جزوه طراحى سازه هاى فولادى (LRFD به روش

-آموزش مطالب و مفاهيم طراحى -rar rer اساس مقررات ملى ساختمان -به همراه جداول بروفيل هاى ساختمانى اشتال

امير حسين كروسى

1) 1.4 OL
r) $1.2 \mathrm{OL}+1.6 u+0.5\left(L_{r} \underline{b} 5\right)$
r) $1.2 \mathrm{DL}+1.6(L, \underline{s})+U$
F) $1.20 L+L L+0.5\left(L_{r} \leq s\right) \pm 1.4 \mathrm{w}$
d) $1.2 \mathrm{OL}+U+0.5\left(L_{r} \underline{6}\right) \pm 1.4 \mathrm{wy}$
2) $1.20 L+u+0.2 s \pm E Q_{n} \pm 0.3 E Q_{y}$
v) $1.20 L+u+0.2 \mathrm{~s} \pm E Q_{y} \pm 0.3 E Q_{x}$
A) $0.9 \mathrm{OL} \pm 1.4 \mathrm{~kg}$
3) $0.9 \mathrm{DL} \pm 1.4 \mathrm{Wy}$

$$
\text { 1.) } 0.90 L \pm E Q_{x} \pm 0.3 E Q_{y}
$$

i1) $0.9 \mathrm{Dl} \pm E Q_{y} \pm 0.3 E Q_{x}$

DL:
IL: siji,!
W: >!,
EQ: $\quad j_{j}$, t
S:
4: plami,

4 of 38

 :共
: IPE 200 بمْ.
$h=r . \mathrm{cm}, b .1 . \mathrm{cm}, t_{w}=., 0 r_{\mathrm{cm}}, t_{f}=.1 \Delta \mathrm{~cm}, h . r_{c}=10,9 \mathrm{~cm}$ $A=r_{A, \Delta} \mathrm{~cm}^{r}, I_{x}=19 \% . \mathrm{cm}^{*}, I_{y}, 1 / 4 \mathrm{~cm}^{*}$,
 A. $\mathrm{Fs}, 9 \mathrm{~cm}^{r}, I_{y}=\Delta v q . \mathrm{cm}^{*}, I_{x}=\mathrm{kr} \mathrm{cm}^{*}$,
:(A) chich (1
$A=V_{1, D}+H_{0,9}=V F, r \mathrm{~cm}^{r}$

$\overline{y_{e}}=\frac{\sum A_{i} \bar{y}_{i}}{\Sigma A_{i}}=\frac{\left(r \Lambda_{1} \Delta \times 1 .\right)+\left(r \Delta, 9 \times Y_{0}, r r\right)}{V t, r}=14, r v_{c m} \mathrm{~cm}$ vinglispochen: A:
 ($1 \bar{y}_{p}$) (

$$
\begin{aligned}
& A_{\text {Lop }}=A_{\text {bot }}=\frac{V_{t, r}}{r}=r v, r \in \mathrm{~cm}^{r}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left(i r, s-\left(4, v_{0}+r r\right)\right)\right)\right)=r v, r \\
& \Rightarrow \bar{y}_{P}=19, v f \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& I_{x}=\sum I_{x}^{\prime}+\sum A_{y}{ }^{r} \\
& \Rightarrow I_{n}=\left(194 .+r p_{1} \Delta \times(r, r r-14, r r)^{r}\right)+\left(r r_{.}+r \Delta, 9 \times(14, r r-1 .)^{r}\right) \\
& \Rightarrow I_{x}=Y Y N Y, 9 Y_{\Delta S}+Y Y_{N r_{1} * V A V I}=8444, N 1 \mathrm{~cm}^{*} \\
& I_{y}=\Sigma I_{y}^{\prime}+A x^{r} \\
& \Rightarrow I_{y}=(1 \mathrm{rr}+\cdot)+(\Delta v q .+\cdot)=\Delta 9 r r \mathrm{~cm}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& z=\tau A_{i} \bar{y}_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 位 }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow Z=\mu 49,4 \Delta \mathrm{~cm}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& r_{x}=\sqrt{\frac{I_{n}}{A}}=\sqrt{\frac{r 449,+1}{V E, r}}=V, 9 Y \mathrm{~cm} \\
& r_{y}=\sqrt{\frac{I_{y}}{A}}=\sqrt{\frac{v 9 r_{Y}}{v_{f, r}}}=1,9 r \mathrm{~cm} \\
& J=\sum_{i=1}^{n} \frac{1}{r} b t^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow J=\frac{1}{r}\left[b_{1} t_{1}^{r}+b_{r} t_{r}^{r}+b_{r} t_{r}^{r}+b_{r} t_{*}^{r}+b_{\Delta} t_{\Delta}^{r}+b_{r} t_{\varphi}^{r}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 5 .|V, I| \mathrm{cm}^{*} \\
& \text { () 1 (J) } \\
& \text { ぐん! }
\end{aligned}
$$

