.1; the

Structural Reliability Analysis and Prediction, Third Edition. Robert E. Melchers and André T. Beck.
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fY1(y1)
= ϕ(y1)

fY1Y2( )
= ϕ2( ) fY2(y2) = ϕ(y2)

Φ2(h, k, ρ)

0 k

h

0

0

P

(h, k)

L(h, k, p)
y1

y2

Φ2

Figure C.1 Bivariate normal probability density function, marginal probability density functions and
regions of integration Φ2(y, 𝜌) and L( ).

y1 y1 y1

y2 y2 y2

p = 0 0 < p < 1 p →1

Figure C.2 Effect of correlation 𝜌 between y = (y1, y2) on the form of the bivariate Normal probability
density function Φ2(y, 𝜌).

probability content described by (C.3) is that to the upper left of the lines y1 = h, y2 = k,
(i.e. the lines h, P, k). The actual shape of the distribution, and hence the probability
content described by Φ2(y, 𝜌), depends on the correlation coefficient 𝜌, as indicated
schematically in Figure C.2.

The region of interest for the calculation of pf is that given by y1 < h, y2 < k i.e. that
lying to the lower right in Figure C.1. The probability content in that region is usually
denoted by (A.132):

L(h, k, 𝜌) ≡ 1
2𝜋

(1 − 𝜌2)−1∕2∫
∞

h ∫
∞

k exp

[
−

1
2
(u2 + v2 − 2𝜌uv)

1 − 𝜌2

]
dudv (C.5)

It is not difficult to verify from Figure C.1 that L(h, k, 𝜌) = Φ2(−h,−k, 𝜌) so that, if
L( ) can be evaluated, so can Φ2(y, 𝜌) and vice versa. Tables for L( ) and other functions
exist (see Section A.8). A particularly simple result is that Φ2(y1, +∞, 0) = Φ(y1), the
marginal distribution of y1 as is easily verified (see also Figure C.1).
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C.1.2 Reductions of Form

Although (C.5) can be integrated numerically, it also can be reduced to a single integral
prior to numerical integration (Sheppard, 1900) (cf. A.140a with 𝜌 = cos 𝜃):

L(h, k, 𝜌) = 1
2𝜋
∫
𝜋

arcos𝜌 exp

[
−

1
2
(h2 + k2 − 2hk cos 𝜃)

sin2𝜃

]
d𝜃, h, k ≥ 0 (C.6)

Expression (C.6) is obtained by substituting (C.2) into (C.3) and standardizing it to
Φ2( ), and then successively:

(a) differentiating with respect to 𝜌

(b) integrating the result with respect to y1 and y2
(c) integrating that result with respect to 𝜌 [Owen, 1956].

In addition, Φ2( ) can be reduced to a single integral, a result given by Owen (1956)
(A.140b):

Φ2(h, k, 𝜌) =
1

2𝜋
∫
𝜌

0(1 − z2)−
1
2 exp

[
−

1
2
(h2 + k2 − 2hkz)

1 − z2

]
dz + Φ(h)Φ(k), h, k ≥ 0

(C.7)

Other, equivalent, formulations exist [Johnson and Kotz, 1972], but (C.6) and (C.7)
have particular simplicity, although they become less accurate as 𝜌 → 1.

C.1.3 Bounds

Rather than integrating (C.6) or (C.7) numerically, in some applications it may be suf-
ficient to bound the probability content expressed by Φ2( ) or L( ). Consider first the
relationship between the random variables Y 1 and Y 2 shown in Figure C.3(a) for a typical

y2 v = y′2

y1

d
c

b

1

g

−1

−1 0

f

1e

k

h a

P

L(h, k, ρ) L(h, k, ρ)

C = typical contour
for ρ = 1

2

d
c

b

a

g

u
+1

h′

y′1

0

−1

−1

f

e
+1

k
P

C′ = circularized
contour C

θ

Figure C.3 (a) Integration region in original (correlated) standardized bivariate Normal space;
(b) transformed integration region in transformed (independent) standardized bivariate Normal space.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


�

� �

�

418 Structural Reliability Analysis and Prediction

probability density contour, say, 𝜌 = 1
2
. It is more convenient to work in the circularized

standard normal space (u, v), so that either of the transformations (A.142) or (A.143)
must be applied. If the latter is used, the transformed contour C′ (a circle) is obtained
and the location of the y1 axis is as shown in Figure C.3(b). Typical points (a)–(f ) and the
shaded zone L(h, k, 𝜌) transform as shown. In the circularized normal space the axes y1
and y2 are at an angle 𝜃 < 𝜋∕2 to each other. The probability content L( ) enclosed by the
lines y1 = h and y2 = k (lines dg, bf ) in Figure C.3(a) is transformed to the shaded region
shown in Figure C.3(b). It follows directly from (C.6) that the correlation coefficient and
the angle shown in Figure C.3(b) are related by 𝜌 = cos 𝜃. Thus, if the random variables
X1 and X2 are uncorrelated and independent, 𝜌 = 0 (see Figure C.2) and 𝜃 = 𝜋 ∕2, which
accords with Figure C.3.

Essentially the same information is seen in Figure C.4 with the (shaded) integration
region shown as BPD. Let now CP be a perpendicular to PB and AP a perpendicular
to DP. In the standardized normalized space (u, v) the probability in any right-angled
region such as APD is given by the product of the probability contents Φ(−a) and Φ(−k)
(see A.4). It then follows immediately that the probability content in the hatched region
(i.e. in L(h, k, 𝜌) = Φ2(−h,−k, 𝜌)) is more than either that above BPC (i.e. the probability
Φ(−b)Φ(−h)) or that to the upper right of APD (i.e. the probability Φ(−a)Φ(−k)) but
less than that in these two components summed [Ditlevsen, 1979b]:

max[Φ(−b)Φ(−h), Φ(−a)Φ(−k)] ≤ Φ2(−h,−k, 𝜌) ≤ Φ(−b)Φ(−h) + Φ(−a)Φ(−k)
(C.8)

It is not difficult to show that with 𝜌 = cos 𝜃:

a = h − 𝜌k
(1 − 𝜌2)1∕2 b = k − 𝜌h

(1 − 𝜌2)1∕2 (C.9)

A C

v = y′2

b
y1

y2 = k

y1 = h

P

a
0

θ D

u

Figure C.4 Bounds BPC and APD for 𝚽2( ) over region BPD.
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The above holds for 𝜌 ≥ 0, i.e. 𝜃 as shown. If 𝜌 < 0, the y1 axis is rotated clockwise and
the bounds (C.9) become:

0 ≤ Φ2(h, k, 𝜌) ≤ min[Φ(b)Φ(h), Φ(a)Φ(k)] (C.10)

C.2 Multivariate Normal Integral

C.2.1 Format

Extending directly from the bivariate Normal distribution, it follows readily that the
joint probability density function for the n-vector X is given by

fx(x,Cx) = (2𝜋)−n∕2 |Cx |− 1
2 exp

[
−1

2
(x − 𝜇x)T C−1

x (x − 𝜇x)
]

(C.11)

where CX = (𝜎ij) is the covariance matrix of X, with 𝜎ii ≡ 𝜎2
Xi
= var(Xi), and for

i ≠ j, 𝜎ij = cov(Xi, Xj) (cf. A. 124). Also |CX | is the determinant of CX and C−1
X is its

inverse. Further, 𝜇X is the vector of mean values of X. It is not difficult to verify that
expression (C.11) reduces to (C.2) for n = 2.

For (C.11) the probability content defined by Xi ≤ xi, i = 1, … , n is given by the joint
cumulative distribution function

FX(x,Cx) = P

[ n⋂
i=1

(Xi ≤ xi)

]
= ∫

xn

−∞ …∫
x1

−∞fX(v,Cx)dv (C.12)

For use in actual applications, the equivalent standardized expressions are particularly
useful since, if these can be evaluated, so can the original expressions. When the random
variables are standardized (as usual according to Yi = (Xi − 𝜇xi

)∕𝜎xi
), Cx becomes R,

the correlation matrix, and FX(x,Cx) = Φn(y,R), where Y is the standardized Normal
random variate vector, with zero mean, unit variance and correlation matrix R.

C.2.2 Numerical Integration of Multi-Normal Integrals

Direct numerical integration of the multi-normal integral (C.12) is usually not prac-
tical if n > 5. Iterative reduction formulae are reviewed by Johnson and Kotz (1972)
who describe them as somewhat laborious in practice when 𝜌 > 1∕2, even with the
aid of computers. A procedure due to Milton (1972) uses the fact that the distribution
of X1, X2,… ,Xr−1 conditional on Xr is itself multivariate Normal, so that computation
from 2 to r dimensions can be applied iteratively. An improved procedure for bi- and
trivariate integrals has been given by Daley (1974).

A number of numerical algorithms for the integration of the bivariate Normal inte-
gral have been proposed. The most common approach in practical use is still Owen’s
(1956), with a number of others being variants of it. A much simpler, but approximate
algorithm is due to Grausland and Lind (1986). Both are best suited to wedge-shaped
regions. The most accurate algorithm appears to be that suggested by Drezner (1978). It
provides high accuracy for polygonal regions of integration but is slower in computation
than other methods, such as direct integration algorithms that integrate over angular
regions [Didonato, et al., 1980; Terza and Welland, 1991]. A further variant (Divgi, 1979)
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was found to be only reasonably accurate but extremely efficient in computation time
in an accuracy-speed trade-off. The only other comparison of some early algorithms is
given in Johnson and Kotz (1972). Unfortunately, really useful comparisons between the
various approaches do not appear to have been made.

C.2.3 Reduction to a Single Integral

When the correlation matrix R = {𝜌ij} has the special form 𝜌ij = bi bj(i ≠ j) with −1 ≤

bi ≤ +1, the n-dimensional integral (C.12) can be reduced to a single integral. Consider
the transformation between the correlated standardized Normal n-vector Y and the n +
1 vector (Uo, U) of independent standardized Normal random variables, given by

Yi = biUo + (1 − b2
i )

1
2 Ui, i = 1,… , n (C.13)

It is a simple matter (using A.163) to show that the correlation between (Y i, Y j) is then
given by 𝜌ij = bi bj (i ≠ j) as desired.

The standardized multivariable joint cumulative distribution function can now be
written as

Φn(y,R) ≡ P

[ n⋂
i=1

(Yi ≤ yi)

]
= P

[ n⋂
i=1

(
Ui ≤

yi − biUo

(1 − b2
i )

)]
(C.14)

which must hold for all U0 values. Hence, integrating over U0 (noting that U0 is dis-
tributed as 𝜙(u) and remembering that the Ui, i = 1,… , n are statistically independent),
it follows that [e.g. Dunnett and Sobel, 1955; Curnow and Dunnett, 1962]

Φn(y,R) = ∫
∞

−∞

{ n∏
i=1

Φ

[
yi − biu

(1 − b2
i )

1
2

]}
Φ(u)du (C.15)

Expression (C.15) represents the probability content contained in the hypercube Yi ≤ yi.
This is easily evaluated using one-dimensional numerical integration and is of partic-
ular interest for yi < 0 since the ‘tails’ of the distribution are then evaluated. Evidently,
numerical problems may arise if 𝜌ij → 1 as then bi → 1. Expression (C.15) can be applied
also for negative correlations, although the integrand will then be complex [Johnson and
Kotz, 1972].

C.2.4 Bounds on the Multivariate Normal Integral

For the standard Normal n-vector Y with correlation matrix R, Slepian (1962) has shown
that for the probability given by (C.14) the derivative with respect to the correlations
𝜌ij in R, is a non-decreasing function. This means that for another standard Normal
n-vector, V, say, with correlation matrix K = {kij} such that kij ≤ 𝜌ij for all (i, j):

Φn( ) = PY

[ n⋂
i=1

(Yi ≤ yi)

]
≥ PV

[ n⋂
i=1

(Vi ≤ vi)

]
(C.16)
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If V is selected to be identical with Y, and K = {kij} selected such that kij ≤ 𝜌ij for all (i, j),
this inequality represents a lower bound on Φn( ); by direct analogy an upper bound can
be given [Gupta, 1963]. When these expressions are used in conjunction with (C.15),
the bounds can be evaluated.