छdा

4																	
					S2t9	2S2	0025	000tLI	てT2	$0<2$	98 F	65	42	OE	OOE	009	009
4.608	I6Et	906	206	OLSEI	St19	\％et		00／9Et		－5t	8\％	95	12	62	OOE	OSS	055
1t8	tht	412	228	090¢t	T655	\％Et	046	0029Et	661	652	O6E	55	42	82	OOE	005	$005]$
P978	2625	426	2ts	0292 T	$\frac{5185}{7955}$	$\frac{212}{165}$	OSZ 0	002L0t	$\frac{281}{12 T}$		HTE	ES	42	92	OOE	05\％	05\％
618	PSt	ff 2	182	02RTt	296E	T6T	OSSE	06862	121	812	862	15	12	－2	008	OOF	$00 \mathrm{~F}]$
$\mathrm{EC2}$	SOET	± 2	124	02801	CEZE	ILL	0882	08925	551	$\frac{865}{19 t}$	862	$\frac{15}{56 \%}$	12	522	OOE	09E	098
428	2¢0t	602	969	Ortot	f892	SSt	00ャz	06TEt	でT	18T	192	$\frac{567}{506}$	12	$\frac{527}{517}$	00E	0\％E	
528	385	E52	－999	0695	8002	9＇pi	0912	09995	HET	TCI	Ets	S＇8t	42	$\frac{512}{507}$	OOE	OTE	
468	$6 ¢ 5$	154	919	0126	6712	8 EL	0665	O2806	L2T	191	522	52%	12	502	OOE	ORE	ORE
288	018	852	125	0958	6985	हt	0997	0．tsर	LIT	6＊5	902	9 p	12	67	OOE	00%	$00 \mathrm{E}]$
94	812	602	ILV	0659	MESt	I＇2I	OPET	0c26t	f0t	I¢T	961	2 V	－2	8 BT	082	082	082
F221	208	859	56 E	OET5	E82I	2II	0SIt	O26 + t	$E 6$	8tt	L2I	Stt	72	$5 \angle T$	092	092	092
999	86	809	L2E	026E	¢50t	E0t	$8 ¢ 6$	09271	2¢8	901	＊91	8 E	t2	4	0×2	0＊2	Oe\％
19	± 65	655	852	Ots	228	Ev＇6	912	0608	$5 \cdot$	16	ZST	HE	8 L	97	OZ2	022	022
555	905	205	002	0002	6.9	158	065	0065	E＇19	1\％	MET	EE	85	51	002	002	002
65	IE2	45\％	ISt	0951	T82	99%	925	OCPE	\％＇5	E59	22I	62	SI	－	OST	$08 t$	081
\cdots	OCI	50%	tIt	688	WE	849	TIE	06 p 2	920	Ets	N0t	82	51	Et	091	091	095
F6\％	02 I	85 E	5%	055	Sis	c6．	912	0t5T	CEE	E	26	－2	21	21	Oti	0 OL	$0+\mathrm{T}$
$\stackrel{\text { ¢f }}{ }$	18	90 E	625	815	591	105	p1	198	492	\％	7	¢ 2	\％t	tt	O2t	02 t	02%
842	－15	ESt	5 ff	697	＊01	91%	668	OS\％	$70{ }^{*}$	92	95	22	27	01	00T	001	00 T
ω_{2}	$\frac{m}{2}$	[45	4	4	$\frac{\text { W5 }}{2}$	$\begin{gathered} \text { W5 } \\ 4 \end{gathered}$	${ }_{5}^{45}$	W	$w / t y$ D	$x^{w 5}$	แบย $x q-4$	$\begin{gathered} \text { שus } \\ 2 \end{gathered}$	$\underset{\Delta}{4}$	$\begin{gathered} \text { wey } \\ 4 \end{gathered}$	แบบ 9	$\begin{gathered} \text { แu } \\ 4 \end{gathered}$	30．