If the bi values in (C.15) are chosen such that bibj < (>)𝜌ij then the lower and upper
bounds respectively are obtained. Choosing b2

i = min
j
(𝜌ij), b2

i = max
j
(𝜌ij) results in

wide bounds [Gupta, 1963]; an improvement is obtained by selecting, respectively,
bi = min

j
(𝜌ij ∕bj, 1) and bi = max

j
(𝜌ij ∕bj, 1) for i ≠ j and bj ≠ 0 [Curnow and Dunnett,

1962]. Other choices of bi are possible also; however, an appropriate selection is
not straightforward. It follows that, in the case of negative correlation coefficients,
replacing them with zero will produce a valid upper bound, without having to
resort to complex integration (cf. Section C.1.2). In all cases care must be taken to
ensure that the resulting correlation coefficient matrix is nonnegative definite (see
Appendix B).

C.2.5 First-Order Multi-Normal (FOMN) Approach

C.2.5.1 Basic Method: B-FOMN
A special case of multi-Normal integration arises in structural reliability when there is
one and only one limit state function for each basic variable in standard Normal (but
not necessarily independent) space, i.e. g(y) = (yi − 𝛽i) = 0. This means that each axis in
basic variable space is intersected by only one limit state at yi = 𝛽i:

P

( n⋂
i=1

Yi ≤ −𝛽i

)
= Φn(−𝜷 ; R) (C.17)

where Y is the standard (correlated) Normal vector, R is the (positive definite) corre-
lation matrix for Y and 𝜷 is the vector of safety indices, with 𝛽 i the safety index in the
yi direction. Expression (C.17) was considered in (C.12) and (C.14) with the particu-
lar value Y i rather than −𝛽i, but the latter will be retained here for convenience and to
emphasize that the probability that Y i is greater than 𝛽 i is sought (intersected for all
directions).

Consideration will now be given as to how (C.17) can be approximated using only
first-order second-moment (FOSM) concepts and the Rosenblatt transformation (see
Appendix B). The result is of particular use in system reliability (see Chapter 5).

As usual, the original Normal random variables X may be reduced to Y using
transformation (4.3). Then the correlated Y can be transformed to the uncorre-
lated standard Normal U by means of the inverse Rosenblatt transformation (see
Appendix B):

Y = BU or Yi =
n∑

j=1
bijUj (C.18)

where the (lower triangular) elements bij are given by (B.33).
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The dimension of (C.17) may be reduced by one, by first substituting (C.18) into (C.17)
and then conditioning on U1 ≤ −𝛽1 as follows [Hohenbichler and Rackwitz, 1983a]:

Φn( ) = P

( n⋂
i=1

Yi ≤ −𝛽i

)

= P

( n⋂
i=1

( n∑
j=1

bijUj + 𝛽i

)
≤ 0

)

= P

[ n⋂
i=2

( i∑
j=1

bijUj + 𝛽i ≤ 0

)||U1 ≤ −𝛽1

]
P(U1 ≤ −𝛽1) (C.19)

It is now desired to replace the first probability statement in (C.19) by one unconditioned
on U1;

P

[ n⋂
i=2

(
bi1Ũ1 +

i∑
j=2

bijUj + 𝛽i ≤ 0

)]
(C.20)

where U1 is required to be constrained to U1 ≤ −𝛽1. Since all variables Ui are indepen-
dent of each other, the conditioning on U1 does not affect U2, U3, … etc.

The conditional distribution function of U1 given that U1 ≤ −𝛽1 is

F1(u) = P(U1 ≤ u |U1 ≤ −𝛽1)

= Φ(u)
Φ(−𝛽1)

if U ≤ −𝛽1

= 1 if U > −𝛽1

so that

Ũ1 = Φ−1 [Φ(−𝛽1)F1(Ũ1)
]

Ũ1 ≤ −𝛽1 (C.21)

In (C.21), almost any continuous distribution function, say FX(x), may be equated to
F1(Ũ1), without really affecting the outcome of Ũ1. Let such a distribution be

F1(Ũ1) = FX(x) (C.22)

For first-order reliability (FOR) theory to be applicable, equation (C.20) must contain
only Normal variables. Hence, replacing F1(Ũ1) by a Normal distribution function
Φ(U1) rather than by FX(x), it follows that (C.21) becomes

Ũ1 = Φ−1[Φ(−𝛽1)Φ(U1)] (C.23)

Here the new standard Normal variable U1 is not conditional, as is the original U1 in
(C.19). The reuse of the U1 is permissible since all Ui are independent (Tang and Melch-
ers, 1987a]. Noting that P(U1 ≤ −𝛽1) = Φ(−𝛽1), and using (C.20) and (C.23), expression
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(C.19) can now be written as

Φn( ) = P

( n⋂
i=2

{
bi1Φ−1[Φ(−𝛽1)Φ(U1)] +

i∑
j=2

bijUj + 𝛽i ≤ 0

})
Φ(−𝛽1) (C.24)

= P

{ n⋂
i=2

[gi(U) ≤ 0]

}
Φ(−𝛽1) (C.25)

where gi(U) ≤ 0 is the non-linear limit state term in { } in (C.24). According to (4.7)
in Section 4.3.2, the approximating hyperplane, and hence the linearized limit state
function, becomes

gi(U) ≈ gLi(U) = 𝛽
(2)
i +

i∑
j=1

𝛼ijUj

It follows that expression (C.25) is linearized as

Φn( ) ≈ P

{ n⋂
i=2

( i∑
j=1

𝛼ijUj + 𝛽
(2)
i ≤ 0

)}
Φ(−𝛽1) (C.26)

where 𝛼ij are the direction cosines U* (a ‘checking point’) and 𝛽
(2)
i is the shortest distance

to the approximating plane

gLi(U) = 𝛽
(2)
i +

i∑
j=1

𝛼ijUj

The intersection of the n − 1 approximating hyperplanes in U space can now be recast
in the original correlated Y space:

Φn( ) ≈ P

{ n⋂
i=2

Y (2)
i ≤ −𝛽(2)

i

}
Φ(−𝛽1) (C.27)

≈ Φn−1(−𝛽(2);R(2))Φ(−𝛽1) (C.28)

where R(2) now represents the matrix of correlation coefficients for the linear approxi-
mating hyperplanes and 𝛽(2) is the vector of 𝛽(2)

i , i = 2,… , n.
Repetition of the whole process in equation (4.43) eventually produces

Φn(−𝛽, R) ≈ Φ(−𝛽1)Φ(−𝛽(2)
2 )…Φ(−𝛽(n)

n ) (C.29)

which has been found to produce excellent accuracy even for quite high n [Hohenbichler
and Rackwitz, 1983a; Tang and Melchers, 1987a; Pandey, 1998], provided that the lin-
earization of limit states gi(U) in (C.25) can be carried out efficiently. For comparison
purposes below this will be termed the basic or B-FOMN approach.
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C.2.5.2 Improved Method: I-FOMN
Fortunately, each limit state gi( ) in (C.25) is only non-linear in U1. If the linear
space (U2, U3,…, Ui) is condensed into V space, an equivalent limit state function in
two-dimensional (U1, V ) space may be written as

gi(U1,V ) = bi1Φ−1[Φ(−𝛽1)Φ(U1)] + b2V + 𝛽i = 0 (C.30)

where b2 = (1 − b2
i1)

1∕2 and V =
i∑

j=2
bijUj ∕b2, i = 2, 3,…, n. The bij are defined by (B.33).

This non-linear limit state function can be used directly to estimate 𝛽
(2)
i and 𝛼ij.

To do this, the iteration routine of Section 4.3.6 can be used by approximating gi(Ul,
V ) with a hyperplane, as in changing (C.25) to (C.26), but with the hyperplane
translated such that the enclosed probability content is equal to the more accurate
estimate of 𝛽(2)

i [Hohenbichler and Rackwitz, 1983a]. This hyperplane can be obtained
through first determining the direction cosines 𝛼E,i (see Section 4.3.3). This is done
by differentiating the functional expressing 𝛽E = −Φ−1[pfk] (since 𝛽E = 𝛽E(U), where
U is the vector of (independent, standardized) Normal variables). Then, using (4.5):
cE,i = 𝜕𝛽E ∕𝜕Ui, 𝓁

2
E,i =

∑
i

c2
E,i and 𝛼E,i = cE,i ∕𝓁E,i. The main difficulty is to express 𝛽E

as a function of U; generally a numerical solution procedure must be adopted [Goll-
witzer and Rackwitz, 1983]. This improved approach might be termed the I-FOMN
approach.

Example C.1 Consider the intersection E1 ∩ E2 in standardized Normal space and the
limit states L1 and L2 shown in Figure C.5(a). The dominant limit state is L1; 𝛽1 < 𝛽2. The
direction cosines for each are shown.

Using the approximate technique, the equivalent (hyperplane) limit state LE is then
defined by 𝛽E and the direction cosines 𝛼E,i = 𝛼1,i as shown. Also, the safety index for
the equivalent limit state is given by 𝛽E = −Φ−1[P(E1 ∩ E2)], which can be evaluated if
P(E1 ∩ E2) can be evaluated.

U2
U2

U1

u2*

u2*u1* + ε

U1

P(E1ηE2)

P(E1ηE2)

ΔP(E1ηE2)

L2

LE

LE

L1

L2

L1(ε)
L1

βE

β1 < β2

0
0

β2

β2

β1 B1(ε)

βE

α2, 2

α2, 2

α1, 1

α1, 2

α1, 1

αE, 1

αE, 2

αE, 1

αE, 2

α1, 2

(a) (b)

Figure C.5 (a) Approximate and (b) reoriented equivalent limit state functions.
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The more accurate procedure finds a limit state LE as shown in Figure C.5(b), with 𝛽E
as before, but with the orientation changed to that defined by the direction cosines 𝛼E,i.
From (4.5) these are defined as cE,i /𝓁 where cE,i = 𝜕𝛽E ∕𝜕ui. The change in 𝛽E due to
a small change 𝜀 in u1 for 𝛽1, say, can be visualized as in Figure C.1(b); the checking
points u∗

i for both limit states are changed to (u∗
1 + 𝜀, u∗

2). The concomitant change in
each 𝛽i (i = 1, 2) is as shown; these changes also change the intersection probability by
ΔP(E1 ∩ E2). Clearly 𝛽E changes also. It follows that

cE,i =
𝜕𝛽E

𝜕u1
= lim

𝜀→0

(
Δ𝛽E

𝜀

)
= lim

𝜀→0

(
(−)Φ−1P[𝛽1(𝜀), 𝛽2(𝜀)] − (−)Φ−1P(𝛽1, 𝛽2)

𝜀

)
where 𝛽2

1 (𝜀) = (u1 + 𝜀)2 + u2
2 and 𝛽2(𝜀) = 𝛽2 in this case, since the change in u1 does not

affect 𝛽2 for 𝜀 small.

C.2.5.3 Generalized Method: G-FOMN
An improved estimate of 𝛽(2)

i may be obtained by applying a reverse Rosenblatt trans-
formation to each conditional probability content in (C.28) [Tang and Melchers, 1987a].

The conditional probability Pi for each term
i∑

j=1
bijUj + 𝛽i ≤ 0 implicit in (C.28) is

Pi = P

( i∑
j=1

bijUj + 𝛽j ≤ 0 |U1 ≤ −𝛽1

)
(C.31)

= P(Yi + 𝛽i ≤ 0 |Y1 ≤ −𝛽1) (C.32)

since Y1 = U1 and Yi =
i∑

j=1
bijUj from (C.18) and bij is as defined in (B.33).

Using (A.3) this becomes

Pi =
P[(Yi ≤ −𝛽i) ∩ (Yi ≤ −𝛽1)]

P(Y1 ≤ −𝛽1)
(C.33)

=
Φ2(−𝛽1,−𝛽i; 𝜌i1)

Φ(−𝛽1)
, i = 2, 3,… , n (C.34)

Φ2( ) may be evaluated from (A.140b) or (C.7). Equation (C.34) then becomes

Pi = Φ(−𝛽i) +
1

Φ(−𝛽1)2𝜋
∫
𝜌i1

0
1

(1 − u2)1∕2 exp

[
−(𝛽2

1 + 𝛽2
i − 2𝛽1𝛽iu)

2(1 − u2)

]
du (C.35)

and 𝛽
(2)
i = −Φ−1(Pi) would be a better estimate for use in expressions (C.26) and (C.27)

than the previous 𝛽
(2)
i . This more general approach has been termed the G-FOMN

approach [Pandey, 1998].
Both the original method (I-FOMN) and its extension (G-FOMN) have been pro-

grammed using direct minimization of 𝛽 rather than iteration [Tang and Melchers,
1987a].
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Example C.2 Consider a 20-dimensional multi-Normal integral with equi-correlation
structure rij = 0.9 and equal intercepts xi = c along each axis, i, j = 1,…, 20. For this
problem it is possible to use the G-FOMN routine as well as numerical integration to
compare the accuracy of the above approaches. The results of the G-FORM routine are
almost identical to the results from numerical integration, while those for I-FOMN and
B-FOMN are similar to these at zero fractile and about 70% and 30% of the multi-Normal
probability estimated by numerical integration at normal fractile c = −3. Other results
are described by Pandey (1998).

C.2.6 Product of Conditional Marginals (PCM) Approach

An alternative and sometimes simpler approach which appears to give results generally
comparable in accuracy to G-FOMN is based on the notion that the m-dimensional
multi-Normal integral can be represented as a product of m conditional probability
terms.

The procedure can be illustrated for the trivariate Normal integral Φ3(c, R) where
xi = ci is the intercept of the i th plane on the xi axis and R = {rij} is the correlation
matrix, with i, j = 1, 2, 3. This integral can be represented in terms of conditional prob-
ability terms as:

Φ3(c,R) = P[(X3 ≤ c3) | (X2 ≤ c2) ∩ (X1 ≤ c1)]
× P[(X2 ≤ c2) | (X1 ≤ c1)] × Φ1(c1) (C.36)

The last term is readily evaluated. Evaluation of the second conditional term P[(X2 ≤

c2) | (X1 ≤ c1)], requires evaluation of the marginal distribution of X2 after truncation to
X1 ≤ c1. This marginal has a probability density function given by [Chou and Corotis,
1984] (cf. A.116):

fX2|X1≤c1
(x2) =

1
Φ(c1)

∫
c1

−∞𝜙X1X2
(x1, x2, r12)dx1 (C.37)

where 𝜙X1X2
( ) is a bi-Normal density function. Clearly, the conditional marginal is not

a Normal distribution. However, its mean 𝜇2|1 and the standard deviation 𝜎2|1 can be
expressed as [Birnbaum, 1950]:

𝜇2|1 = −r12A1 with A1 = 𝜙(c1)∕Φ(c1)
𝜎2|1 = (1 − r2

12B1)1∕2 with B1 = A1(c1 + A1)

These can be used to construct a Normal distribution with mean 𝜇2|1 and standard devi-
ation 𝜎2|1 to be used as a simple approximation for (C.37):

P[(X2 ≤ c2) | (X1 ≤ c1)] ≈ Φ
(c2 − 𝜇2|1

𝜎2|1
)

= Φ(c2|1), say (C.38)

where

c2|1 =
c2 − 𝜇2|1
𝜎2|1 =

c2 + r12A1

(1 − r2
12B1)1∕2

(C.39)
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Turning now to the evaluation of the first conditional term in (C.36), it is possible to
employ expressions for the moments of truncated Normal distributions [Tallis, 1961].
However, it is also possible to express this term as [Terada and Takahashi, 1988]:

P[(X3 ≤ c3) | (X2 ≤ c2) ∩ (X1 ≤ c1)]
= P[{(X3 ≤ c3) | (X1 ≤ c1)} |{(X2 ≤ c2) | (X1 ≤ c1)}] ≈ Φ(c3 |2), say.

This has a structure similar to (C.28) and therefore, by analogy to (C.39), the fractile c3 |2
of the conditional normal can be expressed as

c3 |2 =
c3 |1 + r23 |1A2 |1

(1 − r2
23|1B2|1)1∕2

(C.40)

with A2 |1 = 𝜙(c2 |1)∕Φ(c2 |1), B2 |1 = A2 |1(c2 |1 + A2 |1) and r23 |1 = r23 |X1≤c1
given by the

analytical expression [Johnson and Kotz, 1972]:

r23 |1 =
r23 − r12r13B1

(1 − r2
12B1)1∕2(1 − r2

13B1)1∕2
(C.41)

Expression (C.41) allows c3 |2 to be computed from (C.40). Also c2 |1 can be obtained
from (C.39) so that the trivariate Normal Φ3(c, R) can be computed, for m = 3, from the
generalized expression obtained by induction:

Φm(c , R) ≈
m∏

k=1
Φ(ck | k−1) (C.42)

Expressions (C.40) and (C.41) can be extended readily by induction, with subscripts
replaced as 3 → m, 2 → k, 1 → (k − 1) and B1 → B(k−1)|(k−2).

It is evident that the PCM method for approximating the multi-Normal integral is
relatively simple, involving only estimation of conditional Normal fractiles cp |q through
formulae such as (C.40), and then the product of one-dimensional Normal integrals
in (C.42). A comparison of evaluations for a range of correlation coefficients, proba-
bility ranges and number of dimensions has demonstrated that this method usually is
very close in approximation to the G-FOMN results and that both are generally good
approximations to the ‘exact’ results obtained by numerical integration [Pandey, 1998].
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D

Complementary Standard Normal Table

Table D.1 N(0, 1) distribution defined as Φ(−𝛽)= 1−Φ(𝛽).

(Continued)
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Table D.1 (Continued)

(Continued)
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Table D.1 (Continued)
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432 Structural Reliability Analysis and Prediction

D.1 Standard Normal Probability Density Function 𝝓(x)

The standard normal probability density function 𝜙(x) may be obtained, for low values
of x from tables in standard statistics texts. For high values of x such tables generally are
not helpful. A simple procedure may be used to estimate 𝜙(x) from Table D.1 using the
approximation:

𝜙(x) ≈ Φ(−x + Δx) − Φ(−x − Δx)
2Δx

For example, to evaluate 𝜙 (3.65):

Φ(−3.64) = 0.1363E − 3
Φ(−3.66) = 0.1261E − 3

difference = 0.0102E − 3
𝜙(3.65) ≈ (0.0102E − 3)∕(0.02) = 0.51E − 3
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E

Random Numbers

Table E.1 gives a short list of random numbers generated for use with examples in the
text only. Random numbers for use in realistic applications can be generated on a com-
puter, or published tables may be used [Rand Corporation, 1955].

Table E.1

0.9311 0.4537
0.7163 0.1827
0.4626 0.2765
0.7895 0.6939
0.8184 0.8189
0.3008 0.9415
0.3989 0.4967
0.0563 0.2097
0.1470 0.4575
0.2036 0.4950
0.6624 0.8463
0.2825 0.2812
0.9819 0.6504
0.1527 0.8517
0.0373 0.0716
0.2131 0.8970
0.4812 0.1217
0.7389 0.2333
0.7582 0.6336
0.8675 0.5620
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F

Selected Problems

Problems for Chapter 1

Problem 1.1 (Introduction to Poisson processes): Bus companies A and B have public
concession to explore commercial transport between two cities. Each company runs one
bus per hour, with buses of A leaving every hour and five minutes, buses of B leaving
every hour and thirty-five minutes. Tickets can be sold on board or bought in advance.
After some months of operation, a PhD student noticed that buses of company A were
consistently departing five minutes late, whereas company B was respecting its schedule.
The arrival rate of walk-in passengers (i.e., those that do not buy tickets in advance, but
take the first bus leaving) changes during the day, and is given by 𝜈(t) passengers per
minute. Considering only the walk-in passengers, calculate the advantage that company
A is making over company B by having its buses depart five minutes late.

Answer: The arrival of walk-in passengers during the day can be assumed to follow a
Poisson process. Assuming the arrival rate to be constant over one hour (𝜈(t) ≈ 𝜈), the
expected number of passengers for each company should be 30 𝜈. The advantage of
company A can be evaluated as:

35𝜈
25𝜈

= 1.4

which is independent of 𝜈; hence also independent of 𝜈(t) and approximately valid
throughout the day.

Problem 1.2 (Poisson process): A PhD student travelled to France for a year of study
abroad. He rented an apartment in a suburb, far from any bakeries but close to a tram
station. Every morning he went to the station and picked the first tram, travelling south
or north to the bakeries located in the next station. After a few weeks, he realized he
was travelling more frequently south than north! Actually, he computed going to the
north only once, for every 4 times he went south. Are there more trams going south
than north?

Answer: The hypothesis of more trams going south than north for a generic tram line
is unrealistic. The frequencies observed by the student can be explained by an hypo-
thetical scheduling of the trams: for one tram scheduled every 10 minutes, for instance,
the north-bound leaving every 02, 12, 22, … minutes of the hour, and the south bound
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leaving every 00, 10, 20, … minutes of the hour will produce the observed frequencies, if
the student takes the tram at random times every morning. If the student uses an alarm
clock, then the explanation depends on the actual alarm and tram scheduling times.

Problem 1.3. (Return Period): A tower is required for 20 years of service such that the
probability of failure as a result of wind loading during that time does not exceed 0.2.
Assume that there is only one extreme event per year.

(a) Determine the return period for design purposes.
(b) What is the probability of failure during the first 10 years?
(c) Assume the tower can sustain, with repairs, just one extreme wind event without

failure.

What is the probability of survival in the first 10 years (i.e. caused by further wind
events)?

Answer:
(a) To determine the return period TR, the annual probability of failure pf is required.

This implies that the probability of no failure per year is (1 − pf ). To consider the
combination of wind events to give just one failure in 20 years, the Geometric
distribution (A.5.2) is relevant. It gives the probability that the nth trial is a success
(i.e. tower failure in the present problem) given that the first n - 1 trials were failures
(i.e. no structural failure in the present problem). This assumes independence
between trials (i.e. between annual maximum wind loads).

P(N ≤ n) = FN (n) =
n∑

i=1
(1 − pf )i−1 pf = 1 − (1 − pf )n

which, for n = 20 years and the limit of 0.2 for the lifetime failure probability,
becomes

0.20 = 1 − (1 − pf )20 or (1 − pf ) = (0.8)1∕20 or pf = 0.0111

This is the probability of failure per year. The return period TR is 1∕pf = 90.1 years.
(b) The probability of failure in the first 10 years also can be determined using the

Geometric distribution, since it can occur in any year. Assuming again that the
probability of survival in any year is given by (1 − pf ), the Geometric distribution
becomes:

P(n ≤ 10) = 1 − (1 − pf )10 = 1 − (0.9889)10 = 0.106.

(c) In this case the probability of survival is sought given that one nominal failure is
allowed. This can be computed as the probability there is just one event in 10 years
and which can be repaired and then another, the one that causes failure. This can
use the Binomial distribution (A.5.1, Eq. A.17). The probability of just two events is:

P(n = 2) =
(

N
2

)
p2

f (1 − pf )N−2 = 10 × 9
2

(0.0111)2(0.9889)8 = 0.00507

Thus the probability of survival is 0.9949.
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Problem 1.4. (Simple reliability): A beam is estimated to have a mean moment
capacity (resistance) Rmean = 𝜇R = 200 kNm with a coefficient of variation (VR) = 0.1.
The applied load sets up a moment (stress resultant) with a mean of 𝜇S = 100 kNm. Its
coefficient of variation (V S) is estimated to be 0.3.