		C	fl 65	56019	46	00
852002	－2 ¢ftt	Tt 162	If 199	6 f 955	06015973	055
t＋5rt？	C8 905t	SO 0 Ot	W2Lf	Of O5E	C9 96tisk	057
999872	088291	69 OtE	25．08E	64．672	－¢\％5く＊	09\％
¢9 66vz	29.2991	00 FIE	E9 \％8E	6 F 68t	$8<5602102$	O2E
$0996 t z$	OT＇295t	60.662	－2 09\％	26851	066060 tt	082
\＄6＇troz	2988pt	0275z	26.80%	10098	OX FFECB7	002
0261／t	662 tet	06012	19\％ 152	05＇6\％	00 ร2TTくた	00
	vでく5It	$66^{\prime 2} 91$	$8 C^{\prime} 502$	10652	009208%	091
19\％060t	50766	¢6．921	$8 \mathrm{VF}^{\prime} 551$	$59.1 t$	OV 50＊6	021

$\overline{8 d}$

7

$$
T \leftarrow \square \rightarrow T
$$

$$
T \leftarrow \square \rightarrow T
$$

$$
\frac{r_{r}}{r^{2}}+0 \rightarrow T
$$

$$
\frac{r}{r}+00+T
$$

$\xrightarrow{\text { Q }} A_{g}=b t$
: هm
 (Ag)

(A_{n})

$$
A_{n}=A_{g}-\sum_{i=1}^{n} d_{i} t_{i}
$$

$$
A_{n}=A_{g}-\sum d_{i} t_{i}+\sum \frac{s^{r}}{i g} t
$$

gararsi

سما

(AC)
vis?

() ,
(r

$$
\begin{aligned}
& V=1-\frac{\bar{\pi}}{L}
\end{aligned}
$$

$$
\begin{aligned}
& \text {, } \\
& V=\max \left(1-\frac{\bar{x}}{L}, v^{*}\right) \\
& \text { (} \mu
\end{aligned}
$$

منريب

$$
v_{=, 1}^{*}
$$

$$
\begin{aligned}
& v^{*} \cdot, 4 \\
& V^{*}=., 4
\end{aligned}
$$

(ن)

$$
A_{e}=\min \left\{A_{n},, \Lambda_{\Delta} A_{g}\right\}
$$

(Ag
(dhe,) (A_{n}
:00

$$
\left.\begin{array}{l}
T_{u_{p}} \leqslant \phi_{t} T_{n} \\
T_{n}=F_{u} A_{n} \\
\phi_{t}=, v_{\Delta}
\end{array}\right\} \Rightarrow T_{u_{p}} \leqslant, v_{\infty} F_{u} A_{n}
$$

$$
T_{u}=\min \left(T_{u_{1}}, T_{u_{r}}\right)
$$

$\left.\begin{array}{l}T_{u_{1}} \leqslant \phi_{t} T_{n} \\ T_{n}=F_{y} A_{g} \\ \phi_{t}=., 9\end{array}\right\} \Rightarrow T_{u_{1}} \leqslant .9 F_{y} A_{g}$
:

$$
\left.\begin{array}{l}
T_{u_{r}} \leqslant \phi_{t} T_{n} \\
T_{n}=F_{u} A_{e} \\
\phi_{t}:, V_{s}
\end{array}\right\} \Rightarrow T_{u_{r}} \leqslant, V_{\infty} F_{u} A_{e} \quad, A_{e}=V \cdot A_{n}
$$

'ل

$$
\left.\begin{array}{l}
T_{u_{r}} \leqslant \phi_{t} T_{n} \\
T_{n}=F_{u} A_{e} \\
\phi_{t}=, v_{\Delta}
\end{array}\right\} \Rightarrow T_{u_{r}} \leqslant, v_{\Delta} F_{u} A_{e} \quad, A_{e}=\min \left\{A_{n},,, \Lambda_{\Delta} A_{g}\right\}
$$

$\frac{L}{r_{\text {min }}}<r_{\text {.. }}$
: كنرّ
6
(7)
,

$$
A, \frac{r_{i}^{\prime}}{k}
$$

gavici

$$
P_{c r}=\frac{r^{r} E L}{L_{e}^{r}} \quad, \quad L_{e}=k L
$$

: منريب مزل

خَّه : شُرابِ

($k \geqslant 1$) : ب) منرس ع

$$
\begin{aligned}
& \text { بالسناه } \\
& k=\sqrt{\frac{1,4 G_{A} G_{B}+H\left(G_{A}+G_{B}\right)+V, D}{G_{A}+G_{B}+V_{, \Delta}}}
\end{aligned}
$$

(تكُّانها طا,
(r r r r

$$
\frac{\text { gatuasi }}{2}
$$

$$
\lambda=\frac{\mathrm{kl}}{\mathrm{r}}
$$

ن.
lick
تزكر : ; ;

$$
\begin{aligned}
& \left.P_{u} \leqslant \phi_{c} P_{n}\right\} \quad: \dot{c}_{0}, \dot{l}_{0}-d, 1, b_{\mu}:\left(1-r _r-1 .\right) \dot{\mu}_{\mu} . \\
& \left.P_{n}=F_{c r} A_{g}\right\} \Rightarrow P_{u} \leqslant \phi_{c} F_{c r} A_{g}, \phi_{c}=.9 \\
& \lambda=\left(\frac{k L}{r}\right)_{\text {max }}\langle r ., \quad \rightarrow \quad: \quad: \quad: \quad \text {, }
\end{aligned}
$$

جرإِك فبّ

$$
\begin{aligned}
& \text {. } \\
& I_{x}^{\prime}=I_{y}^{\prime} \Rightarrow r I_{x}=r\left(I_{y}+A\left(\frac{a^{r}}{r}\right)\right) \\
& A^{\prime}=r A, r_{m}^{\prime}=\sqrt{\frac{J_{m}^{\prime}}{A^{\prime}}} \quad, \quad r_{y}^{\prime}=\sqrt{\frac{J_{y}^{\prime}}{A^{\prime}}}
\end{aligned}
$$

منالرهاى نعونك	ب		'erer	هاله
$\underbrace{\frac{b}{b}} \underbrace{b}_{n}$	$\cdot / \Delta s \sqrt{\frac{h}{f_{y}}}$	b/t	براى f سـا完 4 5m	1
	$\cdot / 54 \sqrt{\frac{\pi}{5}}$	h/t	 ب مـرما 3)	T
	$\cdot /+0 \sqrt{\frac{K}{\rho_{y}}}$	b/t	人 - تغوت نـ*	r
Fid	$\cdot / \mathrm{vo} \sqrt{\frac{E}{r}}$	d/t	(4) مالطلع سرى	1
$\left.-t_{0}\right] r+6 n$	$1 / \uparrow 4 \sqrt{\frac{E}{F}}$	W/w	 ded	0
	$1 / 7 \cdot \sqrt{\frac{E}{r}}$	h/t	, dISS) مسا 	*

b		1/【	$\frac{\kappa_{d}}{3} \\| /$	
V	7n	$1 / 9$	$\frac{k_{3}}{3} \int b t / 1$	$\cdot q^{2-1}$
\wedge	 Tror 	$1 / 9$	$\frac{k_{f}}{3} \int \cdot t / 1$	$1 \frac{1}{-q^{-1}}$
Tr	-2,	minn		-

$$
\left(\frac{k L}{r}\right)_{0}=\left(\frac{k L}{r}\right)_{y}
$$

ai

$$
\frac{k_{a}}{r_{i}} \leqslant \frac{r}{k} \max \left\{\lambda_{x}, \lambda_{y_{m}}\right\} \rightarrow a=? \rightarrow \sin i
$$