(a) estimate the central safety factor and then estimate the probability of failure if the
loading is Extreme Value type 1 and the resistance Lognormal distributed.

(b) estimate the probability of failure if the loading is Normal distributed and resistance
deterministic at the mean value,

(c) estimate the probability of failure if both loading and capacity are Normal
distributed,

(d) if the strength given above is the 5% fractile and the resistance the 95% fractile, both
Normal distributed, determine the mean load and resistance,

(e) for (d) what is the characteristic safety factor?

Answers:
(a) The central safety factor (see Eq. 1.23) is simply 200∕100 = 2.0. To estimate the

probability of failure for the given CoVs and this central safety factor, see Figure 1.14,
top, curve 6. It shows the pf is about 10−2.

(b) This case can be solved by referring to Figure 1.13, interpreting the loading there
as the stress resultant here. Also, take a vertical line like the one marked Q0.95 as
R = 200. Then the probability of failure is the probability that lies to the right of
R = 200. This can be from:

pf = P(S > R) = FS(S > 200) = 1 − FS(S < 200) = 1 − Φ
(200 − 𝜇S

𝜎S

)
with 𝜇S = 100 and 𝜎S = 𝜇S × VS = 100 × 0.3. Using standard Normal tables to eval-
uate Φ( ) produces pf = 4.2 × 10−4.

(c) This case can be solved by substituting in Eq. (1.22), using the above means and
(calculated) standard deviations. Note that 𝜎R = 200 × 0.1 = 20. Then:

pf = P(R − S < 0) = Φ

[
−(𝜇R − 𝜇S)
(𝜎2

R + 𝜎2
S )1∕2

]
= Φ

[
−(200 − 100)
(202 + 302)1∕2

]
= Φ(−2.77)

where the term Φ(−2.77) = Φ(−𝛽) which is read from Appendix D to correspond to
a probability of failure of about 2.8 × 10−3.

(d) For strength, Figure 1.12 shows the required information. Now Rk = 200 and 𝜇R is
sought. As in Section 1.4.4, k0.05 = 1.645 (from Normal probability tables) and thus
Rk = 200 = 𝜇R(1 − k0.05VR) = 𝜇R(1 − 1.645 × 0.1) from which 𝜇R = 239.4.
For the stress resultant using Figure 1.13 it follows that: Sk = 100 = 𝜇S(1 + kSVS) =
𝜇S(1 + 1.645 × 0.3) from which 𝜇S = 66.96.

(e) For the characteristic safety factor, see Eq. 1.26. It is 239.4∕66.96 = 3.57.

Problem 1.5 (Poisson process plus reliability): The strength of a structure against base
accelerations caused by earthquakes was found to follow a Gaussian distribution with
mean 𝜇R = 10 m/s2 and variance 𝜎2

R = 4 m/s2. A simplified seismic analysis is done by
dividing the spectrum of possible earthquake intensities in three levels, as indicated in
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the table below. The relative frequency of earthquakes of each level is also indicated in
the Table.

(a) What is the expected number of earthquakes in a period of 100 years?
(b) What is the probability that at least one high-intensity earthquake happens in 100

years?
(c) What is the failure probability of the structure for a period of one year?
(d) What is the failure probability of the structure for a period of 100 years?

Intensity (i) Acceleration ai, (m/s2)
Relative frequency 𝝂i
(earthquakes per year)

Low 4 0.0608
Medium 6 0.0150
High 8 0.0037

Answers:
(a) The expected number of earthquakes in 100 years is 100 (0.0608 + 0.0150 +

0.0037) = 7.95.
(b) The probability that exactly n high-intensity earthquakes happens in 100 years is

given by the Poisson distribution, c.f. A.30:

P[N = n] = (𝜈t)n

n!
e−𝜈t = (0.0037t)n

n!
e−0.0037t

The probability that at least one high-intensity earthquake happens in 100 years is
given by:

∞∑
n=1

P[N = n] = 0.25557 + 0.04728 + 0.00583 + 0.00054 … ≈ 0.30927

(c) The conditional probability of failure of the structure, given an earthquake of inten-
sity i, is given by:

p[f |i] = Φ(−𝛽i) = Φ
(
−

10 − ai

2

)
which is evaluated as Φ(−3) = 0.00135, Φ(−2) = 0.02275 and Φ(−1) = 0.15866 for
the low, medium and high-intensity earthquakes, respectively. The failure probabil-
ity of the structure for a one-year period becomes:

pf 1 =
3∑

i=1
p[ f |i]𝜈i

= 0.0608Φ(−3) + 0.0150Φ(−2) + 0.0037Φ(−1) = 0.00101

(d) The conditional probabilities of failure are as given in item (c). The probability that
at least one earthquake of each magnitude occurs in 100 years is evaluated following
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item (b). Hence, the failure probability for 100 years becomes:

pf 100 =
3∑

i=1
p[ f |i]( ∞∑

n=1

(𝜈it)n

n!
e−𝜈it

)
= 0.99771Φ(−3) + 0.77687Φ(−2) + 0.30927Φ(−1) = 0.06809

Problems for Chapter 3

Problem 3.1 (Failure probability by integration): In an engineering problem, the
strength or capacity has an uniform distribution between 2 and 3 units, R ∼ U(2, 3).
The load or demand S has a triangular distribution between 1.2 and 2.2, with mode
at 1.2 units. Assuming independence between R and S, determine the probability of
failure pf = P[R ≤ S].

Answer: From Eq. (1.17), the failure probability is evaluated as:

pf = ∫
+∞

−∞∫
y

−∞fS(y) fR(x)dxdy = ∫
+∞

−∞fS(y)FR(y)dy

= ∫
2.2

2

(22
5

− 2y
)
(y − 2)dy = 0.002

Problem 3.2 (Simple Monte Carlo): Use the information given in Example 3.3 and
write a computer code (or similar) to perform the computations. Use a computer-
supplied random number generator instead of the numbers in Appendix E and then
convert these to standard Normal variates using Eq. (3.5). Then convert these to the
Normal random variables for stress resultant and resistance, with means and standard
deviations as stated in Example 3.3, using, for example, Eq. (3.15). Carry-out a Monte
Carlo analysis to estimate the probability of failure, for say 50, 100, 200, 500, and 1000
sample runs and plot the convergence of the result, to give a plot similar to Figure 3.3.

Problem 3.3 (Importance sampling with Monte Carlo analysis): Referring to
Examples 3.4 and 3.5, write a computer program to represent the algorithm summa-
rized in Table 3.1 for Importance Sampling. This shows outcomes for only 4 samples.
Perform the same algorithm for, say 50, 100, 200, 500, and 1000 sample runs and plot
the convergence of the result, to give a plot similar to Figure 3.3. Compare the results
obtained with the estimated probability of failure of 0.0478 obtained with just 10
samplings.

Problem 3.4 (Directional simulation): Repeat the problem defined by the data in
Examples 3.4 ad 3.5 but now using the directional simulation algorithm defined in
Section 3.5.1. Perform the same algorithm for, say 50, 100, 200, 500, and 1000 sample
runs and plot the convergence of the result (similar to Figure 3.3). Compare the results
obtained with the estimated probability of failure so obtained with the result obtained
in Problem 3.2.
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Problems for Chapter 4

Problem 4.1 (Hasofer-Lind index): Determine the Hasofer-Lind reliability index 𝛽 for
a structure with a limit state function: G(x) = 0 = −x1 + x2 + 22 where the independent
random variables X1 and X2 have mean and standard deviations (20, 2) and (10, 1)
respectively.

Answer: For this linear limit state function with Normal random variables, the simplest
theory can be used to determine 𝛽. It is to use Eq. (1.21). This gives

𝛽 = 𝜇G∕𝜎G = (−20 + 10 + 22)∕(22 + 12)1∕2 = 12∕
√

5 = 5.37.

More generally, using the formalism of FOSM theory, the first step is to seek the
equivalent standard normal random variables. These are obtained using Eq. 4.3 as
Y1 = (X1 − 20)∕2 and Y2 = (X2 − 10)∕1.

y2

y1
6 a

g(y)

0

12

b

y*
β

Next the limit state function is written in standard normal variables as:

g(y) = −(y1𝜎X1 + 𝜇X1) + (y2𝜎X2 + 𝜇X2) + 22 = −2y1 − 20 + y2 + 10 + 22 = 0

i.e. g(y) = 0 = −2y1 + y2 + 12
From Eq. (4.4) 𝛽 is then the minimum distance from the origin to this limit state

function in y space. In this simple case it can be obtained from geometry. The Figure
at right shows the y axes and the limit state function, and also the distance 𝛽 plus some
notation. 𝛽 is the shortest distance from the origin and this perpendicular to the limit
state function at the point marked y∗, the checking point. From elementary geometry,
by similar triangles, 𝛽∕0b = 0a∕ab or 𝛽∕12 = 6∕(122 + 62)1∕2 from which 𝛽 = 5.37.

As a third alternative, use the formalism in Section 4.4.2 to first determine the direc-
tion cosines for 𝛽 as a vector and then use Eq. (4.6) to determine 𝛽. Consider Eq. (4.5a)
for each vector, with 𝜆 as the arbitrary constant:c1 = 𝜆

𝜕g
𝜕y1

= −2 and c2 = 𝜆
𝜕g
𝜕y2

= +1 and

using Eq. (4.5b): l =
(∑

i
c2

1

)1∕2

= ((−2)2 + (+1)2)1∕2 =
√

5
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Then using Eq. (4.5c): 𝛼i = −ci∕l produces the direction cosines 𝛼1 = 2∕
√

5 and 𝛼2 =

−1∕
√

5. Applying Eq. (4.6) then gives the coordinates for y* as:
{

y∗1
y∗2

}
= 𝛽

{
2∕
√

5
−1∕

√
5

}
and this must satisfy the limit state function g(y) = 0 (see above). Substituting in
produces:

g(y) = 0 = −2y1 + y2 + 12 = −

(
2√
5
𝛽

)
+

(
−1√

5
𝛽

)
+ 12 = −5√

5
𝛽 + 12

from which 𝛽 = 5.37 as before.

Problem 4.2 (linear limit state): A cantilever beam with rectangular cross-section
(base b = 30 mm, height h = 50 mm) and length L = 1 m supports a concentrated load
P of random intensity on its free end. The tip displacement is given by y = −PL3∕(3EI),
and the elasticity modulus is also random. Both random variables are Gaussian,
with P ∼ N(𝜇P, 𝜎P) = N(1, 0.2) kN and E ∼ N(𝜇E, 𝜎E) = N(200, 10)GPa. Evaluate the
reliability index for an admissible tip displacement of L/100.

Answer: The problem formulation suggests a limit state function relating admissible
with actual tip displacements:

g = L
100

− PL3

3EI
= 0

As stated, this limit state is nonlinear in random variables P and E, which would require
an iterative solution (c.f. Section 4.3.6). The iterative solution can be avoided by rewriting
the limit state as:

g = 3EI − 100PL2 = 0

Now the reliability index can be evaluated exactly as:

𝛽 =
E[g]√
Var[g]

=
3I𝜇E − 100L2𝜇P√
9I2𝜎2

E + 1002L4𝜎2
P

= 3,96138

where I = bh3∕12 and L = 103 mm. An iterative solution using the non-linear limit state
yields 𝛽 ≈ 4.24 in the first iteration.

Problem 4.3 (Non-linear limit state):

(a) Determine the Hasofer-Lind reliability index 𝛽 for a structure with a limit state func-
tion: G(x) = 0 = 1

3
(20 − x2)x2 +

1
2
x1 − 31 1

3
where the independent random variables

X1 and X2 have mean and standard deviations (20, 2) and (10, 1) respectively. For
the iterative solution assume a trial solution of y∗1 = 0, y∗2 = +6.