解 : F_{a} 有
gadasi

$$
\begin{align*}
& \lambda_{\text {max }}=\left(\frac{k L}{r}\right)_{\text {max }} \leqslant F_{1}, r 1 \sqrt{\frac{E}{f_{y}}} \Rightarrow F_{c r}=\left[\cdot, \mu_{\Delta \Lambda} \frac{f_{y}}{F_{e}}\right]=\frac{E_{y}}{f_{y}} \\
& \lambda_{\text {max }}=\left(\frac{k l}{r}\right)_{\text {max }}>A_{i} V_{1} \sqrt{\frac{E}{f_{y}}} \Rightarrow F_{c r}=, A W F_{e}
\end{align*}
$$

$$
\begin{aligned}
& P_{n}=F_{c r} A_{g} \quad\left(A_{p} \sigma\right. \\
& \phi_{c}=. i \text {, } P_{u} \leqslant \phi_{c} P_{n} \text { (pF }
\end{aligned}
$$

جدول - 1-F-Y-1 حالت يا حالتهاى حدى حاكم بر طراحى اعضاى فشـارى براى مثاطع مختلف بيون اجزاي لاغر

:

$$
\begin{aligned}
& F_{e}=\frac{\pi^{r} E}{\left(\frac{k L}{r}\right)^{r}} \\
& F_{e}=\left[\frac{\pi^{r} E c_{n}}{\left(k_{2} l\right)^{r}}+G_{J}\right]\left(\frac{1}{I_{n}+I_{y}}\right)
\end{aligned}
$$

قالنَ

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

$$
\begin{aligned}
& I_{y}=\frac{t_{f} \times b^{r}}{1 r} \\
& I_{x}=\frac{t_{w} \times h_{n}^{r}}{\mathbb{r}}
\end{aligned}
$$

$I_{n}, I_{y}:$:

$$
F_{e}=\left(\frac{F_{e y}+F_{e z}}{r H}\right)\left[1-\sqrt{1-\frac{* F_{e y} F_{e z} H}{\left(F_{e y}+F_{e z}\right)^{r}}}\right]
$$

$$
\left(F_{e}-F_{e x}\right)\left(F_{e}-F_{e y}\right)\left(F_{e}-F_{e z}\right)-F_{e}^{r}\left(F_{c}-F_{e y}\right)\left(\frac{x_{0}}{\bar{r}_{1}}\right)^{r}-F_{e}^{r}\left(F_{e}-F_{e x}\right)\left(\frac{y}{F_{1}}\right)^{r}=.
$$

$$
\begin{aligned}
& \bar{r}_{-}^{r}=x_{-}^{r}+y_{-}^{r}+\frac{I_{x}+I_{y}}{A_{g}}
\end{aligned}
$$

$$
\begin{aligned}
& \text {. } \\
& \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 我我 } \Rightarrow y_{1}=
\end{aligned}
$$

$$
\begin{aligned}
& H=1-\frac{\ddot{x}^{r}+y^{r}}{\vec{r}_{r}^{r}} \\
& F_{\text {ex }}=\frac{\pi^{r} E^{-}}{\left(\frac{k_{x} L}{r_{x}}\right)^{\gamma}} \\
& F_{\text {ey }} \cdot \frac{\pi^{r} t}{\left(\frac{k_{y} t}{r_{y}}\right)^{r}} \\
& F_{c z}=\left[\frac{r^{r} E c_{r}}{\left(k_{2} l\right)^{r}}+G J\right] \frac{1}{A_{g} \bar{r}_{r}^{r}}
\end{aligned}
$$

$$
\left(\frac{k l}{r}\right)_{m}, \sqrt{\left(\frac{k l}{r}\right)^{r}+\left(\frac{a}{r}\right)^{r}}
$$