(b) If the mean point in the original x space is used as the first trial solution, that is if
y∗1 = 0, y∗2 = 0 is used, does the iteration routine converge?
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Answer:
(a) The standardized variables are as for Problem 4.1. Noting that, as before

xi = 𝜇Xi
+ yi𝜎Xi

for i = 1,2, the limit state function in y space becomes:

g(y) = 0 = 1
3
(20(𝜇X2

+ y2𝜎X2
) − (𝜇X2

+ y2𝜎X2
)2) + 1

2
(𝜇X1

+ y1𝜎X1
) − 31 1

3

and substituting for the values of the means and the standard deviations produces:

g(y) = 0 = 1
3
y2

2 + y1 + 12

As before the direction cosines 𝛼i = ci∕l can be obtained as:

c1 = −𝜕g∕𝜕y1 = −1, c2 = −𝜕g∕𝜕y2 = + 2
3
y2 and l =

(
(1)2 +

(
− 2

3
y2

)2
)1∕2

Evidently, there are no explicit forms for the direction cosines until the checking
point y* is located. The solution requires iteration using a trial solution or by
minimization.
Trial solution 1: assume y∗1 = 0, y∗2 = +6. Then 𝛼1 = −0.24, 𝛼2 = 0.97 and, using
Eq. (4.4) with the current y values the estimate for the reliability index is 𝛽 = 6.
With this value and the direction cosines Eq. (4.6) produces{

y∗1
y∗2

}
= 𝛽

{
𝛼1
𝛼2

}
= 6

{
−0.24
+0.97

}
=
{
−1.44
+5.82

}
which provides an updated set of y values. Two more cycles, in the same manner,
produces 𝛽 = 5.84 and{

y∗1
y∗2

}
=
{
−1.51
+5.64

}
Geometrically the problem and solution in y space is as shown at right.

−12 0

β

g(y)

y*

y2

y1

6

Problem 4.4: A uniform steel beam having yield strength f y and a plastic modulus S
is subject to an external bending moment M. Each is considered Normal (Gaussian)
distributed with mean and standard deviation shown in the Table below. Estimate the
reliability index 𝛽.
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Variable Distribution (mean, sd) Unit

Steel yield stress f y X1 N(40, 5) kN/cm2

Plastic cross-section modulus S X2 N(50,2. 5) cm3

Bending moment M X3 N(1000, 200) kN cm

Answer: The (non-linear) limit state equation for this problem is:

gX(X) = Sfy − M = X1X2 − X3 = 0 (4.4.1)

with the second equality showing, for convenience, the random variables as collected
in the vector X = {X1,X2,X3}T . This limit state function is the same as that in Example
4.1 but in the following the problem is solved numerically, using the iterative scheme of
Section 4.3.6. As noted (Section 4.4.5), there also are other ways of solving non-linear
problems.
Start the solution by assembling the mean vector M = {40, 50, 1000} and the standard
deviation matrix D:

D =
⎡⎢⎢⎣
5 0 0
0 2.5 0
0 0 200

⎤⎥⎥⎦ (4.4.2)

With this information it is possible to estimate the (Cornell) reliability index
(cf. Section 1.4.3) as:

𝛽 =
E[g(X)]√
Var[g(X)]

=
g(M)√

∇gT DT D∇g
= 40 ⋅ 50 − 1000√

52502 + 2.52402 + 2002
≈ 2.9814 (4.4.3)

Proceeding with the iterative solution scheme, in the original space x the gradient of the
limit state function is:

∇gX(X) =
{

𝜕g
𝜕Xi

}
i=1,2,3.

= {X2,X1,−1}T (4.4.4)

Next, the limit state function and other vectors need to be transformed to standard
Gaussian space (Y = T(X)), which is accomplished as:

X = T−1(Y) = D Y + M =
⎡⎢⎢⎣
5 0 0
0 2.5 0
0 0 200

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

Y1
Y2
Y3

⎫⎪⎬⎪⎭ +
⎧⎪⎨⎪⎩

40
50

1000

⎫⎪⎬⎪⎭
g(Y) = gX(T−1(Y)) = (5Y1 + 40)(2.5Y2 + 50) − 200Y3 − 1000

= 12.5Y1Y2 + 100Y2 + 250Y1 − 200Y3 + 1000

∇g(Y) =
{

𝜕g
𝜕Yi

}
i=1,2,3.

= {12.5Y2 + 250, 12.5Y1 + 100,−200}T (4.4.5)
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The first round of the interactive process, using the HLRF algorithm (Section 4.3.6, Eq.
4.24), with iteration counter m = 0, starts at the mean point:

x(0) = M = {40, 50, 1000}T ; y(0) = {0, 0, 0}T ; 𝛽(0) = 0;
gX(x(0)) = g(y(0)) = 1000;
∇g(y(0)) = {250, 100,−200}T ;‖∇g(y(0))‖ =

√
2502 + 1002 + 2002 ≈ 335.41 (4.4.6)

From this information, the next candidate design point can be obtained by the next
iteration (m = 1):

y(1) = −𝜶(0)
[
𝛽(0) +

g(y(0))‖∇g(y(0))‖
]

= − 1
335.41

{250, 100,−200}T
[
0 + 1000

335.41

]
= {0, 0, 0}T

= {−2.2222, −0.8889, +1.7778}T (4.4.7)

The updated value of the reliability index is:

𝛽(1) = ‖y(1)‖ = 2.9814 (4.4.8)

This is the same as the approximate solution obtained above (see Eq. 4.4.3). Repeat-
ing the iterations and re-evaluating Eqs. (4.4.6) to (4.4.8), gradual convergence of 𝛽 is
obtained as shown in the following Table.

m y1 y2 y3 𝜷 g(y) ‖𝛁g(y)‖

0 0.0 0.0 0.0 0.0 1000.0 335.41
1 −2.2222 −0.8889 +1.7778 2.9814 24.691 319.82
2 −2.2779 −0.6887 +1.9071 3.0496 −0.1393 321.54
3 −2.2891 −0.6783 +1.8966 3.0491 −1.454 10−3 321.60
4 −2.2898 −0.6768 +1.8962 3.0491 −1.385 10−5 –

Adopting the stopping criteria 𝛽(m+1) − 𝛽(m) ≤ 10−4 and g(m+1) ≤ 10−4 produces
convergence to 𝛽 = 3.0491 within five iterations. The reader can check this result
by (admittedly lengthy) hand calculations. The reader can also verify that, for this
particular problem, the same result is obtained for different starting points. This is
because the limit state function can be considered ‘well-behaved’, or ‘not excessively
non-linear’.

Problem 4.5 (design of rectangular beam, linear limit states): A steel beam of
rectangular cross-section (b, h) is subject to bending moment M and shear force V .
These load effects, as well as normal (sy) and shear (𝜏y) yielding stresses are Gaussian
random variables, whose parameters are given below. The maximum normal stress is
s = 6M∕(bh2), and the maximum shear stress is 𝜏 = 3V∕(2bh).
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(a) Using central safety coefficients 𝛾s = 𝛾𝜏 = 2, and considering h = 2b, determine the
dimensions of the cross-section (b, h);

(b) Considering the cross-section found in (a), evaluate the reliability indexes for the
normal and shear stress failure modes (𝛽s and 𝛽𝜏);

(c) assuming a correlation of 𝜌MV = 0.5, between load effect random variables,
re-evaluate the individual reliability indexes.

M ∼ N(𝜇M, 𝜎M) = N(40, 8).106 Nmm, Sy ∼ N(𝜇S, 𝜎S) = N(10, 1.0) MPa,
V ∼ N(𝜇V , 𝜎V ) = N(150, 30).103N, 𝜏y ∼ N(𝜇𝜏, 𝜎𝜏) = N(4, 0.4) MPa.

Answers:
(a) The design problem is solved by requiring design strength to be equal to or larger

than the design stress. Since a central safety factor is specified, design is based on
mean values:

RD ≥ SD

𝜇Sbh2 ≥ 6𝜇M𝛾s

2𝜇𝜏bh ≥ 3𝜇V 𝛾𝜏

With h = 2b, the normal stress equation results b3 ≥ 6𝜇M𝛾s∕(4𝜇S) or b ≥ 109.54
mm, and the shear stress equation results in b2 ≥ 3𝜇V 𝛾𝜏∕(4𝜇𝜏) or b ≥ 237.17 mm.
Hence, the required cross-section is (b, h) = (237.17, 474.34) mm.

(b) The limit state functions for normal and shear stress failure are:

gS = Sybh2 − 6M
g𝜏 = 2𝜏ybh − 3V

Note the similarity between these limit state equations and the design equations in
item (a). The limit state equations above are linear in Gaussian random variables;
hence the exact reliability indexes are obtained as:

𝛽S =
E[gS]√
Var[gS]

=
bh2𝜇S − 6𝜇M√
b2h4𝜎2

S + 36𝜎2
M

= 4.09

𝛽𝜏 =
E[g𝜏]√
Var[g𝜏]

=
2bh𝜇𝜏 − 6𝜇V√
4b2h2𝜎2

𝜏 + 9𝜎2
V

= 3.54

(c) Solution to this item is better developed in matrix form. Vector X is assembled
as: X = {Sy,M,V , 𝜏y}; such that the gradient vectors of the limit states become:
∇gS = {bh2,−6,0,0} and ∇g𝜏 = {0,0,−3,2bh}. The correlation between M andV is
assembled in covariance matrix:

cov =

||||||||
𝜎2

S 0 0 0
0 𝜎2

M 0.5𝜎M𝜎V 0
0 0.5𝜎M𝜎V 𝜎2

V 0
0 0 0 𝜎2

𝜏

||||||||
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The reliability indexes become (c.f. A.179):

𝛽S =
E[gS]√
Var[gS]

=
bh2𝜇S − 6𝜇M√
∇T

gS
⋅ cov.∇gS

= 4.09

𝛽𝜏 =
E[g𝜏]√
Var[g𝜏]

=
2bh𝜇𝜏 − 6𝜇V√
∇T

g𝜏 ⋅ cov.∇g𝜏
= 3.54

Hence, correlation between M andV does not impact individual reliability indexes. It
does impact, however, the correlation between limit states, and the system reliability,
as can be verified by the reader.

Problems for Chapter 5

Problem 5.1 (Series system): For the rectangular beam solved in Problem 4.4, and
considering the normal and shear stress failures as a series system, evaluate the system
failure probability and system reliability index.

Answer:
(a) Since there are no common random variables, the limit state functions gS and g𝜏 are

independent. Hence the series system failure probability is (c.f. A.4):

pfsys = Φ(−𝛽S) + Φ(−𝛽𝜏) − Φ(−𝛽S)Φ(−𝛽𝜏) = 2.24944 10−4

and the system reliability index is:

𝛽S = −Φ−1(pfsys) = 3.51

Problem 5.2 (Series system): A statically determinate truss consisting of 3 independent
members will fail if any one member fails. The probability of failure of each individual
member has been estimated as:

member A: pfA = P(A) = 0.01
member B: pfB = P(B) = 0.02
member C: pfC = P(C) = 0.03

Determine the probability of failure of the truss.