كَ - بـرا,

$$
\lambda \leqslant \pi, n \cdot \sqrt{\frac{E}{f_{y}}} \Rightarrow F_{c} \cdot\left[\cdot y_{\infty x}{ }^{\frac{f_{1}}{F_{c}}}\right]_{f_{y}}
$$

$$
\lambda>F_{1}, v_{1} \sqrt{\frac{E}{F_{y}}} \Rightarrow F_{c}=\cdots A v \vee F_{e}
$$

$$
F_{c r_{2}}=\frac{\theta J}{A_{g} \vec{r}_{r}^{\prime}}
$$

garatis

$$
c_{w}=I_{y} \frac{d^{r}}{r}
$$

stic.

$y .=\frac{d^{r}}{7} \cdot \frac{e}{r_{y}^{r}}+e$

$$
c_{w}=\frac{d^{r}}{r}\left(I_{n}-y . e A+r A e^{r}\right)
$$

$$
c_{n}=I y_{1} \frac{d_{1}^{r}}{r}+I y_{r}^{Q} \frac{d_{r}^{r}}{r}
$$

y. $\frac{e_{1} I_{y}^{\infty}-e_{r} I_{y}^{0}}{d^{r} I_{y} y_{0}^{3}}$

:

$$
c_{n}=\left(\frac{t b^{r}}{r r}\right) \times\left(\frac{d^{r}}{p}\right)
$$

y. $\frac{t_{n} \cdot d^{r}}{A} \times \frac{1}{r}$

$$
c_{n}=\frac{\left(d \cdot t_{n}\right)^{r}}{r Y}+\frac{\left(b \cdot t_{f}\right)^{r}}{1 f r}
$$

Scanned by CamScanner
 .

: © (cb) (c)
 .

$$
c_{b}=\frac{\pi r, \Delta \mu_{\max }}{r, \Delta \mu_{\max }+r \mu_{A}+r \mu_{B}+r \mu_{c}}
$$

 \therefore -

$$
R_{m}=\cdot \phi+r\left(\frac{I_{y_{n i n}}}{I y}\right)^{r}
$$

$$
\begin{aligned}
& r_{t s}=\sqrt{\frac{\sqrt{S y c_{w}}}{S_{x}}} \\
& r_{t s}=\sqrt{\frac{I_{y h}}{r s_{x}}} \\
& r_{t s}=\frac{b_{s}}{\left.\sqrt{r\left(1+\frac{h t_{m}}{r b_{f} t_{p}}\right.}\right)}
\end{aligned}
$$

$$
r_{t}=\frac{b_{f_{c}}}{\sqrt{\left.\sqrt{r\left(\frac{h_{c}}{c}\right.}+\frac{1}{4} a_{w} \frac{h^{r}}{h_{. J}}\right)}}
$$

ज
gardusi

ى

$$
\left.\begin{array}{l}
M_{u} \leqslant \phi_{b} M_{n} \\
M_{n}=M_{p}=z f_{y}
\end{array}\right\} \Rightarrow M_{n} \leqslant \phi_{b} f_{y} z \quad, \phi_{b} \cdot .9
$$

if $\lambda<\lambda_{\rho} \rightarrow 0$ ค号

if $\lambda>\lambda_{r} \rightarrow$ inclut

$$
\begin{aligned}
& \text {. } r_{0} \leqslant k_{c}=\frac{k}{\sqrt{\frac{h}{\tau \sim}}} \leqslant \cdot, v y \\
& \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{s_{n c}}{s_{n c}} \geqslant \cdot v \rightarrow F_{L}=v F_{y} \\
& \frac{s_{n t}}{s_{x c}}<, v \rightarrow F_{L}=\frac{s_{x t}}{s_{n c}} F_{y}
\end{aligned}
$$