Answer: In general the probability of failure for a 3-member truss is the union of the
three member failure events:

P(T) = P(A) ∪ P(B) ∪ P(C). (5.2.1)

Expanding each term:

P(T) = P(A) + P(B) + P(C) − P(A ∩ B) − P(B ∩ C)
− P(C ∩ A) + P(A ∩ B ∩ C) (5.2.2)
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But since the members are independent, the unions become multiplications, and
substituting values:

P(T) = 0.01 + 0.02 + 0.03 − (0.01 × 0.02) − (0.02 × 0.03)
− (0.03 × 0.01) + (0.01 × 0.02 × 0.03)

= 0.0589

An alternate solution is to work from the complementary probability of ‘no-failure’:

P(T) = 1 − P(A ∩ B ∩ C) = 1 − P(A).P(B).P(C) (5.2.3)

where independence has been applied and A denoted the survival event for A and
similarly for the others. Then, substituting P(A) = 1 − P(A) etc. produces

P(T) = 1 − (0.99)(0.98)(0.97) = 0.0589

Problem 5.3: For the same truss as in Problem 5.2, member C is now dependent on
member B such that P(C|B) = 0.6 which is the probability of failure of C given that B
has failed. Member A is independent of the other two. Determine an estimate of the
probability of truss failure. Also what is the probability P(B|C) and what meaning can
be attached to this probability?

Answer: As before, the probability of truss failure is written as in Eq. (5.2.2). In the
present case, the 5th term becomes P(B ∩ C) = P(C|B).P(B) = 0.6 × 0.02 = 0.012 while
the last term in Eq. (5.2.2) becomes:

P(A ∩ B ∩ C) = P(A) ∩ P(B ∩ C) = 0.01 × 0.012 = 0.00012.

The other terms in Eq. (5.2.2) are not changed, thus the failure probability is:

P(T) = 0.01 + 0.02 + 0.03 − (0.01 × 0.02)
− 0.012 − (0.03 × 0.01) + 0.00012 = 0.0476.

The alternate solution follows from the first part of (5.2.3), which may be written as:

P(T) = P(A ∪ B ∪ C) = 1 − P(A ∩ B ∪ C) (5.3.1)

where, again, the over-bar denotes the non-failure event. The term (B ∪ C) in Eq. (5.3.1)
can be written as (B ∪ C) = 1 − P(B ∪ C) = 1 − [P(B) + P(C) − P(C|B)P(B)] =
1 − (0.02 + 0.03 − 0.012) or = 0.962.
Substituting in Eq. (5.3.1), noting that event A is independent from the other two:

P(T) = 1 − P(A ∩ B ∪ C) = 1 − P(A).P(B ∪ C) = 1 − (1 − 0.01).(0.962) = 0.0476.

The term P(B|C) represents the probability that member B will fail given that C has
failed. It is evaluated as follows. The term P(B ∩ C) can be written in two equivalent ways:
P(C|B). P(B) which is evaluated as before as = 0.5 × 0.03 = 0.015. However, it also can be
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written as P(B|C). P(C). Equating the two and dividing gives P(B|C) = P(B ∩ C)∕P(C) =
0.015∕0.04 = 0.375.

Problem 5.4: The probability that a reinforced concrete slab panel in a multi-storey
building violates its deflection limit state is estimated at 0.1 for the building’s anticipated
50-year life. This is the same for all panels. Because of continuity between slab panels
it is estimated that there is a conditional probability of 0.7 that the deflection criterion
for the adjacent slab also will be violated if the first one fails the deflection criterion.
Determine the probability of violation of the slab deflection criterion for these cases:

(a) one or the other or both adjacent slab panels,
(b) one slab violates the criterion but not the other, and
(c) both slabs not meeting the criterion.

Answer: Despite the camouflage, this is a simple problem.

(a) Let A be slab one and B denote slab 2. Then the total probability of one or other or
both, P(F), is:

P(F) = P(A) + P(B) − P(A ∩ B)

or
P(F) = P(A) + P(B) − P(A|B).P(B) = 0.1 + 0.1 − 0.7 × 0.1 = 0.13

(b) This requires the occurrence of one or both of the following limit states: A ∩ B,
A ∩ B. The probability is then:

P(F) = P(A ∩ B) + P(A ∩ B) = P(A).P(B|A) + P(B).P(A|B).
Since there is symmetry in A and B and thus in probability between the slabs this
becomes

P(F) = 2[P(A)(1 − P(B|A))] = 2(0.1)(1 − 0.7) = 0.06

(c) This is given by P(F) = P(A ∩ B) = P(A|B).P(B) = (0.7)(0.1) = 0.07.

Problem 5.5: A continuous beam consisting of two 4 m spans AB and BC is simply
supported at A, B and C. Load Q1 is applied at D (mid-span of AB) and load Q2 at
E (mid-span of BC). They loads both have the same mean and CoV (30, 0.3) and may
be assumed Normal distributed. Ignore the potential that the actual load effect may
be upward (although with very low probability). The mean plastic moment capacities
are at D = 30, at B = 45 and at E = 25. All three may be assumed Normal distributed,
with CoV = V = 0.1. Determine the upper and the lower bound on the probability of
structural failure.

Answer: This is a structural system reliability problem. The first step is to define the
modes of failure (which are plastic collapse modes) and the limit state equation for
each mode.
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The only collapse modes likely to occur are those shown below. In each case the angle 𝜃
at the plastic hinges can be cancelled out.

Mode 3

Mode 2

Mode 1

D E

CBA
Q1 Q2

θθ

θθ

θ θ
2θ

2θ

2θ2θ

2θ

4 4

With vector X collecting all the random variables the limit state equations in the original
space x are:
Mode 1: G1(X) = 2 MD + MB − 2 Q1 = 0
Mode 2: G2(X) = MB + 2 ME − 2 Q2 = 0
Mode 3: G3(X) = 2 MD + 2 MB + 2 ME − 2 Q1 − 2 Q2 = 0
These limit state equations are linear, so the most elementary approach to estimate 𝛽

can be used:

𝛽1 =
𝜇G1(X)

𝜎G1(X)
=

2𝜇MD
+ 𝜇ME

− 2𝜇Q1[
22𝜎2

MD
+ 𝜎2

ME
+ 22𝜎2

Q1

]1∕2

= 2 × 30 + 45 − 2 × 30[
22 × 302 × 0.12 + 452 × 0.12 + 22 × 302 × 0.32]1∕2 = 2.31

𝛽2 =
𝜇G2(X)

𝜎G2(X)
=

𝜇MB
+ 2𝜇ME

− 2𝜇Q2[
𝜎2

MB
+ 22𝜎2

ME
+ 22𝜎2

Q2

]1∕2 = 45 + 2 × 25 − 2 × 30[
4.52 + 52 + 1822

]1∕2 = 1.82

𝛽3 =
𝜇G3(X)

𝜎G3(X)
=

2MD + 2𝜇MB
+ 2𝜇ME

− 2𝜇Q1
− 2𝜇Q2[

22𝜎2
MB

+ 22𝜎2
MB

+ 22𝜎2
ME

+ 22𝜎2
Q1

+ 22𝜎2
Q2

]1∕2

= 2 × 30 + 2 × 45 + 2 × 25 − 2 × 30 − 2 × 30[
62 + 92 + 52 + 1822 + 1822

]1∕2 = 2.846

Using Appendix D the respective equivalent failure probabilities are:

pf1
= Φ(−𝛽) = Φ(−2.31) = 0.01045, pf2

= 0.0344, pf3
= 0.00218.

The lower bound for the system probability of failure is obtained by assuming complete
dependence between them and is given by (see Eq. 5.36) pfsystem(lower)

= max
i

(
pfi

)
= 0.0344
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while the upper bund is obtained from assuming complete independence (see Eq. 5.35):
pfsystem(upper)

=
∑

i

(
pfi

)
= 0.01045 + 0.0344 + 0.00218 = 0.0470. The system probability

bounds are thus: 0.0344 < pfS < 0.0470.

Problems for Chapter 6

Problem 6.1: A structure may fail in one or both of two independent failure mech-
anisms. From fitting to data, the two modes of failure have cumulative distribution
functions given by: FT1

(t1) = 1 − A exp
(
−Bt1

)
and FT2

(t2) = 1 − exp
(
−Ct2

3) where A,
B and C are constants and ti denotes time (in years).

(a) What is the hazard function for each failure mechanism?
(b) Determine the hazard function for the whole structure.
(c) What is the probability of failure for a life of 20 years, given B = 0.05 and C = 0.001?

Answer:
(a) From Eq. (6.33), rewritten it follows that the hazard function h can be written as

hT (t) = − d
dt
[
ln(1 − FT (t))

]
from which, after substitution and simplification:

hT1(t1) = − d
dt
(
ln A − Bt1

)
= +B and hT2(t2) = − d

dt
(
−Ct3

2
)
= +3Ct2

2

(b) Because of independence the total hazard function is the sum of these two.
(c) Using Eq. (6.33) for the total hazard function, the cumulative probability is:

FT (t = 20) = 1 − exp
[
−∫

t=20

0 hT (𝜏)d𝜏
]

= 1 − exp
[
−∫

20

0 + B + 3Ct2
2

]
dt|t=20 = 0.99988

Problem 6.2: A structure is subject to pressure forces (in kPa) from dead, live and wind
load effects as in the table below. Here ‘apt’ denotes the arbitrary-point-in-time value.
The loads are denoted as components of the random vector X. Use Turkstra’s rule to
estimate the maximum value for the combination of these loads and the associated
standard deviation.

Load Dead (max) Dead (apt) Live (max) Live (apt) Wind (max) Wind (apt)

Notation X1 X1 X2 X2 X3 X3

Distribution Normal Normal Lognormal Lognormal Gumbel Gumbel
Mean 0.9 0.8 6 2 1.6 1.2
SD 0.05 0.05 0.5 0.3 0.5 0.4
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Answer: According to Eq. (6.156), the load combinations to be included for the
maximum load are as follows, with values substituted:

max X = max
⎛⎜⎜⎜⎝
X1 + X2 + X3

X1 + X2 + X3

X1 + X2 + X3

⎞⎟⎟⎟⎠ = max
⎧⎪⎨⎪⎩

0.9 + 2 + 1.6
0.8 + 6 + 1.6
0.8 + 2 + 1.2

⎫⎪⎬⎪⎭ = max
⎧⎪⎨⎪⎩

2.7
3.0
2.2

⎫⎪⎬⎪⎭ = 3.0 kPa

Here the second load combination (involving the maximum live load) is critical. The
uncertainty associated with this sum can be estimated using (A.162) for the sum of
variances:

𝜎2
max X =

3∑
i=1

𝜎2
i = 𝜎2

X1
+ 𝜎2

X2
+ 𝜎2

X3
= (0.05)2 + (0.5)2 + (0.4)2 = 0.41

or

𝜎max X = 0.64 kPa.

Note that the probability distributions are not required for the solution by
Turkstra’s rule.

Problem 6.3: Two random load processes Q1(t) and Q2(t), both Normal (Gaussian)
distributed with means and standard deviations given by (1.8, 0.4) kPa and (2.5, 0.5) kPa
respectively can act on a structure. As functions of time the loads are Poisson pulse
processes with arrival rates and mean durations of (2 per year, 1.5 days) and (5 per
year, 1.1 days) respectively. (a) Estimate the probability that one or the other or a
combination of both will exceed a total (barrier level) of 5.2 kPa in a 100-year design
life. (b) What is the probability of just the combined loading (Q1(t) + Q2(t)) exceeding
6 kPa in a period of 50 years?

Answer:
(a) This problem can be solved by the ‘load coincidence’ approximation (Section 6.7.4).

The first step is to determine the rate of occurrence of the two processes combined.
From Eq. (6.146c):

𝜈m1m2 = 𝜈m1𝜈m2(𝜇1 + 𝜇2) = (2)(5)(1.5 + 1.1)∕365 = 0.055 per year.

Since each load, Q1(t) and Q2(t), is Normal, the corresponding combined load
Q1(t) + Q2(t) also is Normal. It has a mean (1.8 + 2.5) = 4.3 and standard
deviation

[
0.42 + 0.52]1∕2 = 0.64. Using the standard Normal format, the prob-

ability of exceeding 5.2 kPa in any one year is then given by in Appendix D by
Φ
(4.3 − 5.2

0.64

)
= Φ(−1.406) = 0.08 per year. For each of the loads independently,

the probabilities of exceeding 5.2 kPa are Φ
(1.8 − 5.2

0.64

)
= Φ(−5.3) = 5.77 × 10−6

per year and Φ
(2.5 − 5.2

0.64

)
= Φ(−4.22) = 1.3 × 10−3 per year. Both of these are

very small compared with the combined load and are neglected.
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The probability of exceeding the load level of 5.2 kPa in 100 years is
calculated from Eq. (6.65): pf1

(tL = 100) = 1 − exp
{
−[1 − FY (a)]𝜈tL

}
=

1 − exp{−[0.08](0.055)(100)} = 1 − 0.644 = 0.356. This means there is a 36%
chance in 100 years that the combined load will exceed 5.2 kPa.

(b) The probability of the combined load exceeding 6 kPa in any one year is given
by Φ

(4.3 − 6
0.64

)
= Φ(−2.656) = 0.0039 per year. Applying Eq. (5.65) for 50 years:

pf1
(tL = 50) = 1 − exp

{
−[1 − FY (a)]𝜈tL

}
= 1 − exp{−[0.0039](0.055)(50)} =

1 − 0.989 = 0.0107 or a 1% chance of the combined load exceeding 6 kPa in a
50-year period.

Problems for Chapter 7

Problem 7.1 (Extreme values): From meteorological records for a given location, the
annual maximum wind velocity was found to follow a Gumbel distribution with form
parameter 𝛼 = 0.6 and location parameter u = 11.64 m/s. In order to build a high-rise
building in this location, evaluate the ‘nominal’ wind speeds with mean return periods
of 10 and 100 years.

Answer: The wind velocity with mean return period of n years, xn, has a probability of
1/n of being exceeded in a single year. Hence:

P[X > xn] = 1 − FX(xn) =
1
n

or xn = F−1
X

(
1 − 1

n

)
Using Eq. (A.77), this becomes:

xn =
log

(
− log

(
1 − 1

n

))
−0.6

+ 11.64

Solving the above for n = 10 and n = 100 yields: x10 = 15.39 and x100 = 19.31.

Problem 7.2 (Extreme values): An engineer wants to design a cistern to accumulate
rain water. He gathers 100 readings of precipitation over 100 rainy days along one year,
and finds out this data follows a Gaussian distribution with mean𝜇 = 4 mm and variance
𝜎2 = 1 mm.

(a) What is the distribution for the maximum precipitation in a single day, based on
these yearly records?

(b) What is the probability that the maximum daily precipitation, in one year, is greater
than 8 mm?

(c) Assuming the average of 100 rainy days per year is kept constant over the years, what
is the probability that the maximum daily precipitation, in ten years, is greater than
8 mm?

Answers:
(a) The maximum precipitation in one year is the largest amongst 100 samples. Hence

the cumulative distribution is:

F100(x) =
[
Φ
(x − 4

1

)]100
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(b) The probability that the maximum daily precipitation, in one year, is greater than
8 mm is:

p = 1 − F100(8) = 1 − [Φ(4)]100 = 0.00316

(c) The probability that the maximum daily precipitation, in ten years, is greater than
8 mm is:

p = 1 − F1000(8) = 1 − [Φ(4)]1000 = 0.03118

Problem 7.3 (Joint and marginal PDFs): A concentrated load P acting on a circular
membrane of radius R can occupy any position over this membrane, with same
probability (uniform distribution).

(a) Determine the joint probability density fXY (x, y) of the load position in terms
of coordinates (x, y), for a coordinate system centered at the membrane centre
(x2 + y2 ≤ R2).

(b) From the joint density above, determine the marginal density fX(x). Is this marginal
uniform?

Answers:
(a) The volume under the joint density function must be unitary, hence the height of

the joint density is h = 1∕𝜋R2. In order to express the joint density, we need to write
y in terms of x: y = ±

√
R2 − x2. The joint density becomes:

fXY (x, y) =

{
1∕𝜋R2

0
if (−R ≤ x ≤ +R,−

√
R2 − x2 ≤ y ≤ +

√
R2 − x2)

otherwise

(b) The marginal density f X(x) is obtained by integrating f XY (x, y) over y (c.f. A.118):

fX(x) = ∫
+∞

−∞ fXY (x, y)dy =
⎧⎪⎨⎪⎩
∫
+
√

R2−x2

−
√

R2−x2
1

𝜋R2 dy = 2
√

R2−x2

𝜋R2 if (−R ≤ x ≤ +R)
0 otherwise

This marginal distribution depends on x, hence it is not uniform!

Problems for Chapter 10

Problem 10.1: In any one year, the probability of a truck exceeding the load limit on
a particular wooden road bridge is estimated to be 0.10. If the truck is not overloaded
by more than 10%, the probability of a cross member being subjected to the maximum
wheel load is 0.05. The probability of the truck being overloaded by more than 10% is 0.3
and then the probability of the cross member being subjected to the maximum wheel
load is 0.12.
Experiments on the cross members and experience have shown that the probability of
failure under maximum wheel load is 8 × 10−4 and when not subjected to the maximum
wheel load it is 4 × 10−5.
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Estimate the annual probability of failure of any one cross member if 1000 trucks use
the bridge per year. Assume the probability of failure is negligible if the truck does not
exceed the load limit.

Answer: To help untangle the information, let L denote the weight limit is exceeded, W
denote the truck is overweight, M denote the maximum wheel load occurs on a cross
beam and F denote the failure event. We can then write:

P(F) = P(F|L)P(L) + P(F|L)P(L)
in which the second term is negligible (see problem statement). It is ignored below.
The conditional probabilities required are not known, but made up of component
conditional events. Thus:

P(F) = P(F|L ∩ W )P(L ∩ W ) + P(F|L ∩ W )P(L ∩ W )
P(F) = P(F|L ∩ W ∩ M)P(L ∩ W ∩ M) + P(F|L ∩ W ∩ M)P(L ∩ W ∩ M)

+ P(F|L ∩ W ∩ M)P(L ∩ W ∩ M) + P(F|L ∩ W ∩ M)P(L ∩ W ∩ M)

where the first term after the equality sign can be written as

= P(F|L ∩ W ∩ M)P(L ∩ W ∩ M) = P(F|L ∩ W ∩ M)(M|W ∩ L)P(W |L)P(L)
and similarly for the other terms. Evidently this is very tedious. It is easier to use an event
diagram as shown below. It shows all the conditional probabilities. Working through all
the paths and adding the probabilities results in P(F) = 0.00094 per truck crossing. For
1000 crossings per year the annual estimated failure probability is 0.009 per year.

Problem 10.2. From tests on standard timber road bridges it has been estimated
that 80% can safely support a 20-tonne truck loading, 10% can support a 15-tonne
truck loading and the remaining 10% would fail under a loading less than a 15-tonne
truck.
To assess the capacity of a similar bridge a proof load test was conducted with a 15-tonne
truck. The bridge survived.
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(a) Estimate the probability that this bridge will survive under 20-tonne truck loading,
(b) How does the answer to (a) change if the proof load test is only 90% reliable?
(c) Estimate the proof load T2 (90% reliable) to give a probability of 0.95 for survival

under a 20-tonne load. To make this estimate, assume a linear relationship between
‘the conditional probability that a proof load T2 will be supported given failure under
a 20-tonne load’ and ‘the magnitude of the proof load T2’.

Answer:
(a) This problem requires the use of Bayes theorem.

Let S = bridge capacity > 20 tonne (i.e. survival) and S capacity < 20 tonne (the
failure event).
Let T = bridge capacity > 15 tonne (i.e. test condition) and T capacity < 15 tonne.

Bayes theorem: P(S|T) = P(T|S)P(S)
P(T|S)P(S) + P(T|S)P(S) (10.2.1)

Let it be assumed that the bridge will survive the test load if S is true. Thus
P(T|S) = 1. Also P(S) = 0.8 from the data and thus P(S). Further, the probability
of survival under the 15-tonne proof load given the bridge would not support the
maximum load of 20-tonne = P(T|S) = 0.1∕(1 − 0.8) = 0.5. Then:

P(S|T) = [1 × 0.8]∕[1 × 0.8 + 0.5 × 0.2] = 0.89.

(b) If the proof load test is 90% reliable, then P(T|S) = 0.9 and expression (10.2.1)
becomes

P(S|T) = [0.9 × 0.8]∕[0.9 × 0.8 + 0.5 × 0.2] = 0.88. (10.2.2)

(c) A probability of 0.95 is required for survival given the proof load T2 is success-
ful: thus we need P(S|T2) = 0.95. This can be expressed again using Bayes theorem
Eq. (10.2.1):

P(S|T2) = 0.95 = P(T2|S)P(S)
P(T2|S)P(S) + P(T2|S)P(S)

with P(T|S) = 0.9 and the result from (10.2.2.). All terms are known in Eq. (10.2.1)
except P(T|S). Thus:

P(S|T2) = 0.95 = [0.9 × 0.88]∕[0.9 × 0.88 + P(T2|S) × 0.12]

from which P(T2|S) = 0.42.
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Inverse transform 67, 72, 117, 411

J
Jacobian 118, 119, 120–122, 398

K
Kolmogorov-Smirnov test 25
Kurtosis 375, 380

L
Lagrangian multiplier 103, 105–106, 130,

349, 352–353, 358–359
Legal sanctions 38–39, 42–43
Level (up-) crossing see Stochastic processes
Level of reliability 53, 301, 304
Life-cycle 342–343, 346

optimization 351–352, 367–369
Lifetime see Design life
Limit state

concept 4
conditional 28, 223
damage 1
generalized 25, 91, 112
serviceability 1
ultimate 1
violation 1–3, 8, 12–15, 19, 21, 27–31,

34, 51–52, 60, 68
Limit state design 4, 29, 60, 293, 295, 302,

319, 339
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Limit state function
approximations 127
correlated 131, 159
dependent 173
equivalent 424
linear 61, 64, 96, 98, 100–102, 303
multiple 78, 147, 150–152, 342 (see also

Systems)
non-linear 76–78, 96, 102–107,

109–112, 124–130
response surfaces 91

Linearization point 105
Load and Resistance Factor Design (LRFD)

299–300, 311, 336, 339, 348
Load combination 135, 176, 184, 209, 226,

245, 256, 269, 270, 295, 300–301,
305–308, 311, 316, 451

factor 297–299
load coincidence method 230, 451
Turkstra’s rule 233, 235–236

Load factor 3–4, 19, 22, 29, 59–60, 300,
305, 311, 340

Loading
arbitrary-point-in-time 227–228,

233–234, 256, 261, 264–266,
268–269, 270, 298, 300, 450

bridges 315, 322, 325
construction 269
crowd 255, 325
dead 3–4, 7, 25, 40, 131, 247, 269,

298–300, 306–311, 336–338, 340
floor

equivalent pattern load 260
equivalent uniformly distributed 256,

260–263, 267–269
extraordinary 256, 267–270
influence area 261–264, 267, 270
occupancy, changes 265–266, 270
sustained 256, 264–266, 268–270,

316
total 256, 259, 264, 266, 268–269

live load reduction 255, 261, 311
maximum 14, 142, 182–183, 187, 264,

268–269, 325, 327, 451, 455
modelling 132, 247–248, 271
office 264, 306
permanent 269

proof-loading 191, 326
wave 184, 240, 248, 252–254
wind 1, 3–4, 32, 36, 40, 184, 248–252,

271, 299–300, 307, 309, 311, 348,
436, 450

Load path (dependence) 90, 132–133, 153,
177, 218

Lognormal distribution 113, 243, 251, 264,
270, 276–277, 282, 292–, 381–383

Loss of coolant accident (LOCA) 29
Low-probability-high consequence 45

M
Markov process 198, 229, 235–237, 271
Mass coefficient 254
Material strength properties 3, 179 see

also Concrete; Steel etc.
Maximum likelihood 25, 75, 77–78,

80–81, 96, 100, 103, 105, 124–126,
129–130, 147–150, 169, 171–172,
247, 354, 356

Mean value methods 129–130
Miner’s rule 242
Modelling

error 35, 136, 285
loads 247, 271
resistance 273
uncertainty 34–35, 284 (see also