基心，

منالهاى نعونه	حداكثر نسبت بهتا به ضـامت		نسبت بر بـا بـ ضخامت	*رع احزا	حالت
		24, (1)			
$=\frac{b}{b-\frac{1}{7} t}$	$1 / \cdot \sqrt{\frac{E}{F_{y}}}$	$\cdot / r \wedge \sqrt{\frac{E}{r_{y}}}$	b/t	بانزهاى دفالى I شكل نورد 4,	1.
	$\cdot /: \Delta \sqrt{\frac{k_{C R}}{\gamma_{L}}}$	$\cdot / r A \sqrt{\frac{E}{r_{y}}}$	b/t	با بالّ " تغالز	11
$\cdots \frac{b}{r^{-m \times 1}, t}$	$\cdot / a 1 \sqrt{\frac{F}{P_{y}}}$	$\cdot / \Delta r \sqrt{\frac{E}{r_{y}}}$	b/t	سـالّهاى نبشیماي نك	ir
$-\frac{1}{1}$	$1 / \cdot \sqrt{\frac{F}{r_{y}}}$	$\cdot / r \lambda \sqrt{\frac{E}{r_{y}}}$	b/t	كلrar مثالم 1 شكـل , الر خـش حورل مهور מـبـن	ir
$\underline{t=5}$	$1 / \cdot r \sqrt{\frac{E}{r_{y}}}$	$\cdot / A * \sqrt{\frac{E}{v_{y}}}$	d/t	(جبن 	If

هنال			تسست رمعالمت		حات
	$\Delta / \mathrm{v} \cdot \sqrt{\frac{\nu}{t_{y}}}$	$r / V g \sqrt{\frac{E}{r_{y}}}$	$\mathrm{l} / \mathrm{t}_{\text {w }}$	I' تـكل با دو محور نـارذ وهال 	10
collan	$\Delta / \mathrm{y} \cdot \sqrt{\frac{E}{r_{y}}}$	[d] $\frac{\frac{h_{c}}{h_{p}} \sqrt{\frac{E}{F_{y}}}}{\left(\cdot /+\frac{+1}{A_{p}} M_{y}-/ \cdot:\right)^{\top}} \leq \lambda_{r}$	$h_{\text {d }} / t_{w}$	جان نغارن	19
	$1 / 7 \cdot \sqrt{\frac{\hbar}{F_{y}}}$	$1 / 1 r \sqrt{\frac{E}{F_{y}}}$	b / t	(HSS) (her بكتواتحت	ir
	$1 / ז \cdot \sqrt{\frac{E}{F_{y}}}$	$1 / i r \sqrt{\frac{E}{r_{y}}}$	b / t	و ر) در حد فاهل خـلوط حونّ با cr	14
	$\Delta / \mathrm{v} \cdot \sqrt{\frac{E}{r_{y}}}$	$r / \mathrm{Fr} \sqrt{\frac{E}{F_{y}}}$	h / t	جانهـاي مناطلع تؤكا , (HISS) : جعبها	19
	$\cdot / \cdot \mathrm{Y} \frac{E}{P_{y}}$	$\cdot / r i \frac{E}{r_{y}}$	D/t	. داريهاي نكل	r.

حالت حدى	لاغرى جان	لاغرى بال	مinc	بـد	
Y, ITB	C	C	$1 \cdot$	r-a-r-1.	
LTB, FLB	C	NC	T	$r-\Delta-r-1$.	
Y, L7B, F1.13, TFY	C, NC	C., NC:	I	F-d-r-1.	
Y, ITB, ALAB, TEY	S	C. NC:	T-I	$\triangle \Delta-r 1$.	
Y, FL.B	N/A	C, NC	$\stackrel{\text { Hund }}{ }$	S-0.r-1.	
Y, FI.B, WL.B	C, NC	C, NC	\square	v-a-r-1.	
Y. L.B	N/A	N/A	\bigcirc	A-a-r-1.	
Y, LTB, FLB	N/A	c. NC	TT	9-c-r-1.	
Y. L.TB, LL.B	N/A	N/A	L	$1 \cdot \Delta-r-1$.	
Y, LTB	N/A	N/A	-	\\|1-s-r-1.	
كلبة حالتهاى حدى	N/A	N/A	.	Ir-s-r-1.	
- Y LTB ك FLB WLB JFY • TFY ك ~ LLB LB					