Uncertainty)
Moments

of functions 100
method of 247
of random variables 373

Monte Carlo simulation
adaptive 80
anti-thetic variables 84, 91
applications 91
conditional expectation 90–92, 206, 217
confidence levels 69, 76
correlated sampling 82
direct (crude) sampling 68, 71–72, 76,

147, 149, 156, 177, 225
directional simulation 79, 82–84,

85–86, 151
with importance sampling 84
in load space 87, 151–152, 217
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Monte Carlo simulation (contd.)
importance sampling 72–84, 86, 88,

90–92, 130, 147, 150–151, 177, 214,
217–219, 225, 366, 439

kernels 80
practical aspects 90
response surfaces 91
search technique 80, 151
sensitivity 81–82
systems 147
variance reduction 72–73, 91–92, 217,

365

N
Narrow band processes 216, 235,

238–241, 252, 254
Nataf transformation 117, 118–120, 125,

130, 405
National Building Code (NBC) 299–300
Natural frequency 238, 322
Negative binomial distribution 376–377,

379
Negligence 32, 38, 43
Normal distribution 17–23, 25, 60–61, 64,

67, 69, 83, 95–96, 98, 103, 112–120,
129, 143, 192, 212–213, 232, 254,
264, 269, 276–277, 282, 302, 331,
348, 375, 379–381, 386, 393

approximations 379, 381
standardized 111

Normal tail approximation 115–116, 129
Normal tail transformation 114
Numerical integration see Integration

O
Occurrence time, first 9
Optimization, of design 347, 349, 354, 363
Order statistics 25, 247, 389
Out-crossing see Stochastic processes

P
Palmgren-Miner hypothesis 242
Partial factors 4–6, 8, 59, 61, 297–302,

304–305, 308–316, 319, 339, 369
Performance function see Limit state

function
Personal probability 31

Personnel selection 39, 41
Piles 147, 254
Plastic theory 3–4, 131, 133, 138, 174, 285

see also Frames, rigid
static theorem 138–139

Point-crossing formula 227, 233, 236
Point estimates of probability 33, 46–48
Poisson distribution 187, 195–196, 197,

377, 399, 438
Poisson process

counting 197, 266, 267
filtered 198–199
spike 199–201, 217, 268
square wave 199–200, 207–209, 227,

230, 268
Polar coordinates 85
Polyhedral approximation 112, 209, 225
Posterior information 328–329, 332–333,

336–338, 341
Prediction uncertainty 35
Probability

axioms 56, 371
Bayesian 28, 31, 46, 56, 326–327, 330
conditional 28–29, 46–47, 88, 91, 176,

184, 216–217, 221–223, 328–329,
336, 372, 391, 403–404, 411,
425–426, 438, 448, 455

frequentist 31–32, 46, 48–49, 51
multiplication rule 372
optimal 55
subjective 31–32, 46, 48
time dependent 14, 92, 131, 179, 214,

225
Probability density function see also

Individual distributions
arbitrary-point-in-time 227–228,

233–234, 256, 261, 264–270, 298,
300, 450

conditional 88, 328–329, 391, 403–404,
411

improper 201
joint 26–28, 63, 87, 98, 116, 119, 121,

125, 130, 184, 192, 203, 204, 217,
226, 391, 400, 403, 405, 410, 415, 419

marginal 27, 122, 391–392, 403, 411,
416

Probability of failure
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annual 214, 436
conditional 29, 217, 438–439
lifetime 214
nominal 56, 59, 164, 297, 309–310, 342
time dependent 214

Professional factor 284, 286, 288, 289
Proof loading 35, 191, 273, 322–323, 326,

328, 333
Pseudo random number generator 66

Q
Quality assurance 44, 54–55, 280
Quality control 36, 55, 273, 280, 282–283
Quasi-Monte Carlo 66

R
Random field 173, 258
Random number 71, 76, 82, 187, 267,

364–366, 433
generator 65–67, 414, 439

Random variable
basic 27, 96, 99, 107, 114, 140, 180
bounds on mean, deviation from 374
(in)dependent 24, 67, 76, 82, 98,

116–117, 120, 133, 331, 385, 411,
440, 441 (see also Correlation)

functions of 46, 398
jointly distributed 390–393
moments of 390, 392
systematic selection 92
transformation of 119, 397, 405

Random variates 66–67, 364
Random vectors, generation of dependent

410
Rayleigh distribution 241, 253, 390
Realization see Stochastic processes
Redundancy 134, 141–143, 368
Regression function 394
Reinforced concrete 4, 7, 49, 92, 132, 273,

283–284, 287, 288–292, 295–299,
306–309, 315–316, 324, 326–327,
329–330, 335, 343, 367, 448

Reliability
constraints 346, 349–351, 354–355,

361–364, 367–369
function 183, 187, 217
index (see Safety index)

measures 60–61, 345
Reliability-based design optimization

(RBDO) 345, 347, 349, 369
performance-measure approach (PMA)

356–361, 369
reliability-index approach (RIA)

356–360, 369
Renewal process 201–202, 209, 228–229

mixed 201
Resistance see also Concrete; Steel, etc.

degradation 234
member 4, 13
minimum lifetime 182
modelling 4, 273, 311
‘negative’ 17

Response surface 84, 90, 91, 128, 132,
169–173, 241

Return period 8–12, 29, 50, 180, 188–189,
214, 296, 319, 436, 452

Rice formula 195–196, 204, 206, 226, 254
Rigid-plastic behaviour 134, 136, 144 see

also Plastic theory
Risk

acceptable 51, 338, 343, 351
in codes 305, 319
involuntary 51
optimization 345–347, 351, 366–368
in society 59
socio-economic 54, 310, 317, 323,

340–341
tolerable 51–53
voluntary 51

Risk-benefit criteria 56
Rosenblatt transformation 117–122, 125,

129–130, 403–411, 421, 425

S
Safe domain 15, 26, 78–81, 83, 86, 109,

111, 127, 151, 168, 181, 194–196,
205–209, 212, 215, 217–218

Safe region see Safe domain
Safety factor 3, 6, 8, 19, 40, 54, 57, 60, 301,

346–349, 358
central 19, 22, 24, 303, 437, 445
characteristic 21, 303, 437
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Safety index 17, 21, 79, 96, 106, 110–113,
116, 128, 164, 337–338, 342, 348,
353, 421, 424

in code calibration 301, 304, 307, 310,
315

conditional 223
geometric 101
iterative solution 104–106
as a minimization problem 99
as a minimum distance 99
numerical solution 106
target 312, 345

Safety margin 7–8, 17, 64, 95, 180–181,
202, 210, 212–213, 219, 242–243,
316

Safety, measures of see also Factor of safety;
Load factor; Partial factor

deterministic 2, 19, 21
hierarchy of 60–61
invariant 8
return period 8
semi-probabilistic 338

Safety plan 44
Sample function see Realization
Sampling see Monte Carlo
Second-moment representation 95, 259,

285
Second-order 126, 154, 157, 158–159,

162, 164, 168, 186, 193, 218, 361,
363, 401, 402

Self checking 41–42, 292
Sensitivity

coefficient 82
factors 101–102, 118, 236, 304
ignorance 101
omission 101

Separation function 303–304
Service-proof 326
Simulation see Monte Carlo
Skewness 374
Social criteria factor 59
Spectral analysis 248–249, 251, 255,

271
Standard deviation 374
Standard normal distribution 17, 67, 83,

96, 121, 348, 375, 380, 405

Standard normal space 83–86, 90, 98–99,
101, 125–126, 129, 160, 162, 214,
354, 418

State of nature 46, 371
Steel properties 273

bias 274–276
cross-sectional 278
elasticity, modulus of 280
hot rolled sections 273–274, 278–280
mill test data 13, 274–276
plates 274–275, 277
reinforcement bars 280–281, 284,

290
reject material 274
strain hardening 278
strain rate 275
ultimate strength 2, 26, 280, 287
variability 279–280
yield strength 13, 19, 26, 36, 171, 179,

274–277, 280–285, 286, 336–338,
442

Stochastic processes
autocorrelation function 191–193
clumping 191, 216
combination of 227
continuous 202, 209, 213
derivative process 193
discrete 196, 202, 207, 228
ergodic 194, 204, 266
first passage probability 180–181,

194–196, 198–200, 209, 214, 218,
223–224

local maxima 196
narrow band 216, 235, 238–241, 252,

254
outcrossing rate 195, 205, 207,

209–210, 213–218, 223–226
continuous normal processes 209
discrete processes 207
ensemble 234–236
general processes 213
numerical evaluation 214

realization 90, 132, 180–184, 191–207,
215, 217–218, 228–231, 234,
236–237, 239, 260

stationary 192–194, 196, 204, 207, 226
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upcrossing rate 196, 202–205, 209,
226–230, 240, 254

Storm event 185, 252
Strength-deformation relationships 134
Stress

linear elastic 2
permissible 2, 8, 35, 132, 133, 135, 179,

295
Survival modes approach 136, 138
Systems 131

bounds 112, 158–159, 162, 210, 218
brittle 134, 139, 141–143, 146
conditional 146
correlation effects 164
finite element analysis 153, 168
implicit limit state functions 168
modelling 132, 135–136
Monte Carlo analysis 147–150, 156,

160, 164, 168
parallel 139, 141–146, 149–150,

158–159, 165, 169, 172, 177
parallel bounds in 158–159
response surfaces 169–173
series 139, 141, 144–147, 151
series bounds in 153–164
time-invariant 131, 176

T
Tail sensitivity 50–51, 317
Taylor series expansion see Linearization
Tenancy changes 256
Tests, in-situ 282–283, 330–332, 339
Timber 18, 270, 273, 295, 308, 315–316,

339, 454
Time dependent reliability 179

barrier failure dominance 234, 236
FOSM/FOR methods 216, 218, 225,

244
discretized approach 185
sampling methods 216–218, 225
time dependent approach 181, 226,

244
time integrated approach 182–185

Transfer function 238
Transformation 95, 97, 112–114,

116–118, 397, 403–407

‘Transformation’ method see First Order
Reliability

Truncation criterion 175
Turkstra’s rule 233–236, 268, 306,

450–451

U
Unimaginable events 32, 38
Uncertainty

aleatory 33
epistemic 33
decision 34
human factors 34–35, 37
identification of 33
modelling, (see Modelling error)
phenomenological 34, 53, 326
physical 36
prediction 35
statistical 36

Uniform distribution 65–67, 84, 384, 439,
453

Upcrossing rate see Stochastic processes
Up-dating information 322
Utility 28, 34, 44, 56, 59, 293–294, 338

V
Variance 374, 393
Variance reduction 72–73, 91–92, 217,

365
Vector process 180–181, 192, 195–196,

202, 205–209, 213–218, 236

W
Warning factor 59–60, 340–341
Wave

force 252–253, 255
height 187–188, 202, 240, 252–255
length 253
loading 240, 248, 252–255
spectrum 252
theory 252, 255

Weakest link system 139 see also System,
series

Weibull distribution 249, 271, 386,
388–389

Weighting factor 309–310, 314
Welds, statistical properties 290, 340
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White noise 238–239, 263
Wind

cyclonic 249–250
hurricanes 249, 367
load 1, 3–4, 32, 36, 40, 184, 248,

250–251, 271, 299–300, 307, 309,
311, 348, 436, 450

pressure 248, 250
speed 204, 248–252, 255, 452
thunderstorms 249–250, 255

Work environment 41
Workmanship 4, 8, 13, 32–33, 35, 38,

47–49, 283–284, 301, 315, 321
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