$$
m_{n}=m_{p}, F_{y} z_{n}
$$

pp : بر : لكر يالميك

$x, 0$, 0 =
: (LTB) (ب)
(
$: L_{p} \leqslant L_{b} \leqslant L_{r} v^{\prime}$. ${ }_{(r}$

$$
M_{n}=c_{b}\left[M_{p}-\left(M_{p}-, v F_{y} s_{x}\right)\left(\frac{l_{b}-l_{p}}{l_{r}-l_{p}}\right)\right]
$$

$$
M_{n} \cdot F_{c} S_{n} \leqslant M_{p}
$$

$$
: L_{b}>L_{r} s^{\prime},(m
$$

$$
L_{p} . l, r_{r} r_{y} \sqrt{\frac{E}{f_{y}}}
$$

 .

$$
F_{c r}=\frac{c_{b} \pi^{r} t}{\left(\frac{c_{b}}{r_{c s}}\right)^{r}} \sqrt{1+\ldots r_{A} \frac{S_{c}}{s_{s} h}\left(\frac{L_{b}}{r_{c s}}\right)^{r}}
$$

- C

r (r
(LTB) (النا (

: (FLB) (ب) (

$$
M_{n}=\left[\mu_{p}-\left(\mu_{p}-, v F_{y} s_{n}\right)\left(\frac{\lambda-\lambda_{p_{f}}}{\lambda_{r_{f}}-\lambda_{p f}}\right)\right]
$$

$\frac{b_{f}}{r t_{f}} \varphi$ بر بر ,
-
 الن (

$$
M_{n}=M_{p}=F_{y} z_{y} \leqslant 1,4 F_{y} S_{y}
$$

家
y

(s, ك~~

(s, h_{i}

(;

$$
\left\{\begin{array}{l}
\frac{P_{u}}{\phi_{c} P_{n}} \geqslant ; r \rightarrow \frac{P_{u}}{\phi_{c} P_{n}}+\frac{\Lambda}{q}\left(\frac{M_{u x}}{\phi_{b} M_{n x}}+\frac{M_{n y}}{\phi_{b} M_{n y}}\right) \leqslant 1, \phi_{c}=., q \\
\frac{P_{u}}{\phi_{c} P_{n}}<, r r \frac{P_{u}}{r \phi_{c} P_{n}}+\left(\frac{M_{n x}}{\phi_{b} M_{n x}}+\frac{M_{n y}}{\phi_{b} M_{n y}}\right) \leqslant 1, \phi_{c}=., q
\end{array}\right.
$$

x x
Y ل
x
Y Y

$$
\begin{aligned}
& B_{1}=\frac{c_{m}}{1-\frac{P_{u}}{P_{e 1}}}<1 \\
& c_{m}=, 4-, k\left(\frac{M_{1}}{M_{r}}\right)>, k
\end{aligned}
$$

: B, s s-mba (11rs
: cm

(
(

$$
\begin{aligned}
& P_{e_{1}}=\frac{\pi^{r} E I}{L^{r}} \\
& P_{r}=\frac{1}{1-\frac{\Sigma P_{u}}{\sum P_{e r}}}
\end{aligned}
$$

$$
\text { : Br } \mathrm{B}_{\mathrm{K}}
$$

- كَلـَ
$\tau P_{n}: 0, \dot{L}$ ab chis

$\Sigma P_{e_{\gamma}}$:
I

ترين حو با, بابتر :
信 : Mnt

: P_{n}
$2 \frac{20 r u x i}{3}$

$$
\begin{aligned}
& P_{u}=P_{n t}+P_{r} P_{L t} \\
& M_{u}=B_{1} M_{n t}+B_{r} M_{l t} \Rightarrow\left\{\begin{array}{l}
M_{u}=B_{1} M_{n t} t_{\text {top }}+B_{r} M_{t_{t_{t o p}}} \\
M_{u}=B_{1} M_{n t} \text { bot }+B_{r} M_{n t} \text { bot }
\end{array}\right.
\end{aligned}
$$

